首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Soil erosion is a major socioeconomic and environmental problem in Turkey. Almost 86% of the land in Turkey has suffered various degrees of soil erosion. The objective of this study was to determine whether differences in tree species affect soil characteristics and microbial activity in degraded soils. Results from this study showed that organic C (Corg) was highest in the black locust soil at 0–20 cm depth and lowest in the bare land. Microbial biomass C (Cmic) increased in the order black locust > Scotch pine > bare land at two soil depths. One-way ANOVA demonstrated that afforested soils contain significantly higher microbial biomass C than those in the bare land soils. Microbial quotient (Cmic/Corg) of soils are positively influenced by afforestation as the bare land soils exhibited lower microbial quotient than the associated Scotch pine and black locust soils. Microbial communities in black locust soils were energetically more efficient—had a lower metabolic quotient (qCO2)—with a higher Cmic/Corg compared to those in Scotch pine soils. However, the microbial quotient in our study was still below range and cannot reach equilibrium again 15 yr after afforestation. Restoration of degraded lands could be a long-term process from microbial activity in the observed regions.  相似文献   

2.
Afforestation is economically and ecologically important for protecting land and improving soil quality. This study evaluates how soil basal respiration, physicochemical and microbiological characteristics are affected by parent material variety in afforesting degraded areas. For this, some soil physical and chemical parameters, microbial respiration (MR), soil microbial biomass carbon and microbial indexes (Cmic/Corg and MR/Cmic) were determined. The results showed that the physical, chemical and microbiological properties of the soil formed from limestone were better than those of the basaltic-andesite soil. An independent samples t-test demonstrated that the afforested area on the limestone parent material had significantly higher microbial biomass C than the basaltic-andesite parent material. The microbial quotient (Cmic/Corg) of the limestone soil was positively affected by afforestation. In addition, the highest basal respiration value (1.01?±?0.33 CO2–C 10?2?µg?g?1?h?1) was observed for the limestone at the topsoil. The lowest metabolic quotient values were determined for the basaltic-andesite parent material on both topsoil and subsoil (1.99 and 1.42?μg CO2-C mg Cmic?1 h?1, respectively). This study revealed the importance of determining the parent material and its soil characteristics for successfully managing forest applications in degraded areas. Limestone soil sequesters more carbon and promotes microbial activities with a higher Cmic/Corg than the basaltic-andesite soil. Furthermore, the microbial quotient remained low during the 10 years in which the forest was in its sapling stage.  相似文献   

3.
Little information is available on soil respiration and microbial biomass in soils under agroforestry systems. We measured soil respiration rate and microbial biomass under two age classes (young and old) of a pecan (Carya illinoinensis) — cotton (Gossypium hirsutum) alley cropping system, two age classes of pecan orchards, and a cotton monoculture on a well-drained, Redbay sandy loam (a fine-loamy, siliceous, thermic Rhodic Paleudult) in southern USA. Soil respiration was quantified monthly during the growing season from May to November 2001 using the soda-lime technique and was corrected based on infrared gas analyzer (IRGA) measurements. The overall soil respiration rates ranged from 177 to 776 mg CO2 m–2 h–1. During the growing season, soil respiration was higher in the old alley cropping system than in the young alley cropping system, the old pecan orchard, the young pecan orchard, and the monoculture. Microbial biomass C was higher in the old alley cropping system (375 mg C kg–1) and in the old pecan orchard (376 mg C kg–1) compared to the young alley cropping system (118 mg C kg–1), young pecan orchard (88 mg C kg–1), and the cotton monoculture (163 mg C kg–1). Soil respiration was correlated positively with soil temperature, microbial biomass, organic matter, and fine root biomass. The effect of alley cropping on soil properties during the brief history of alley cropping was not significant except in the old systems, where there was a trend of increasing soil respiration with short-term alley cropping. Over time, different land use and management practices influenced soil properties such as soil temperature, moisture, microbial biomass, organic matter, and fine root biomass, which in turn affected the magnitude of soil respiration. Our results suggest that trees in agroforestry systems have the potential to enhance soil fertility and sustainability of farmlands by improving soil microbial activity and accreting residual soil carbon.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

