首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 171 毫秒
1.
生物质炭对集约化菜地N2O排放和蔬菜产量的影响   总被引:1,自引:0,他引:1  
【目的】 本试验评价了生物质炭对菜地土壤温室气体排放和产量的长期效应。 【方法】 田间试验在江苏省南京市集约化种植菜地进行。共设置4个处理,分别为对照 (CK)、单施氮肥处理 (N)、施用氮肥 + 新生物质炭 (NCF,CF在2016年6月施用) 以及施用氮肥 + 4年陈化生物质炭 (NCA,CA在 2012 年6月施用)。生物质炭施用量为40 t/hm2。2016年11月至2017年11月连续种植4季蔬菜,分别为小青菜、空心菜、苋菜、菠菜,并伴有休耕期。每季蔬菜施氮量均为N 240 kg/hm2,其中空心菜收获三茬,在第一茬收获后按照N 240 kg/hm2 追肥一次。采用静态暗箱–气相色谱法测定N2O浓度。 【结果】 观测期内各处理菜地N2O排放主要集中在第二季和第三季,其单位产量N2O排放量分别为0.038~0.131 kg/t和0.107~0.482 kg/t,而第一季和第四季的单位产量N2O排放量分别是0.033~0.209 kg/t和0.007~0.070 kg/t。土壤温度和矿质氮变化未显著影响土壤N2O排放通量;整个观测期内土壤充水孔隙度 (WFPS) 介于37%~93%之间,土壤含水量变化显著影响 (P < 0.01) 土壤N 2O排放通量。与N处理相比,整个轮作周期内NCF和NCA处理N2O周年累积排放量和周年排放系数均显著降低,两个施生物质炭处理之间差异不显著;NCF处理N2O周年累积排放量和周年排放系数降幅分别为35.6%和46.2%,NCA处理降幅分别达38.8%和49.9%。与N处理相比,NCF和NCA处理均增加了集约化菜地蔬菜产量,增幅分别为4.6%和17.9%,NCA处理达到显著水平,两个施生物质炭处理之间差异不显著。此外,NCF和NCA处理分别显著降低单位产量N2O排放量49.8%和41.3% (P < 0.01)。 【结论】 在集约化菜地土壤中经4年陈化后的生物质炭仍然具有较强的减排和增产能力。与新施入的生物质炭相比,施用4年后的生物质炭增产效果更显著;施用生物质炭对集约化蔬菜生态系统减排和改善作物生产具有长期效应。   相似文献   

2.
不同形态氮添加对毛竹林土壤N2O排放的影响   总被引:1,自引:1,他引:1  
  【目的】  氧化亚氮(N2O)排放是亚热带地区氮损失的主要途径,我们研究了不同形态含氮化合物对土壤N2O排放的影响。  【方法】  以毛竹(Phyllostachys edulis)林土壤为研究对象进行了室内培养试验。设置土壤中添加KNO3、NH4NO3、NH4Cl、KCl处理,以去离子水作为对照(CK),在25oC黑暗条件下培养。在培养0.5 h,1、3、5、7、14、28、60天,测定土壤N2O排放速率,铵态氮(NH4+-N)、硝态氮(NO3?-N)、可溶性有机碳(DOC)和水溶性氮(WSN)含量,采用荧光定量PCR技术测定了土壤氨氧化细菌(ammonia-oxidizing bacteria, AOB)、氨氧化古菌(ammonia-oxidizing archaea, AOA)、nirS、nirK、nosZⅠ、nosZⅡ基因丰度。  【结果】  培养第60天,氮添加与KCl添加处理均显著增加了土壤DOC含量,NH4NO3、NH4Cl处理显著增加了WSN含量,但显著降低了土壤pH。氮添加及KCl添加处理均增加了土壤AOA、AOB、nirK基因丰度,降低了nosZⅠ、nosZⅡ基因丰度。氮添加处理N2O排放速率均在培养第14天达到峰值,且相较于CK处理均增加了N2O累积排放量,KNO3、NH4NO3、NH4Cl和KCl处理累积排放量的增幅分别为524.3%、771.1%、652.7%、98.6%。N2O排放速率与NO3?、WSN、nirK基因丰度呈显著正相关,而与pH、nosZⅠ、nosZⅡ基因丰度呈显著负相关。  【结论】  铵态氮添加能显著促进毛竹林土壤N2O的排放,其效果高于硝态氮,NH4NO3作为混合氮,外源性NH4+-N、NO3?-N同时输入对土壤N2O排放的促进作用比单独添加NH4+-N、NO3?-N更显著,但并未出现叠加效应。  相似文献   

