首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The germinable soil seedbank was determined at two sites in central Queensland on four separate occasions between February 1995 and October 1996. These sites were infested with parthenium weed ( Parthenium hysterophorus L.), a serious invasive exotic weed. During this period, the seedbank varied between 3282 and 5094 seeds m−2 at the Clermont site, and between 20 599 and 44 639 seeds m−2 at the Moolayember Creek site. Parthenium hysterophorus exhibited a very abundant and persistent seedbank, accounting for 47–73% of the seedbank at Clermont and 65–87% of the seedbank at Moolayember Creek. The species richness and species diversity of the seedbank, and the seed abundance of many species, was lower at Moolayember Creek during spring (the time of year when the most dense infestations of the weed originate). Parthenium hysterophorus seedlings also emerged more rapidly from the soil samples than did those of all other species. Hence, it seems that various aspects of the weed's seed ecology, including abundance and the persistence of its seedbank and the rapid emergence of its seedlings, are major factors contributing to its aggressiveness in semiarid rangeland communities in central Queensland. The domination by P . hysterophorus of the seedbanks of these sites suggests that the weed is having a substantial negative impact on the ecology of these plant communities. The diversity of these seedbanks was found to be lower in comparison with that observed in other grassland communities that were not dominated by an invasive weed species. Hence, the prolonged presence of P . hysterophorus may have substantially reduced the diversity of these seedbanks, thereby reducing the ability of some of the native species to regenerate in the future.  相似文献   

2.
The aim of this study was to determine the weed suppression potential of soil steaming plus activating compounds (KOH or CaO) to boost soil temperature. Different combinations between the compounds and rates were tested in experiments carried out in the field and in a controlled environment. Treatment effects were assessed on field weed vegetation and on seedbank and seedling emergence of three winter ( Alopecurus myosuroides , Matricaria chamomilla and Raphanus raphanistrum ) and four spring annuals ( Amaranthus retroflexus , Echinochloa crus-galli , Fallopia convolvulus and Setaria viridis ), were assessed on field weed vegetation. Neither maximum soil temperature (from 72 to 85°C) nor duration of high temperature in the 3 h following application consistently affected weed suppression. In the field, no significant effects on total weed density were recorded, but there were some significant effects on individual species. The weed seedbank was clearly suppressed by activated steaming: total seedling emergence was inversely related to increasing KOH rates both in the 0–10 and 10–20 cm soil layers, while for CaO the relationship was significant only in the 0–10 cm layer. Winter annuals were more sensitive to KOH than CaO and spring annuals had a more pronounced species-specific response to treatments. There was a strong negative relationship between compound rate and seedling emergence for all species. Alopecurus myosuroides was the most sensitive to the steam-alone treatment (77% reduction), whereas M. chamomilla and E. crus-galli were the least sensitive. Results from this study indicate that the type and rates of activating compounds for soil steaming must be adjusted to the weed community composition.  相似文献   

3.
Correlation between the soil seed bank and weed populations in maize fields   总被引:1,自引:0,他引:1  
Annual weed populations establish every year from persistent seed banks in the soil. This 3 year study investigated the relationship between the number of weed seeds in the soil seed bank and the resultant populations of major broadleaf and grass weeds in 30 maize fields. After planting the crop, 1 m2 areas were protected from the pre-emergence herbicide application. Soil samples were collected soon after spraying to a depth of 100 mm and the weed seeds therein were enumerated. The emerged weed seedlings in the field sampling areas were counted over the following 8 weeks. Up to 67 broadleaf species and five grass weeds were identified, although not all were found at every site and some were specific to a region or soil type. For the most abundant weeds in the field plots, on average 2.1–8.2% of the seeds of the broadleaf species and 6.2–11.9% of the seeds of the grass weeds in the soil seed bank emerged in any one year, depending on the species. Overall, the results showed a strong linear relationship between the seed numbers in the soil and the seedling numbers in the field for all the grasses and for most broadleaf weeds. For some species, like Trifolium repens , only a weak relationship was observed. In the case of Chenopodium album , which had the largest seed bank, there was evidence of asymptotic behavior, with seedling emergence leveling off at high seed numbers. An estimate of the soil seed bank combined with knowledge of the germination and behavior of specific weed species would thus have good potential for predicting future weed infestations in maize fields.  相似文献   