4.
杉木纯林、混交林土壤微生物特性和土壤养分的比较研究   总被引:6,自引:0,他引:6  
王清奎  汪思龙 《林业研究》2008,19(2):131-135
本文于2005年5月份,在中国科学院会同森林生态实验站选择了一块15年生的杉木纯林和两块15年生杉阔混交林作为研究对象,调查了林地土壤有机碳、全氮、全磷、硝态氮、有效磷和土壤微生物碳、氮、磷、基础呼吸以及呼吸熵,比较了纯林和混交林土壤微生物特性和土壤养分.结果表明,杉阔混交林的土壤有机碳、全氮、全磷硝态氮和有效磷含量高于杉木纯林;在混交林中,土壤微生物学特性得到改善.在0(10 cm和10(20 cm两层土壤中,杉阔混交林土壤微生物氮含量分别比杉木纯林高69%和61%.在0(10 cm土层,杉阔混交林土壤微生物碳、磷和基础呼吸分别比杉木纯林高11%、14%和4%;在10(20 cm土层,分别高6%、3%和3%.但是,杉阔混交林土壤微生物碳:氮比和呼吸熵较杉木纯林低34%和4%.另外,土壤微生物与土壤养分的相关性高于土壤呼吸、微生物碳:氮比和呼吸熵与土壤养分的相关性.由此可知,在针叶纯林中引入阔叶树后,土壤肥力得以改善,并有利于退化森林土壤的恢复.  相似文献   

5.
The nitrogen status of most Zambian soils is inherently low. Nitrogen-fixing trees such as Faidherbia albida (F. albida) could have the potential to restore soil fertility. We conducted a study to examine the role of mature F. albida trees on the soil microbial communities and overall N fertility status in Zambia. Soil samples were collected under and outside the canopies of F. albida trees in representative fields from two sites namely; Chongwe (loamy sand) and Monze (sandy loam). To assess the long term canopy effects; total N, mineral N and soil organic carbon (Corg) content were directly measured from soils collected under and outside the canopy. Short term litter effects were assessed by subtracting concentrations of biochemical properties of non-amended controls from amended soils with F. albida litter during an 8 week incubation experiment. We also determined N mineralization rates, microbial community structure—Phospholipid fatty acids, microbial biomass carbon, and labile organic carbon (\({\text{C}}_{{{\text{org[K}}_{ 2} {\text{SO}}_{ 4} ]}}\)) during incubation. For the long term canopy effect, average N mineralization rate, Corg, total N and mineral N content of non-amended soils under the canopy were (all significant at p < 0.05) greater than soils outside the canopy on both sites. In the short term, amending soils with litter significantly increased N mineralization rates by an average of 0.52 mg N kg?1 soil day?1 on soil from Monze. Microbial biomass carbon measured after 4 weeks of incubation was on average significantly higher on amended soils by 193 and 334 mg C kg?1 soil compared with non-amended soils in Chongwe and Monze soils, respectively. After 6 weeks of incubation, the concentration of all selected biomarkers for major microbial groups concentrations in non-amended soils were significantly higher (all p < 0.05) under the canopy than outside in Monze soil. Using principal component analysis, we found that the segregation of the samples under and outside the canopy by the first principal component (PC1) could be attributed to a proportional increase in abundances of all microbial groups. Uniform loadings on PC1 indicated that no single microbial group dominated the microbial community. The second principal component separated samples based on incubation time and location. It was mainly loaded with G-positive bacteria, and partly with G-negative bacteria, indicating that microbial composition was dominated by these bacterial groups probably at the beginning of the incubation on Monze soils. Our results show that the improvement of soil fertility status by F. albida could be attributed to a combination of both long term modifications of the soil biological and chemical properties under the canopy as well as short term litter fall addition.  相似文献   