3.
为揭示不同生物硝化抑制剂(BNIs)对红壤性水稻土N2O排放的影响差异及作用机制,通过21 d的土柱淹水培养试验,比较了三种BNIs 1,9-癸二醇(1,9-D)、亚麻酸(LN)和3-(4-羟基苯基)丙酸甲酯(MHPP)与化学合成硝化抑制剂双氰胺(DCD)对土壤N2O排放及相关硝化、反硝化功能基因的影响。结果表明:不同BNIs(1,9-D、LN、MHPP)可以显著平均降低土壤N2O日排放峰值40.1%;1,9-D和MHPP可分别抑制N2O排放总量44.5%和43.9%,而DCD和LN对N2O排放总量没有显著影响。1,9-D和MHPP对AOA(氨氧化古菌)、AOB(氨氧化细菌)硝化菌和nirS、nirK型反硝化菌的调控均有所不同,1,9-D可以同时抑制AOA、AOB和nirS微生物的生长;MHPP仅可以抑制AOA的生长;其中,AOA-amoA和nirS基因丰度与土壤N2O的排放呈显著正相关关系。同时,1,9-D和MHPP均增加了nosZ基因丰度及其与AOA-...  相似文献   

4.
【目的】 土壤硝化与反硝化作用是氮循环的两个关键环节,本文研究不同比例的有机、无机肥配施对硝化和反硝化进程产生的影响,为高效施肥提供理论基础。 【方法】 在安徽农业大学农翠园试验基地的黄褐土上进行了小麦–玉米轮作田间试验。试验以不施氮肥为对照 (CK),在小麦、玉米总施氮量相同的条件下,设置5个处理,分别为单施无机肥 (T1)、无机肥∶有机肥 = 2∶1 (T2)、无机肥∶有机肥 = 1∶1 (T3)、无机肥∶有机肥 = 1∶2 (T4)、单施有机肥 (T5)。在小麦拔节期,取0—20 cm土壤样品,利用荧光定量PCR技术测定反硝化和氨氧化微生物丰度,并结合反硝化能力、N2O/(N2O+N2) 产物比、土壤呼吸、硝化势和氨氧化细菌 (AOB) 与古菌 (AOA) 对硝化势相对贡献率的测定,分析江淮地区长期有机和无机肥配施对黄褐土硝化、反硝化微生物丰度及其功能的影响。 【结果】 单施无机肥或有机肥处理的硝化势均高于不同配比处理。与添加有机肥相比,增施无机肥会显著增加AOA的丰度和硝化贡献率。在反硝化方面,反硝化能力和土壤呼吸随着有机肥投入量的增加而增加,单施有机肥处理显著高于其它处理。nirS和nosZ型反硝化菌丰度随着有机肥的增加而增加,而nirK型反硝化菌丰度呈减少趋势。相关分析表明,反硝化能力与nirS型、nosZ型反硝化菌丰度、有机质和可溶性有机碳含量极显著正相关,与nirK相关性不强。 【结论】 与单施无机肥或有机肥处理相比,有机和无机肥适当配施可降低土壤硝化势,并能调控AOA和AOB在硝化过程中的作用,有效地降低土壤反硝化损失。   相似文献   