4.
The management of crop fertilization may be an important component of integrated weed management systems. A field study was conducted to determine the effect of various application methods of nitrogen (N) fertilizer on weed growth and winter wheat yield in a zero-tillage production system. Nitrogen fertilizer was applied at 50 kg ha−1 at the time of planting winter wheat over four consecutive years to determine the annual and cumulative effects. The nitrogen treatments consisted of granular ammonium nitrate applied broadcast on the soil surface, banded 10 cm deep between every crop row, banded 10 cm deep between every second crop row, and point-injected liquid ammonium nitrate placed between every second crop row at 20 cm intervals and 10 cm depth. An unfertilized control was also included. Density, shoot N concentration and the biomass of weeds was often lower with subsurface banded or point-injected N than with broadcast N. The winter wheat density was similar with all N fertilizer application methods but wheat shoot N concentration and yield were consistently higher with banded or point-injected N compared with broadcast N. In several instances, the surface broadcast N did not increase the weed-infested wheat yield above that of the unfertilized control, indicating that it was the least preferred N application method. Depending on the weed species, the weed seedbank at the conclusion of the 4 year study was reduced by 29–62% with point-injected N compared with broadcast N. Information gained from this study will be used to develop more integrated weed management programs for winter wheat.  相似文献   

5.
Imperata cylindrica (L.) Raeuschel is a dominant and infamous grass weed in the savannah of West Africa. Research to reduce the weed to non-damaging levels is a priority activity at many agricultural institutions. The successful development and implementation of long-term I. cylindrica management strategies depend on the ability to predict changes in weed composition after I. cylindrica has been controlled effectively. The weed flora and soil seedbank were assessed from 329 fields dominated by this species in the fringes of the humid forest (HFF), coastal/derived savannah (CDS) and in the southern Guinea savannah (SGS) in 1996 and 1997. The objectives of the study were to correlate species composition of the weed flora with that of the soil seedbank and to determine the effect of management factors and soil properties on the composition of the weed flora. Species richness in the weed flora and in the weed seedbank was higher in the SGS than in the CDS and HFF. Mean weed density per field was generally higher in the HFF (156 ± 25.0 weeds m–2) than in the CDS (108 ± 8.1 weeds m–2) and in the SGS (92 ± 6.3 weeds m–2). Weed composition varied with agroecological zone as well as with management factors and soil properties. Sørenson's index of similarity was low (mean=0.20) in all zones, indicating poor similarity between the weed flora above-ground and the soil seedbank.  相似文献   

6.
Weed seedbanks are the primary source of weeds in cultivated soils. Some knowledge of the weed seedbank may therefore be appropriate for integrated weed management programs. It would also be very useful in planning herbicide programs and reducing the total herbicide use. However, a number of problems are inherent in the estimation of the seedbank size for arable weeds that usually have annual life cycles. In a long-term research project we have investigated the dynamics of weed seedbanks in corn fields for the past 8 years. Specific studies have included (i) developing cheap and efficient methods for estimating the weed seedbank; (ii) developing guidelines for efficient soil sampling (including the number and size of samples); (iii) influence of cultivation methods on weed seed distribution; (iv) mapping the spatial variability of the seedbank; (v) estimating the rate of seedbank decline for certain weed species; and (vi) assessing the potential of using the weed seed content in the soil to predict future weed problems. This paper reviews and summarizes the results of our research on the above aspects. The strong correlation between seedlings emerged in the greenhouse and seeds extracted in the laboratory for the most abundant weed species has demonstrated the potential for using the weed seed content of the soil to predict future weed infestations. The next step is to establish correlations with field emergence under commercial conditions using the sampling guidelines developed in our studies. Subsequently, we aim to offer the weed seedbank estimation as a commercial service to farmers for planning the most appropriate weed management options.  相似文献   