6.
As part of a study on soil carbon flow in forest ecosystems, the biomass of fine roots (2.0mm in diameter) and root-associated fungi, including ectomycorrhizal fungi, were estimated in the summer season in 1998 at a Pinus densiflora (Japanese red pine) stand in western Japan. Fine roots of pine were classified into three categories: class I roots (0.5–2.0mm in diameter), long class II roots (long roots with diameter 0.5mm; IIL), and short class II roots (short roots with diameter 0.5mm; IIS). Total biomass of fine roots (I + IIL + IIS) at this stand was estimated to be 91.0gm–2, about 23% of which was class II roots (IIL + IIS). Ergosterol, which is a component of fungal membranes, was analyzed to estimate the biomass of root-associated fungi in roots. In the upper soil layers (from the surface to 13.4cm in depth), ergosterol contents in the class I, IIL and IIS roots were in the ranges 43.1–82.2, 126.1–196.3 and 271.2–321.0µgg–1 root DW, respectively. The ergosterol content was converted to fungal biomass using the median (minimum–maximum) value of ergosterol concentration reported for ectomycorrhizal fungi. Root-associated fungal biomass in this stand was estimated to be 2.0 (0.5–9.6) gm–2. The data suggest the biomass of ectomycorrhizal fungi in the P. densiflora stand is small compared with that in other forest ecosystems.  相似文献   

7.
Soil samples were taken at different distances from the trunks of four- to five-year-old trees of six species planted on-farm in western Kenya. The tree species wereCordia africana, Croton megalocarpoides, Grevillea robusta, Acacia tortilis, Prosopis juliflora andSesbania sesban. Samples were also taken inside and outside a fenced plantation ofProsopis juliflora. Soil samples were analysed for total C%, total N%,13C abundance,15N abundance, extractable P and pH.The most sensitive indicator of effects of trees on soils was13C abundance, which reflected a shift in inputs of C from C4 grasses to C from C3 trees. All species except Prosopis lowered the13C abundance by 0.5–1 -units. This was equivalent to an increase of 3–5% of the percentage of C contributed by C3 species. Prosopis trees did not decrease the13C abundance because of the abundant grass-growth around them. Cordia, which had the most pronounced effects, raised the C%, N% and extractable P by 27%, 26% and 55%, respectively. Nitrogen and C were well correlated (r 2=0.97) in the whole material. Effects on soil pH were in both directions, i.e. it was raised under the Prosopis plantation by 0.33 units, while it was lowered under Acacia by 0.21 units.Effects of agroforestry trees were thus seen in as short time as five years in practical onfarm situations.13C abundance is recommended as a particularly sensitive indicator of the influence of trees on sites previously dominated by C4 crops and grasses.  相似文献   

8.
We assessed the above- and below-ground biomass and net primary production (NPP) in a mature (85-year-old) Pinus densiflora forest established on a lava surface of Mt. Fuji in central Japan. The nitrogen (N) concentration of the forest soil was low (1.25%), and the mean soil carbon/nitrogen (C/N) ratio was 34.2; therefore, both plants and microorganisms would compete for N in our research forest. The total biomass was 192.62Mgha–1, of which 67.28% was in the stems and 25.71% was in the roots. The fine-root biomass was 1.12% of the total biomass. The total NPP of the forest reached 11.89Mgha–1 year–1, which fell within the values reported for other cool temperate P. densiflora forests established on non-volcanic-related substrata. The below-ground production was about 39% of the total NPP; the value was relatively small under the conditions of low total N concentration and high soil C/N ratio. Our study suggested that P. densiflora could recruit and grow on geologically new substrata without increasing the allocation of its annual carbon budget to below-ground organs (i.e., roots).  相似文献   

9.
Changes in soil respiration associated with forest harvest could increase net loss of CO2 to the atmosphere relative to pre-harvest values. By excavating quantitative soil pits across a gradient of physical disturbance in a harvested northern hardwood forest, this study examines C release from mineral soil. Mineral soil samples were analyzed for pH, percent organic matter (%OM), C and N concentration, δ13C, and total C per unit area. Results show a relationship between degree of disturbance and C concentration in soil 10-30 cm beneath the O-horizon. Highly disturbed sites show C depletion, with horizons from disturbed sites containing 25% less total C than the least disturbed sites. δ13C signatures of soil profiles at these sites show vertical mixing of plant-derived material into deeper mineral horizons. Mixing, as a result of physical disturbance, could have led to the observed C depletion by physical or chemical destabilization, or through the promotion of microbial respiration in deep mineral soil. Regardless of the mechanism, these results suggest elevated CO2 emissions from soil following harvest, and, thus, have implications for the validity of wood biomass as a carbon neutral energy source.  相似文献   

