首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
纵轴流联合收割机切流脱粒分离装置的研制与试验   总被引:7,自引:6,他引:1  
为了分析纵轴流联合收割机切流脱粒分离装置的脱粒分离性能,在自行研制的纵轴流脱粒分离清选试验台上,对钉齿和刀形齿切流脱粒分离装置进行了台架试验,测定了切流脱粒滚筒、强制喂入轮以及纵轴流复脱滚筒的功耗,分析切流脱粒分离装置的结构和运动参数对籽粒脱粒性能的影响。试验结果表明,切流脱粒分离装置的籽粒脱净率范围约为67.19%~82.37%,功耗约占脱粒总功耗的20%,刀形齿式切流脱粒滚筒消耗的功率较少,采用切流与纵轴流组合式脱粒分离装置的小麦脱净率均能达到99.90%以上,夹带损失率小于0.25%,配置刀形齿式切流脱粒滚筒的切流与纵轴流脱粒分离装置的总功耗较少,强制喂入轮和纵轴流复脱滚筒的功耗分别约占脱粒总功耗的14%和66%,研究结果对纵轴流联合收割机的研制具有指导意义。  相似文献   

2.
不同脱粒元件对切流与纵轴流水稻脱粒分离性能的影响   总被引:7,自引:6,他引:1  
为研究不同脱粒元件对切流与纵轴流脱粒分离性能的影响,该文在自行研制的纵轴流脱粒分离试验台上,利用自制的矩形齿板、短纹杆-板齿、钉齿、刀形齿、梯形板齿对喂入量为7及8 kg/s的水稻进行了脱粒分离性能试验,对比切流装置在不同脱粒元件下的功耗和初脱分离率及纵轴流复脱装置在不同脱粒元件下的总功耗、夹带损失率、脱净率、破碎率、脱出混合物轴向和径向分布等指标。结果表明,在7 kg/s水稻喂入量时,刀形齿切流装置初脱分离率最高为47.71%,钉齿纵轴流复脱装置夹带损失最低为0.25%;切流装置采用刀形齿且纵轴流复脱装置采用钉齿,在8 kg/s水稻喂入量时,单位功耗最低为8.51 kW/(kg·s),夹带损失最低为0.31%,脱净率达到99.96%。  相似文献   

3.
针对食葵脱粒作业缺少专用机械装备、籽粒破损率高等问题,该研究基于人工击打脱粒原理,设计了一种食葵脱粒装置,脱粒时食葵盘面朝下模拟翻盘动作,锤杆被脱粒弹簧向上推动完成击打脱粒作业,借助输送带差速设计完成转盘作业。首先根据食葵盘及籽粒的物理特性,对脱粒部分及输送机构的结构参数进行设计和优化;再通过理论分析确定了影响未脱净率、破损率的关键因素。并试制了食葵脱粒装置试验台,以击打频率、脱粒通道间隙、弹簧压缩量为试验因素,以未脱净率、破损率为试验指标开展正交试验,确定了较优工作参数组合。结果表明:脱粒过程中,影响食葵盘未脱净率、籽粒破损率的因素主次顺序为击打频率、脱粒通道间隙、弹簧压缩量,较优工作参数组合为击打频率44次/min、脱粒通道间隙78 mm、弹簧压缩量25 mm,在较优参数组合下进行重复验证试验,结果表明,食葵未脱净率、籽粒破损率分别为8.12%、0.65%。研究结果可为食葵机械脱粒装备的研制提供参考。  相似文献   

4.
变隙式油葵脱粒装置设计与试验   总被引:3,自引:3,他引:0  
目前已有的油葵脱粒装置无法适用不同条件下的油葵脱粒需求,该文针对油葵在脱粒过程中油葵脱净率较低、籽粒破损率较高等问题,设计了一种基于多杆机构的变隙式油葵脱粒装置。重点介绍了变隙式油葵脱粒装置的结构及工作原理,并对变隙式凹板筛结构的间隙调节机构与角度调节机构进行运动学分析、通过运动轨迹分析和求解,确定了变隙式凹板筛可变间隙为20~60 mm。试制了变隙式油葵脱粒装置试验台,以滚筒转速、脱粒间隙、喂入量作为试验因素,以脱净率、破损率为指标开展正交试验,确定较优作业参数组合。试验结果表明:在脱粒过程中,影响油葵脱净率和籽粒破损率的因素主次顺序为脱粒间隙、滚筒转速、喂入量,较优作业参数组合为脱粒间隙35 mm、滚筒转速280 r/min、喂入量1.8 kg/s。在较优作业参数组合下进行多次重复试验验证,结果表明,油葵的平均脱净率为99.01%,籽粒破损率为2.28%,满足油葵脱粒作业需求。该研究的较优作业参数适用于本文试验的物料条件,实际作业中需调整脱粒凹板筛的直径大小,进而改变脱粒间隙等工作参数以适应不同条件下的油葵脱粒需求。研究结果可为后续油葵脱粒装置的设计提供参考。  相似文献   