7.
Diversified cropping systems can have high soil microbial biomass and thus strong potential to reduce the weed seedbank through seed decay. This study, conducted in Iowa, USA, evaluated the hypothesis that weed seed decay is higher in a diversified 4‐year maize–soyabean–oat/lucerne–lucerne cropping system than in a conventional 2‐year maize–soyabean rotation. Mesh bags filled with either Setaria faberi or Abutilon theophrasti seeds and soil were buried at two depths in the maize phase of the two cropping systems and sampled over a 3‐year period. Setaria faberi seed decay was consistently greater at 2 cm than at 20 cm burial depth and was higher in the more diverse rotation than in the conventional rotation in 1 year. Abutilon theophrasti seeds decayed very little in comparison with seeds of S. faberi. Separate laboratory and field experiments confirmed differences in germination and seed decay among the seed lots evaluated each year. Fusarium, Pythium, Alternaria, Cladosporium and Trichoderma were the most abundant genera colonising seeds of both species. A glasshouse experiment determined a relationship between Pythium ultimum and S. faberi seed decay. Possible differences in seed susceptibility to decay indicate the need to evaluate weed seedbank dynamics in different cropping systems when evaluating overall population dynamics and formulating weed management strategies.  相似文献   

8.
ZHANG  HAMILL  GARDINER  WEAVER 《Weed Research》1998,38(2):143-152
Previous studies have shown that reliable predictions of the above-ground weed flora may not be obtainable by using the total number of seeds in the seedbank. The purpose of this study was to determine if the actual weed flora depends on the active soil seedbank (seeds that are germinable in the spring). In the 1995 growing season, seedling emergence was monitored within permanent quadrats established in a field. Soil cores taken from the same field were also monitored for seedling emergence in a greenhouse to estimate the number of seeds in the active soil seedbank. Significant positive relationships were observed between the above two variables based on either total weed flora or individual weed species commonly found in south-western Ontario, Canada. For relatively large-seeded species, the relationship held with a sampling depth up to 15 cm below the soil surface. For small-seeded species, a shallow sampling depth (0–7·5 cm) generated better results than deeper sampling (0–15 cm). In general, 3–7% of the seeds in the active soil seedbank were capable of producing seedlings in the field. The results suggest that the level of weed infestation in a growing season may be predicted using seeds in the active soil seedbank.  相似文献   

9.
Laboratory and field experiments were conducted to evaluate the usefulness of Oxalis spp. as allelopathic ground-cover plants for weed management. Some Oxalis spp. have previously been reported to possess strong allelopathic activities but few studies have been conducted on their activities in fields. This study aimed to investigate allelopathic activities and the possibility of weed suppression in five species of common Oxalis : shamrock oxalis ( Oxalis articulata Savigny), Bowie's woodsorrel ( Oxalis bowiei Lindl.), trefoil ( Oxalis brasiliensis Lodd. ex Knowl. et West.), lucky clover ( Oxalis deppei Lodd. ex Sweet) and Oxalis hirta L. The effects of the leachates from dry leaves and the exudates from living roots of these plant species were tested in laboratory experiments. The leachates from O. articulata , O. bowiei , O. deppei and O. hirta and the exudates from O. deppei caused > 84% inhibition of the radicle elongation of lettuce seedlings, but no effect was observed on the seed germination of lettuce. In the field experiment, O. deppei significantly reduced the weed population in July. A significant relationship was observed between the weed population and the percentage ground coverage of Oxalis spp. In contrast to the weed population, a significant relationship was observed between the weed above-ground biomass and the allelopathic activity of exudates from Oxalis spp.  相似文献   

10.
This study was carried out to compare the diversity in seed production and the soil seed bank in a dryland and an irrigated agroecosystem in the dry tropics. Both agroecosystems showed a comparable number of species, but only 25% and 38% similarity during the winter and rainy cropping seasons, respectively. In the irrigated agroecosystem, the amount of seed production diversity was almost double in the winter season, compared to the rainy season. The weed seedbank diversity was low but was sensitive to cropping practices and seasons in both agroecosystems. A considerably smaller soil seedbank size in the irrigated agroecosystem (cf. dryland) was related to lowered weed seed production. The dryland agroecosystem showed a greater accumulation of the seeds of broad‐leaved weeds, whereas the irrigated agroecosystem accumulated more seeds of the grasses or sedges. About three‐fourths of the seeds during the winter season were accounted for by Anagallis arvensis and Chenopodium album in the dryland agroecosystem and by C. album and Melilotus indica in the irrigated agroecosystem. However, during the rainy season, Ammannia baccifera, Echinochloa colona and Cyperus rotundus dominated in both agroecosystems. The changes in the weed seed bank and its diversity are mainly attributed to differences in water management, which tends to reduce species diversity, especially at a lower depth, but leads to the dominance of some potentially noxious weeds (e.g. Phalaris minor and M. indica). Approximately double the soil seedbank size and a greater diversity at a lower depth might indicate an adaptive mechanism in the storage of weed seeds in the dryland agroecosystem.  相似文献   