10.
On fertile alluvial soils on the lakeshore plain of Malawi, maize (Zea mays L.) yields beneath canopies of large Faidherbia albida (synAcacia albida) trees greatly exceed those found beyound tree canopies, yet there is little difference in soil nutrients or organic matter. To investigate the possibility that soil nutrient dynamics contribute to increased maize yields, this study focused on the impact of Faidherbia albida on nitrogen mineralization and soil moisture from the time of crop planting until harvest. Both large and small trees were studied to consider whether tree effects change as trees mature.During the first month of the rainy season, a seven-fold difference in net N mineralization was recorded beneath large tree canopies compared to rates measured in open sites. The initial pulse beneath the trees was 60 g N g–1 in the top 15 cm of soil. During the rest of the cropping cycle, N availability was 1.5 to 3 times higher beneath tree canopies than in open sites. The total production of N for the 4-month study period was 112 g N g–1 below tree canopies compared to 42 g N g–1 beyond the canopies. Soil moisture in the 0–15 cm soil layer was higher under the influence of the tree canopies. The canopy versus open site difference grew from 4% at the beginning of the season to 50% at the end of the cropping season.Both N mineralization and soil moisture were decreased below young trees. Hence, the impact of F. albida on these soil properties changes with tree age and size. While maize yields were not depressed beneath young F. albida, it is important to realize that the full benefits of this traditional agroforestry system may require decades to develop.  相似文献   

11.
Soil organic carbon (SOC) plays an important role in soil fertility and productivity. It occurs in soil in labile and non-labile forms that help in maintaining the soil health. An investigation was undertaken to evaluate the dynamics of total soil organic carbon (C tot), oxidisable organic carbon (C oc), very labile carbon (C frac 1), labile carbon (C frac 2), less labile carbon (C frac 3), non-labile carbon (C frac 4), microbial biomass carbon (C mic) and SOC sequestration in a 6-year-old fruit orchards. The mango, guava and litchi orchards caused an enrichment of C tot by 17.2, 12.6 and 11 %, respectively, over the control. The mango orchard registered highest significant increase of 20.7, 13.5 and 17.4 % in C frac 1, C frac 2 and C frac 4, respectively, over control. There is greater accumulation of all the C fractions in the surface soil (0–0.30 m). The maximum total active carbon pool was 36.2 Mg C ha?1 in mango orchard and resulted in 1.2 times higher than control. The passive pool of carbon constituted about 42.4 % of C tot and registered maximum in the mango orchard. The maximum C mic was 370 mg C kg?1 in guava orchard and constituted 4.2 % of C tot. The carbon management index registered 1.2 (mango orchard)- and 1.13 (guava and litchi orchard)-fold increase over control. The mango orchard registered highest carbon build rate of 1.53 Mg C ha?1 year?1 and resulted in 17.3 % carbon build-up over control. Among the carbon fractions, C frac 1 was highly correlated (r = 0.567**) with C mic.  相似文献   

12.
Few studies have analyzed how tree species within a mixed natural forest affect the dynamics of soil chemical properties and soil biological activity. This study examines seasonal changes in earthworm populations and microbial respiration under several forest species (Carpinus betulus, Ulmus minor, Pterocarya fraxinifolia, Alnus glutinosa, Populus caspica and Quercus castaneifolia) in a temperate mixed forest situated in northern Iran. Soil samplings were taken under six individual tree species (n = 5) in April, June, August and October (a total of 30 trees each month) to examine seasonal variability in soil chemical properties and soil biological activity. Earthworm density/biomass varied seasonally but not significantly between tree species. Maximum values were found in spring (10.04 m?2/16.06 mg m?2) and autumn (9.7 m?2/16.98 mg m?2) and minimum in the summer (0.43 m?2/1.26 mg m?2). Soil microbial respiration did not differ between tree species and showed similar temporal trends in all soils under different tree species. In contrast to earthworm activity, maximum microbial activity was measured in summer (0.44 mg CO2–C g soil?1 day?1) and minimum in winter (0.24 mg CO2–C g soil?1 day?1). This study shows that although tree species affected soil chemical properties (pH, organic C, total N content of mineral soils), earthworm density/biomass and microbial respiration are not affected by tree species but are controlled by tree activity and climate with strong seasonal dynamics in this temperate forest.  相似文献   