5.
正多杆变隙式油葵脱粒装置设计与试验   总被引:2,自引:1,他引:1  
目前已有的油葵脱粒装置无法适用不同条件下的油葵脱粒需求,该文针对油葵在脱粒过程中油葵脱净率较低、籽粒破损率较高等问题,设计了一种基于多杆机构的变隙式油葵脱粒装置。重点介绍了变隙式油葵脱粒装置的结构及工作原理,并对变隙式凹板筛结构的间隙调节机构与角度调节机构进行运动学分析、通过运动轨迹分析和求解,确定了变隙式凹板筛可变间隙为20~60 mm。试制了变隙式油葵脱粒装置试验台,以滚筒转速、脱粒间隙、喂入量作为试验因素,以脱净率、破损率为指标开展正交试验,确定较优作业参数组合。试验结果表明:在脱粒过程中,影响油葵脱净率和籽粒破损率的因素主次顺序为脱粒间隙、滚筒转速、喂入量,较优作业参数组合为脱粒间隙35 mm、滚筒转速280 r/min、喂入量1.8 kg/s。在较优作业参数组合下进行重复试验验证,结果表明,油葵的平均脱净率为99.01%,籽粒破损率为2.28%,满足油葵脱粒作业需求。该研究的较优作业参数适用于该文试验的物料条件,实际作业中需调整脱粒凹板筛的直径大小,进而改变脱粒间隙等工作参数以适应不同条件下的油葵脱粒需求。研究结果可为后续油葵脱粒装置的设计提供参考。  相似文献   

6.
轴流螺旋滚筒式食用向日葵脱粒装置设计与试验   总被引:3,自引:3,他引:0  
针对食葵脱粒过程中籽粒表皮划伤严重及未脱净率高等问题,该研究设计了一种轴流螺旋滚筒式食葵脱粒装置。脱粒元件为外径32 mm的螺旋管,对物料在脱粒空间的运移过程进行运动学与动力学分析,确定脱粒元件螺旋管螺旋升角为63°,螺距为2 800 mm。以葵花3638为对象进行台架试验,通过单因素试验探索喂入量、滚筒转速及脱粒间隙对籽粒未脱净率和破损率的影响,根据单因素试验结果,以喂入量、滚筒转速、脱粒间隙为影响因素,未脱净率和破损率为响应指标,进行二次回归正交旋转组合试验,利用Design-Expert软件建立响应指标与影响因素之间的数学模型,基于响应面法进行参数优化,获得脱粒装置在喂入量1.4 kg/s,滚筒转速300 r/min,脱粒间隙35 mm的参数组合下脱粒效果较好,此时未脱净率为0.55%,破损率1.76%。以优化参数组合进行验证试验,结果表明,未脱净率为0.59%、破损率为1.77%,与模型预测值的相对误差均小于5%。该装置未脱净率与破损率均低于现有向日葵脱粒机,满足向日葵机械化收获标准。该研究为食葵机械化收获装备的研制提供理论参考。  相似文献   

7.
短纹杆-板齿与钉齿脱粒滚筒的脱粒对比试验研究   总被引:8,自引:7,他引:1  
目前所使用的全喂入式水稻联合收割机的脱粒装置大多采用轴流式钉齿滚筒,其功耗较大,籽粒的破损率较高,脱出的茎秆较碎,脱出混合物中杂余含量高,使得后续的清选负荷增加.为了降低功耗,减轻清选负荷,提高联合收割机的工作效率,试制了一种新型脱粒滚筒——短纹杆-板齿脱粒滚筒,并与钉齿脱粒滚筒进行了脱粒对比台架试验.试验结果表明,相对钉齿脱粒滚筒而言,短纹杆-板齿脱粒滚筒在脱粒水稻时功耗低,脱出混合物杂余含量少,能有效的减轻清选负荷.  相似文献   