5.
  【目的】  反硝化作用导致农田土壤氮素损失和温室气体N2O的排放。研究不同作物茬口对土壤反硝化细菌群落结构的影响,旨在揭示作物茬口影响N2O排放的相关机制。  【方法】  定位试验位于黑龙江省海伦市前进乡光荣村(47°23′N,126°51′E),种植方式包括玉米连作(CC)、大豆连作(SS)以及玉米–大豆轮作,每年一季。取样时,轮作体系玉米已倒茬三次、大豆两次。采集CC、SS以及轮作体系中的大豆茬口(SSC)和玉米茬口(CSC)的表层土壤(0—15 cm)样品,利用实时定量PCR (qPCR)和高通量测序技术,分析土壤中的nirS和nirK型反硝化细菌丰度和群落组成。  【结果】  在4个作物茬口土壤中,CC处理的反硝化速率最高,玉米–大豆轮作体系中SSC和CSC处理的反硝化速率显著高于SS处理。轮作体系两个茬口SSC和CSC处理的nirS和nirK型反硝化细菌基因丰度多显著高于SS处理,而与CC处理多差异不显著。PCoA结果显示,SSC和CSC处理的nirS型反硝化细菌群落间差异显著,而CC和SS处理的nirK型反硝化细菌群落间存在显著差异。RDA分析结果表明,NO3–-N和C/N分别是nirS和nirK型反硝化细菌群落分异的最主要驱动因子。SEM分析结果显示,nirS型反硝化细菌群落与反硝化速率呈显著正相关(R2=0.92),而nirS和nirK型基因丰度与土壤反硝化速率无显著相关关系。  【结论】  作物茬口显著影响黑土农田土壤反硝化细菌群落和丰度组成。反硝化细菌群落组成而非反硝化细菌丰度是反硝化速率变化的决定性因素,nirS型反硝化细菌对土壤反硝化作用贡献更大。  相似文献   

6.
【目的】本研究旨在明确硝化抑制剂对稻田土壤氮素周转的影响,探讨抑制剂提高氮肥利用率及微生物响应机理。【方法】以草甸黑土发育的水稻土为研究对象,进行了两组培养试验 (25℃),培养周期均为150天。共设4个处理:1) 不施肥 (CK);2) 单施尿素 (Urea);3) 尿素 + 双氰胺 (Urea + DCD);4) 尿素 + 3, 4-二甲基吡唑磷酸盐 (Urea + DMPP)。一组试验从培养第1天起,抽取气体样品,用气相色谱法测定N2O排放量。另一组试验从培养第1天直到结束,取土样测定氨氧化细菌和氨氧化古菌数量,采用荧光定量PCR等技术测定nirK基因和nirS基因拷贝数,用常规方法测定土壤无机氮含量。【结果】施用尿素显著增加了N2O排放量,其中85%的N2O排放发生在培养开始后的前两周内。Urea + DMPP处理土壤NH4+浓度在前23天稳定在较高水平,与Urea处理相比,N2O减排率为78.3%,Urea + DCD处理为21.6%。Urea + DMPP处理排放系数为0.05%,Urea + DCD为0.18%,Urea + DMPP处理显著低于Urea + DCD处理。施用尿素培养,土壤氨氧化细菌 (AOB) 数量显著增加而氨氧化古菌 (AOA) 数量则显著减少。添加DCD和DMPP能显著抑制AOB的数量,但对AOA没有影响。培养第3、30和90天,Urea + DMPP处理土壤中的AOB数量显著低于Urea + DCD处理的30%、56%和60%。对于反硝化细菌来说,所有处理中的nirK基因拷贝数均显著高于nirS基因拷贝数。添加DMPP在培养第3和30天显著减少了含nirK和nirS基因的反硝化细菌数量,而添加DCD对两类反硝化细菌数量无明显作用。【结论】东北黑土水稻生产中,硝化抑制剂DMPP降低N2O排放量和排放系数的效果显著好于DCD,因为DMPP在培养后的30天内,可以显著抑制氨氧化细菌繁衍,降低反硝化细菌数量,从而起到减少N2O排放、提高肥料利用率的作用。  相似文献   