13.
Vegetation recovery is a key measure to improve ecosystems in the Loess Plateau in China. To understand the evolution of soil microorganisms in forest plantations in the hilly areas of the Loess Plateau, the soil microbial biomass, microbial respiration and physical and chemical properties of the soil of Robinia pseudoacacia plantations were studied. In this study, eight forest soils of different age classes were used to study the evolution of soil microbial biomass, while a farmland and a native forest community of Platycladus orientalis L. were chosen as controls. By measuring soil microbial biomass, metabolic quotient, and physical and chemical properties, it can be concluded that soil quality was improved steadily after planting. Soil microbial biomass of C, N and P (SMBC, SMBN and SMBP) increased significantly after 10 to 15 years of afforestation and vegetation recovery. A relatively stable state of soil microbial biomass was maintained in near-mature or mature plantations. There was an increase of soil microbial biomass appearing at the end of the mature stage. After 50 years of afforestation and vegetation recovery, compared with those in farmland, the soil microbial biomass of C, N and P increased by 213%, 201% and 83% respectively, but only accounting for 51%, 55% and 61% of the increase in P. orientalis forest. Microbial soil respiration was enhanced in the early stages, and then weakened in the later stage after restoration, which was different from the change of soil organic carbon. The metabolic quotient (qCO2) was significantly higher in the soils of the P. orientalis forest than that in farmland at the early restoration stage and then decreased rapidly. After 25 years of afforestation and vegetation recovery, qCO2 in soils of the R. pseudoacacia forest was lower than that in the farmland soil, and reached a minimum after 50 years, which was close to that of the P. orientalis forest. A significant relationship was found among soil microbial biomass, qCO2 and physical and chemical properties and restoration duration. Therefore, we conclude that it is possible to artificially improve the ecological environment and soil quality in the hilly area of the Loess Plateau; a long time, even more than 100 years, is needed to reach the climax of the present natural forest. __________ Translated from Acta Ecologica Sinica, 2007, 27(3): 909–917 [译自: 生态学报]  相似文献   

14.
Predictive models were developed for Cordia alliodora branch and Theobroma cacao branch or leaf biomass,based on branch basal areas (r2 0.79) but the model of C. alliodora leaf biomass, although significant, was of very low accuracy (r2 = 0.09) due to annual leaf fall. At age 10 years, shade tree stem biomass accounted for 80% of the total above-ground biomass of either tree. However, between the ages of 6 and 10 years, the biomass increment of T. cacao branches (3–4t.ha–1.a–1) was similar to that of the shade tree stems. During the same period, the net primary productivity was 35 and 28 t.ha–1.a–1, for the Erythrina poepigiana and and C. alliodora systems, respectively.Cocoa production under either of the shade trees C. alliodora or E. poeppigiana was 1000 kg.ha–1.a–1 (oven-dry; ages 6–10 yr). During the same period, C. alliodora timber production was 9 m3.ha–1.a–1 whilst the leguminous shade tree E. poeppigiana does not produce timber. Litterfall over the same 5 years, including crop and/or shade tree pruning residues, averages 11 and 23 t.ha–1.a–1, respectively. The main difference was due to E. poeppigiana pruning residues (10t.ha–1.a–1).Soil organic material reserves (0–45 cm) increased over 10 years from 198 to 240 t.ha–1 in the E. poeppigiana plots and from 168–184 t.ha–1 in the C. alliodora plots. These values, together with the productivity indices presented, provide evidence that the systems are sustainable.For economic reasons, the use of C. alliodora is recommended under the experimental conditions. however, on less fertile soils without fertilization, the greater biomass and hence nutrient return to the soil surface under E. poeppigiana, might make this the preferable shade tree.  相似文献   