11.
Weed infestations are a major cause of yield reduction in rice (Oryza sativa) cultivation, particularly with direct‐seeding methods, but the relationship between weed dynamics and water availability in Cambodian paddy fields has not been documented previously. We surveyed the weed abundance and weed seed banks in the soil of paddy fields with inferred differences in their water regime in 22 farm fields in three provinces of Cambodia in the 2005 and 2006 rainy seasons. We studied rain‐fed lowland fields in upslope and downslope topographic positions and fields at different distances from the irrigation water source inside an irrigation rehabilitation area. The weed seed banks were estimated by seedling emergence in small containers and weed abundance and vigor were estimated by a simple scoring system. The estimated weed seed bank in the top 5 cm of soil ranged from 52.1 to 167 × 103 seeds m?2 (overall mean of 8.5 × 103 seeds m?2) and contained a high proportion (86%) of sedge species, such as Fimbristylis miliacea L. and Cyperus difformis. Several fields had particularly large seed banks, including one near the reservoir. No clear difference was found in the weed seed banks between the irrigated fields that were located close to (upstream) and distant from (downstream) the water source or between the irrigated and rain‐fed lowland fields, but the weed scores were larger in the rain‐fed fields and the downstream fields within the irrigated area. A water shortage during the late growing season in 2005 led to a proliferation of weeds in some fields and an associated increase in weed seedbank size in 2006. However, the weed scores in 2006 were more strongly associated with that year's water conditions than with the weed seedbank size.  相似文献   

12.
R H LI    & S QIANG 《Weed Research》2009,49(4):417-427
The diversity and composition of floating weed seed communities were surveyed in 27 sites across the main rice-growing regions in China with the aim of better understanding weed seed dispersal via irrigation water. Seed of 74 species, belonging to 20 families, were identified from floating matter on the water surface in lowland rice fields. Thirty-five species from three families: Poaceae (15), Asteraceae (11), and Polygonaceae (9), accounted for 47% of all species identified. Species with seed maturing in the summer accounted for 64% of the weed seed and their mean relative abundance was 0.74. Species richness, Shannon–Wiener index and Pielou evenness index were significantly different among the floating weed seed communities. The diversity of weed seed communities in the Yangtze river valley was higher than that in other sites, and some sites were dominated by only a few weed species, such as Beckmannia syzigachne , Alopecurus aequalis , A. japonicus , and Polypogon fugax. At all sites, the dominant weed seeds reflected the dominant weed species in the previous crop. The 27 sample sites of weed seed communities can be clustered into two groups on the basis of previous crop, either lowland rice or sites with previous crops of winter fallow, winter wheat or oilseed rape. Canonical correspondence analysis (CCA) revealed that irrigation frequency, previous crop, and latitude, but not soil type or longitude, significantly affected species composition. The numbers of floating weed seed species were high in lowland rice fields; composition was affected by previous crops and irrigation frequency. Filtering irrigation water and collecting and removing floating weed seeds from the water surface could be integrated into weed management practices to control weeds in lowland rice fields.  相似文献   

13.
The parasitic weed Striga hermonthica poses a serious threat to cereal production in sub-Saharan Africa. Striga hermonthica seedbanks are long-lived; therefore, long-term effects of control strategies on the seedbank only emerge after several years. We developed a spatially explicit, stochastic model to study the effectiveness of control strategies in preventing invasion of S. hermonthica into previously uninfested fields and in reducing established infestations. Spatial expansion of S. hermonthica and decrease in millet yield in a field was slower, on average, when stochasticity of attachment of seedlings to the host was included and compared to the deterministic model. The spatial patterns of emerged S. hermonthica plants 4–7 years after point inoculation (e.g. seeds in a dung patch) in the spatial-stochastic model resembled the distribution typically observed in farmers' fields. Sensitivity analysis showed that only three out of eight life cycle parameters were of minor importance for seedbank dynamics and millet yield. Weeding and intercropping millet with sesame or cowpea reduced the seedbank in the long term, but rotations of millet with trap crops did not. High seedbank replenishment during years of millet monoculture was not sufficiently offset by seedbank depletion in years of trap crop cultivation. Insight from simulations can be employed in a participatory learning context with farmers to have an impact on S. hermonthica control in practice.  相似文献   