8.
纹杆块与钉齿组合式轴流玉米脱粒滚筒的设计与试验   总被引:8,自引:6,他引:2  
为解决黄淮海地区玉米直接进行籽粒收获破碎率和未脱净率高的问题,该文在分析现有脱粒滚筒结构特点的基础上,设计了组合式轴流玉米脱粒滚筒,选取滚筒转速、滚筒倾角和凹板间隙为试验因素,在自制的玉米脱粒试验台上进行了单因素试验和正交试验,并运用SAS统计分析软件对试验结果进行了分析。单因素试验结果表明:随着滚筒转速的增大,籽粒破碎率先降低后升高,未脱净率则急剧减小并趋于稳定;随着滚筒倾角的增大,籽粒破碎率和未脱净率则逐渐变小;随着凹板间隙的增大,籽粒破碎率先降低后升高,未脱净率先升高后降低并趋于稳定。正交试验结果表明:影响籽粒破碎率和未脱净率的主次因素顺序均为滚筒转速、滚筒倾角、凹板间隙,且转速430 r/min、滚筒倾角6?和凹板间隙55 mm时籽粒破碎率和未脱净率均最低。该研究可为高含水率玉米脱粒滚筒的设计提供参考。  相似文献   

9.
水稻脱粒破碎率与脱粒元件速度关系研究   总被引:13,自引:9,他引:4  
脱粒元件的冲击是水稻脱粒谷粒损伤的主要原因。该文基于碰撞理论和能量平衡原理对单个、多个谷粒和脱粒元件的碰撞过程进行了理论分析。建立了圆形截面脱粒元件线速度和脱粒破碎率之间的数学模型。在自制的脱粒分离性能试验台上对水稻进行了脱粒性能试验,通过试验确定了数学模型中的待定系数,验证了数学模型的正确性。为脱粒装置的设计、优化提供了理论依据。  相似文献   

10.
纵轴流脱粒装置水稻最佳脱粒分离参数预测与控制   总被引:1,自引:1,他引:0  
在水稻脱粒过程中,脱粒滚筒的转速、凹板间隙、齿间距等是脱粒籽粒损失率和脱粒功耗的重要影响因素。为获得水稻联合收割机上纵轴流脱粒滚筒的最佳脱粒参数组合及可控范围,在自行研制的切纵流脱粒分离试验台上开展了水稻脱粒分离性能试验研究。对纵轴流滚筒在不同脱粒滚筒转速、凹板间隙、齿间距参数组合下进行水稻脱粒性能台架试验研究,并对试验结果进行回归分析和置信度分析。将获得的最佳操作参数置信区间用于控制纵轴流滚筒的水稻脱粒性能并预测其最优参数组合,同时进行了验证。结果表明,为将纵轴流脱粒滚筒的总损失率控制在0.33%以内且将脱粒功耗控制在46.36 kW以内,则具有95%置信度的纵轴流滚筒转速为772.61~905.74 r/min、脱粒间隙为22.18~37.93mm、齿间距为104.96~170.17 mm,其相应的纵轴流滚筒最佳转速为839 r/min、凹板间隙为30 mm、齿间距为138 mm。该研究对于降低纵轴流滚筒的脱粒功耗和籽粒损失具有重要意义,同时可为水稻联合收割机纵轴流脱粒滚筒最佳结构及参数设计提供参考。  相似文献   

11.
纵轴流联合收获机关键部件改进设计与试验   总被引:1,自引:3,他引:1  
针对当前履带式纵轴流联合收获机中存在的工作状态无法在收获不同作物间快速转换,割台损失率较高、脱粒分离能力较差以及功耗高等不足,对割台、脱粒、清选、行走等主要工作部件进行了改进设计与试验研究。将割台设计为无级调速可伸缩式结构,脱粒装置改为纵轴同径差速滚筒脱粒装置,采用单HST(hydro static transmission)原地转向行走装置及防粘附清选装置,并经室内试验和田间试验表明:可伸缩割台能实现稻麦收割状态与油菜收割状态的快速转换,扩大了割台的使用功能,收获油菜损失显著减少,与常规相比较,油菜损失率降低2.8个百分点;差速轴流滚筒提高了脱粒效果和分离能力,与等长度单转速轴流滚筒相比,夹带与脱不净损失率分别减少了0.02个百分点与0.09个百分点,破碎率减少了0.017个百分点;原地转向行走机构减少了地表土壤的破坏并降低了转向功耗,以原地转向替代单边制动转向时,节约功耗37.0%;清选机构抖动板和清选筛面经不沾水处理,改善了潮湿谷物的清选性能,清选损失率降低0.9个百分点,含杂率降低0.4个百分点;这些联合收获机主要工作部件的改进设计提高了整机工作性能,以期为联合收获机主要工作部件改进,提高联合收获机工作性能提供参考。  相似文献   