15.
To investigate the effect of tree species on soil N dynamics in temperate forest ecosystems, total N (Nt), microbial N (Nmic), net N mineralization, net nitrification, and other soil chemical properties were comparatively examined in beech (64–68 years old) and Norway spruce (53–55 years old) on sites 1 and 2, and beech and Scots pine (45 years old) on site 3. The initial soil conditions of the two corresponding stands at each site were similar; soil types were dystric Planosol (site 1), stagnic Gleysols (site 2), and Podzols (site 3). In organic layers (LOf1, Of2, Oh), Nmic and Nmic/Nt, averaged over three sampling times (Aug., Nov., Apr.), were higher under the beech stands than under the corresponding coniferous ones. However, the Nmic in the organic layers under beech had a greater temporal variation. Incubation (10 weeks, 22 °C, samples from November) results showed that the net N mineralization rates in organic layers were relatively high with values of 8.1 to 24.8 mg N kg–1 d–1. Between the two corresponding stands, the differences in net N mineralization rates in most of the organic layers were very small. In contrast, initial net nitrification rates (0.2–17.1 mg N kg–1 day–1) were considerably lower in most of the organic layers under the conifer than under the beech. In the mineral soil (0–10 cm), Nmic values ranged from 4.1–72.7 mg kg–1, following a clear sequence: August>November>April. Nmic values under the beech stands were significantly higher than those under the corresponding coniferous stands for samples from August and April, but not from November. The net N mineralization rates were very low in all the mineral soils studied (0.05–0.33 mg N kg–1 day–1), and no significant difference appeared between the two contrasting tree species.  相似文献   

16.
The impact of contour hedgerow systems on soil sustainability under acidic conditions has been widely criticized. A study was undertaken to determine the effects of management and hedgerow species on soil properties. Cassia spectabilis (a non-N-fixing tree legume), Gliricidia sepium (an N-fixing tree legume), Pennisetum purpureum (a forage grass), and Stylosanthes guyanensis (a forage legume) contour barriers were compared with an open field (non-hedgerow treatment) over 1 cowpea and 2 rice seasons. Three types of management viz.: prunings applied + N0P0K0, prunings applied + N50P20K20 and prunings removed + N50P20K20 were used as subplot treatments. The soils were strongly acidic (pH 4.5) and classified as clay Orthoxic Palehumult. Cassia performed better than the other species in terms of pruning biomass, N and P contributions over a period of 20 months. There was a combined positive effect of pruning biomass and fertilizers on rice and cowpea yields in Pennisetum and Gliricidia systems, while a tendency towards a positive effect of pruning biomass on rice was found in the Cassia system. The pruning biomass and/or fertilizer application did not significantly influence the top soil organic C, N and available P in the hedgerow systems. Soil bulk density was significantly reduced by the application of Cassia prunings after 12 months. Organic C, N and P dynamics indicated that in situ pruning biomass was not sufficient to maintain their level in the soil. But the cassia systems with prunings applied + N50P20K20 experienced the lowest degradation in soil organic C (2.1 t ha−1) followed by the Gliricidia systems (4.1 t ha−1). The overall results imply that the application of pruning and inorganic fertilizer is imperative to conserve soil resources, and non- N-fixing tree species can exert a significant advantage in biomass and thereby in soil N-recycling under acidic soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Because soil CO2 efflux or soil respiration (RS) is the major component of forest carbon fluxes, the effects of forest management on RS and microbial biomass carbon (C), microbial respiration (RH), microbial activity and fine root biomass were studied over two years in a loblolly pine (Pinus taeda L.) plantation located near Aiken, SC. Stands were six-years-old at the beginning of the study and were subjected to irrigation (no irrigation versus irrigation) and fertilization (no fertilization versus fertilization) treatments since planting. Soil respiration ranged from 2 to 6 μmol m−2 s−1 and was strongly and linearly related to soil temperature. Soil moisture and C inputs to the soil (coarse woody debris and litter mass) which may influence RH were significantly but only weakly related to RS. No interaction effects between irrigation and fertilization were observed for RS and microbial variables. Irrigation increased RS, fine root mass and microbial biomass C. In contrast, fertilization increased RH, microbial biomass C and microbial activity but reduced fine root biomass and had no influence on RS. Predicted annual soil C efflux ranged from 8.8 to 10.7 Mg C ha−1 year−1 and was lower than net primary productivity (NPP) in all stands except the non-fertilized treatment. The influence of forest management on RS was small or insignificant relative to biomass accumulation suggesting that NPP controls the transition between a carbon source and sink in rapidly growing pine systems.  相似文献   