14.
Weed seed predation is an ecosystem service, influencing weed population dynamics. The impact of weed seed predation on weed population dynamics depends on how predators respond to seed patches at the field scale. Seed predation will be most effective if the proportion of seeds predated increases with increasing size and seed density of patches. Density‐dependent rodent seed predation was measured by varying seed density and patch size in four irrigated conventionally managed cereal fields in north eastern Spain. Artificial weed seed patches were created by applying a range of Lolium multiflorum seed densities from 0 to 7500 seeds m?2 in 225 m2 patches (2008) or in patches that varied in size from 1 to 9 m2 (2009). Seed predation was estimated using seed cards and seed frames. The granivorous rodents Mus spretus and Apodemus sylvaticus caused high seed predation rates (92%) in three fields, whereas in a fourth field, it was lower (47%). Rodents responded in an inversely density‐dependent manner, but this had little biological meaning as even in patches seeded with the highest density, the input to the soil seedbank was reduced by 88%. For the period of time this experiment lasted, hardly any new seeds would have entered the seedbank.  相似文献   

15.
Weed competition and nutrient scarcity often restrict organic cereal production, especially where the availability of livestock manure is limited. While harrowing of annual weeds and legume cover crops can be used, these methods are both executed in early spring and may hinder each other. Two cycles of a 2‐year crop rotation were carried out in south‐east Norway (60°42′N, 10°51′E, altitude 250 m) with weed harrowing and undersown cover crops (WHCC) at two fertiliser rates (40 and 100 kg nitrogen ha?1). The effect of the WHCC treatments was measured by weed density and species, weed biomass, changes in weed seedbank and grain yield. The weed density depended on the interaction between WHCC, fertiliser and year. On average, pre‐emergence weed harrowing reduced weed density by 32% and weed biomass by 49%, while pre‐ and post‐emergence weed harrowing reduced weed density by 59% and weed biomass by 67% compared with the untreated control. Spergula arvensis became more abundant at low rather than at high fertiliser rates. On average, white clover cover crop sown after pre‐emergence weed harrowing resulted in the highest yields for both oat (+12.1%) and wheat (+16.4%) compared with the untreated control. Despite differences in weed population density and biomass among WHCC treatments within years, the weed biomass, weed density and seedbank increased for all WHCC treatments over the 4‐year period. More research is required into improving the efficacy of mechanical and cultural weed suppression methods that organic systems rely on.  相似文献   

16.
Seed‐attacking microorganisms have an undefined potential for management of the weed seedbank, either directly through inundative inoculation of soils with effective pathogenic strains, or indirectly by managing soils in a manner that promotes native seed‐decaying microorganisms. However, research in this area is still limited and not consistently successful because of technological limitations in identifying the pathogens involved and their efficacy. We suggest that these limitations can now be overcome through application of new molecular techniques to identify the microorganisms interacting with weed seeds and to decipher their functionality. However, an interdisciplinary weed management approach that includes weed scientists, microbiologists, soil ecologists and molecular biologists is required to provide new insights into physical and chemical interactions between different seed species and microorganisms. Such insight is a prerequisite to identify the best candidate organisms to consider for seedbank management and to find ways to increase weed seed suppressive soil communities.  相似文献   

17.
Size and composition of the weed seedbank was assessed after 12 years of application of four tillage systems in two crop rotations. Mouldboard and chisel ploughing at 45 cm, minimum tillage at 15 cm and no tillage were compared in continuous winter wheat and a pigeon bean/winter wheat 2-year rotation. Weed control was based upon post-emergence herbicide application. Weed seedling emergence from soil samples taken at 0–15, 15–30 and 30–45 cm depths was assessed in a non-heated glasshouse for 12 months. The tillage system influenced weed seedbank size and composition to a much greater extent than crop rotation. Total weed seedling density was higher in no tillage, minimum tillage and chisel ploughing plots in the 0–15, 15–30 and 30–45 cm layers respectively. Density in the whole (0–45 cm) layer did not differ significantly among tillage systems. With no tillage, more than 60% of the total seedlings emerged from the surface layer, compared with an average 43% in the other tillage systems. Crop rotation did not influence either weed seedbank size or seedling distribution among soil layers, and only had a small influence on major species abundance. The weed seedbank was dominated (>66%) by Conyza canadensis (L.) Cronq. and Amaranthus retroflexus (L.), which thrived in chisel ploughing and no tillage respectively. Results suggested that crop rotation and substitution of mouldboard ploughing by non-inversion tillage (especially by minimum tillage) would not result in increased weed problems, whereas use of no tillage might increase weed infestations because of higher seedling recruitment from the topsoil.  相似文献   