12.
油菜联合收获机种子籽粒脱粒装置结构及运行参数优化   总被引:1,自引:6,他引:1  
为探究油菜联合收获机脱粒系统对油菜籽粒的收获效果,寻求较优的脱粒装置结构及运行参数,以喂入量、脱粒滚筒间隙、脱粒滚筒转速和脱粒元件型式种类为影响因素,油菜种子籽粒发芽率、脱粒损失为评价指标,开展油菜联合收获脱粒试验、发芽率试验及无损伤籽粒发芽率对比试验,探究了联合收获油菜籽粒的脱粒损伤机理。结果表明:影响油菜种子籽粒脱粒损伤的主次因素依次为脱粒元件型式、脱粒滚筒间隙、脱粒滚筒转速、喂入量;所选因素水平下,综合考虑脱粒损伤及损失,采用喂入量3.2 kg/s、脱粒滚筒间隙9 mm、脱粒滚筒转速856 r/min、全钉齿时为较优组合。分析表明:联合收获脱粒会对油菜种子籽粒造成损伤,影响脱粒损伤的直接因素为种子籽粒在滚筒内受打击次数及打击力大小;通过调整脱粒系统结构及运行参数,能够显著降低油菜的脱粒损伤及损失,本文为脱粒装置结构及运行参数的优化提供参考。  相似文献   

13.
针对食葵机械化收获水平低、损失大、含杂率高及籽粒破损严重等现状,该研究根据成熟期食葵生物特性,在传统联合收获机结构基础上设计一种4KHZ-330型食葵联合收获机,在割台上增设脱粒装置实现葵盘在割台上脱分,可有效缩短葵盘输送路径,提高清选质量。首先阐述食葵联合收获机的总体设计方案及动力传动模式,并对割脱一体式割台、割台升降机构、清选装置及气力输送装置等关键部件进行设计,确定相关参数。机具配套动力113 kW,工作幅宽为3300 mm,可一次完成食葵切割、脱粒、输送、清选、集籽、集草及卸载等工序。田间试验表明,收获机在低、中、高3种工作档位下,总损失率均低于4.0%,籽粒含杂率均低于5.0%,籽粒破损率均低于2.0%,生产率为0.40~0.85 hm2/h,作业性能指标满足食葵机械化收获标准。作业过程中收获机各关键部件之间运动协调关系平稳,食葵喂入顺畅,工作效率高,可以作为食葵联合收获机使用。  相似文献   

14.
下落油菜籽粒在无秸秆正压纵向气流场中的漂移特性   总被引:1,自引:1,他引:1  
为降低油菜联合收获过程中的割台损失,针对机械直播和移栽的油菜,该文提出对行操作并使用正压气流田间在线收集处于下落过程中油菜籽粒的方法。利用自行试制的台架试验装置,首先设计正交试验,确定无秸秆正压气流场中影响收集效果的相关影响因素的显著性水平,然后对重要影响因素进行单因素试验,以获得对应的回归方程,为装置结构及工作参数的进一步优化提供预测依据。试验表明,影响收集效果的因素依次为收集单体高度、长度、风机工作电流频率及喷嘴仰角,且前3个因素对收集效果的影响较为显著,而喷嘴仰角对收集效果的影响不显著。4种因素对收集效果的影响趋势均符合二次多项式拟合,且收集效果(籽粒收集量)随收集单体高度、风机工作电流频率及喷嘴仰角的增加而增加,而随收集单体长度的增加而减小,其决定系数分别为0.9773、0.9985、0.9682和0.9686,因此在整机功率分配允许的情况下,应尽可能选用较大功率的风机,并不断优化管道布局、单体及喷嘴的结构形式及参数大小,以保证足够的气流场强度及作用范围,从而起到应有的收集效果。本文研究为后续进一步对有静止秸秆及有运动秸秆室内台架试验和田间试验条件下油菜割台籽粒损失气力式收集装置及试验的研究奠定了基础。  相似文献   

15.
4GX-100型小区小麦种子联合收获机关键作业参数优化   总被引:1,自引:3,他引:1  
摘要:为了避免因收获机罩壳内部种子残留与混杂所带来的育种试验数据失真问题,结合自行研制的4GX-100型小区小麦种子联合收获机进行田间育种收获试验,利用二次回归正交旋转试验设计,探讨了无滞种残留率与脱粒滚筒转速、喂入量、吸杂风机转速的关系,建立了各个作业参数与无滞种残留率之间的数学模型。由试验结果分析可得:3个因子对无滞种残留率影响大小的顺序为脱粒滚筒转速、喂入量、吸杂风机转速;通过方程模拟选优得出4GX-100型小区小麦种子联合收获机田间育种收获关键作业参数的最优组合为:脱粒滚筒转速1 586 r/min、喂入量为0.305 kg/s、吸杂风机转速1 076 r/min,即无滞种残留率为最大值99.98%,且收获机其余各项指标满足小区育种收获要求。  相似文献   