18.
Conversion of native forest ecosystem to cropland has considerably degraded the soil nutrient levels in the Bale Mountains, south-eastern highlands of Ethiopia. This study investigated the effects of land use change through conversion of native forest to cropland and/or grazing land on soil pH (H2O), base cations (Ca2+, Mg2+, K+, Na+), CEC and percentage base saturation (PBS) in three adjacent land-use types: cropland, grazing land and native forest. A total of 108 soil samples (3 replications × 3 land-use types × 4 profiles × 3 soil depth layers, 0–0.2, 0.2–0.4 and 0.4–1.0 m) were collected for laboratory analyses. Results showed that soil pH, Na+ and K+, CEC, and PBS varied significantly with respect to land use and soil depth while Ca2+and Mg2+ varied with soil depth (ρ < 0.05). Conversion of native forest ecosystem to cropland during a 15-year period significantly increased soil pH and PBS while reducing Na+ and K+. The CEC in the cropland was reduced by 37.7% (2.6% per annum) compared to the native forest, which could be attributed to the decline in organic matter concentrations. If such rapid declines in soil nutrient concentrations continue unabated, the soils will reach at the point of no return within a few decades. Although the effect of grazing on most of the properties was found to be minimal, adapting the number of stock to the carrying capacity of the land and thereby enhancing the natural regeneration, combined with proper cropland management practices could help restoring soil nutrients for sustainable agricultural production and ecosystem functions.  相似文献   

19.
Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low-intensity prescribed fire on the microbial and chemical properties of the top soil in a Hungarian oak (Quercus frainetto Ten.) forest. The research focused on microbial soil parameters (microbial soil respiration (RSM), soil microbial biomass carbon (Cmic) and metabolic quotient (qCO2) and chemical topsoil properties (soil acidity (pH), electrical conductivity (EC), carbon (C), nitrogen (N), C/N ratio and exchangeable cations). Mean annual comparisons show significant differences in four parameters (C/N ratio, soil pH, Cmic and qCO2) while monthly comparisons do not reveal any significant differences. Soil pH increased slightly in the burned plots and had a significantly positive correlation with exchangeable cations Mg, Ca, Mn and K. The mean annual C/N ratio was significantly higher in the burned plots (28.5:1) than in the control plots (27.0:1). The mean annual Cmic (0.6 mg g?1) was significantly lower although qCO2 (2.5 µg CO2–C mg Cmic h?1) was significantly higher, likely resulting from the microbial response to fire-induced environmental stress. Low-intensity prescribed fire caused very short-lived changes. The annual mean values of C/N ratio, pH, Cmic and qCO2 showed significant differences.  相似文献   

20.
In the present study the specifically13C-enriched lignin precursors of biosynthesis (i.e., coniferin-[side chain13C], coniferin-[side chain-13C] and coniferin-[side chain-13C]) were synthesized and administered exogeneously to ginkgo shoots (Ginkgo biloba L.) to obtain13C-enriched lignin-carbohydrate complexes (LCCs). The specifically13C-enriched LCCs were isolated from the newly formed xylem of ginkgo shoots administered with the13C-enriched precursors and degraded by enzymes. Lignin-rich fractions, so called enzyme-degraded LCCs (EDLCCs), were obtained. By determining their13C-NMR spectra, information related to the chemical structure of lignin building units and linkages between phenylpropane units of lignin and carbohydrates were obtained. It was found that these precursors were incorporated in natural lignin successfully. Three lignin-carbohydrates linkages (i.e., ether type, ester type, ketal type) were found at the C -position of the side chain of phenylpropane units in ginkgo LCC. No lignin-carbohydrate bond at the C- or C-position of the lignin side chain was observed in the13C-NMR spectra of the13C-enriched LCCs. This fact indicates that a specific13C tracer technique can be useful in NMR study of the chemical structure of LCCs.Part of this paper was presented at the 5th Pacific Polymer Conference, Kyongju, Korea, October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号