18.
Seed dormancy and persistence in the soil seedbank play a key role in timing of germination and seedling emergence of weeds; thus, knowledge of these traits is required for effective weed management. We investigated seed dormancy and seed persistence on/in soil of Chenopodium hybridum, an annual invasive weed in north‐western China. Fresh seeds are physiologically dormant. Sulphuric acid scarification, mechanical scarification and cold stratification significantly increased germination percentages, whereas dry storage and treatments with plant growth regulators or nitrate had no effect. Dormancy was alleviated by piercing the seed coat but not the pericarp. Pre‐treatment of seeds collected in 2012 and 2013 with sulphuric acid for 30 min increased germination from 0% to 66% and 62% respectively. Effect of cold stratification on seed germination varied with soil moisture content (MC) and duration of treatment; seeds stratified in soil with 12% MC for 2 months germinated to 39%. Burial duration, burial depth and their interaction had significant effects on seed dormancy and seed viability. Dormancy in fresh seeds was released from October to February, and seeds re‐entered dormancy in April. Seed viability decreased with time for seeds on the soil surface and for those buried at a depth of 5 cm, and 39% and 10%, respectively, were viable after 22 months. Thus, C. hybridum can form at least a short‐lived persistent soil seedbank.  相似文献   

19.
The effects of three different weed management strategies on the required input of hand weeding in an arable organic farming system, the weed seedbank in the soil and the emerging weed seedling emergence were studied from 1996 to 2003. Strategies were based on population dynamic models and aimed for (1) control of weeds as carried out in standard organic farming practice, (2) control of all residual weeds that grow above the crop and (3) prevention of all weed seed return to the soil. Under all strategies, the size of the seedbank increased during the conversion from conventional to organic farming systems. The increase under strategy 3 was significantly smaller than the increase under the other strategies. From 1999 onwards, the weed densities in plots treated with strategy 3 became significantly lower than the weed densities in plots treated with the other strategies. The time needed for hand‐weeding required to prevent weed seed return, in addition to the time needed in standard organic farming practices, reduced during the course of the study. A management strategy aimed at the prevention of seed return (strategy 3) can reduce the size of the increase of the seedbank, which is usually observed after transition from conventional to organic farming. This study provides unique real‐world data that are essential for evaluating population dynamic models. The results may contribute to the development of weed management systems based on ‘no seed’ threshold strategies and to a further decrease in the dependence on herbicides.  相似文献   

20.
Weeds are a perennial problem in coconut plantations and cause significant losses in the nut yield. The occurrence of a wide range of weeds also causes difficulties in their eradication. The influence of five different weed management practises on the distribution and composition of the soil weed seed bank in coconut plantations in the low-country dry zone of Sri Lanka was evaluated. The treatments imposed included the application of glyphosate (N-[phosphonomethyl]-glycine), cover cropping with Pueraria phaseoloides , tractor harrowing, tractor slashing, and tractor plowing. All the treatments were applied twice per year, except for the cover cropping treatment. In terms of a reduction in the weed biomass, the application of glyphosate and cover cropping ( Pueraria ) were more efficient in reducing the ground weed population. These methods were very effective in reducing the weed seed density in the top soil layers. Plowing and harrowing significantly reduced the seed bank in the top soil layers and shifted significant numbers of weed seeds to deeper soil profiles. However, the total germinated weed seed count increased by 123.5, 691.4, 1133.1, and 1216.5% in the 10–15, 15–20, 20–25, and 25–30 cm soil depths, respectively, compared with the initial germinated weed seed count in the plowing treatment. Considering all the soil layers, the decline in the germinating weed seed count was very high in the treatment plots with cover cropping and the application of glyphosate; thus, these are considered to be the best practises to reduce the germinating weed seed count in the soil of coconut plantations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号