16.
油菜多滚筒脱粒分离装置的性能试验与分析   总被引:6,自引:5,他引:1  
为了获取适合联合收获机多滚筒油菜脱粒分离装置的结构方式和工作参数,该文在自行研制的多滚筒脱粒分离装置试验台上进行不同喂入量、不同滚筒转速、不同脱粒凹板间隙和不同脱粒齿杆时的切轴流滚筒与横轴流滚筒组合式双滚筒脱粒分离装置(简称切轴双滚筒脱粒分离装置)与切轴流滚筒与双横轴流滚筒组合式3滚筒脱粒分离装置(简称切轴轴3滚筒脱粒分离装置)的脱粒分离性能对比试验。试验结果表明:采用切轴轴3滚筒脱粒分离装置,在喂入量为1.8 kg/s,切轴流滚筒、第Ⅰ横轴流滚筒、第Ⅱ横轴流滚筒的转速依次为800、850和900 r/min、凹板间隙依次为20、25和30 mm、脱粒齿杆均为3排钉齿的组合方案为脱粒分离装置的脱粒损失率最小的最优组合;通过正交试验分析,得出喂入量和滚筒转速是影响脱粒分离装置脱粒损失率的主要因素。研究结果可为研制多滚筒油菜联合收获机提供参考。  相似文献   

17.
大豆联合收获机对称可调式凹板筛设计与试验   总被引:2,自引:2,他引:0  
针对传统大豆联合收获机脱粒间隙调整方法单一、田间作业时工作参数与作物适应性差,导致大豆破碎率、未脱净率和夹带损失率较高的问题,该研究设计了一种对称可调式凹板筛,实现双侧脱粒间隙可调,并对其间隙调整量进行了确定.以大豆联合收获机的前进速度、滚筒转速、脱粒段脱粒间隙、分离段脱粒间隙为影响因素,以大豆破碎率、未脱净率和夹带损...  相似文献   

18.
切纵流联合收割机纵轴流滚筒长度设计与优化(英文)   总被引:1,自引:1,他引:0  
为优化设计切纵流联合收割机纵轴流滚筒的长度,该文通过设计脱粒分离长度可变的纵轴流滚筒并进行喂入量为7 kg/s的水稻脱粒分离性能和籽粒分布试验,分析纵轴流滚筒下脱出混合物的分布规律,建立纵轴流滚筒的籽粒分布方程,计算纵轴流滚筒长度;通过计算纵轴流滚筒顶盖导流板的最佳导角对纵轴流滚筒长度进行优化,确定纵轴流滚筒长度的最佳值并进行水稻脱粒分离性能试验。结果表明,在水稻喂入量为7 kg/s,纵轴流滚筒顶盖导流角为7.64°时,优化后的纵轴流滚筒长度最佳值为3 159.77 mm,经优化后的纵轴流滚筒脱粒分离的籽粒夹带损失率约为0.29%。该研究为纵轴流联合收割机的纵轴流滚筒设计提供了参考。  相似文献   

19.
履带式丘陵山地胡麻联合收割机设计与试验   总被引:1,自引:1,他引:0  
针对丘陵山区地块面积小、道路狭窄,大型联合收割机运输难、进地难、转场难、操作难等现状,解决胡麻茎秆易缠绕、易堵塞、难喂入等问题,该研究设计了一种履带式丘陵山地胡麻联合收割机。该机采用防缠绕低损割台、纹杆+杆齿组合式小锥度横轴流脱粒滚筒、组合式窄栅格凹板等结构,可实现胡麻茎秆的防缠绕快速喂入、分段式脱粒与分离、清选等作业。试验结果表明:胡麻籽粒含水率为5.42%时,脱净率为98.76%、含杂率3.61%、破损率0.18%、割台损失率1.07%、夹带损失率0.25%,清选损失率0.81%、飞溅损失率0.26%、总损失率2.36%。作业期间整机运行平稳,作业指标符合胡麻机械化收获标准,满足胡麻机械化收获要求,可以作为丘陵山地胡麻联合收割机使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号