7.
生物质炭对土壤结构改良、土壤肥力提升和农田温室气体排放具有重要意义。本研究以吉林省梨树县典型黑土为研究对象,通过培育实验,研究不同土壤水分含量(40%WHC和100%WHC)下,生物质炭种类(玉米秸秆生物质炭和稻壳生物质炭)和施加量(0%、1%和4%(w/w))对黑土N2O排放及硝化反硝化功能基因丰度的影响。结果表明,随着秸秆生物质炭施加量的增加,土壤N2O排放呈下降趋势,4%高量秸秆生物质炭添加下,土壤N2O排放量仅为1%低量秸秆生物质炭添加下的33.9%。同时土壤NO- 3-N也表现出一致性规律,4%高量生物质炭添加下土壤NO- 3-N含量显著低于1%低量生物质炭。在100%WHC土壤水分状况下,玉米秸秆生物质炭显著增加了土壤N2O排放,而稻壳生物质炭则显著降低了土壤N2O排放。高土壤水分显著促进了土壤N2O排放,进一步为实时荧光定量PCR结果所证实,高土壤水分通过增加nirS基因丰度进而促进了土壤反硝化作用过程,而4%高量稻壳生物质炭添加下nosZ基因丰度显著高于玉米秸秆生物质炭添加,表现出更强的N2O还原潜力。尽管amoA-AOA基因丰度在不同生物质炭添加量下并未发生显著变化,但amoA-AOB基因丰度在高量玉米秸秆生物质炭添加下显著下降。结果说明,土壤水分和生物质炭通过影响土壤硝化反硝化微生物的营养底物和代谢过程,进而影响土壤N2O排放特征。  相似文献   

8.
【目的】控制N2O排放是提高氮肥利用和环境效益的一个重要任务。在滴灌条件下,研究以控释氮肥替代尿素基施减少设施土壤N2O排放的机制,并探讨减少氮肥投入的可能性。【方法】在大棚内布设小区试验,供试番茄品种为‘盛世辉煌’,氮肥40%基施,60%分3次随水滴灌追施。试验以不施氮肥为对照 (CK),设:常规化肥用量 (基施尿素,总N量440 kg/hm2,U);常规化肥用量减氮20% (基施尿素,总N量376 kg/hm2,–20%U);控释氮肥常规用量 (基施控释氮肥,总N量440 kg/hm2,CRU);控释氮肥常规用量减氮20% (基施控释氮肥,总N量376 kg/hm2,–20%CRU) 4个处理。施底肥后15天内每天取气体样1次;追肥后每2天取气体样1次,连续取样3次;其余时间间隔5~7天取气体样1次。静态箱–色谱法测定土壤N2O排放通量;在定植后40、80和120天取土样测定土壤理化性质;用实时荧光定量PCR检测相关功能基因数量变化;收获后测产。【结果】控释氮肥与水溶肥配施导致基肥N2O排放峰值出现时间从第8~13天延迟到第28~32天,并且显著降低了其N2O排放峰值,所有处理追水溶肥后均在3~5天出现N2O排放峰值,而控释氮肥与水溶肥配施降低了此阶段N2O排放峰值。相同氮肥施用量条件下,控释氮肥与水溶肥配施显著降低了基肥期土壤N2O排放通量和累积排放量,降低了追肥期土壤N2O排放通量和累积排放量,显著降低了番茄生长季土壤NH4+-N和NO3?-N含量与微生物功能基因AOA amoA、AOB amoA和nirK数量,降低了nirS数量。与U处理相比,CRU处理增加番茄产量和经济效益,生长季土壤N2O累积排放量减少了24.8%,差异显著,同时显著降低了N2O排放强度;与–20%U处理相比,–20%CRU处理增加番茄产量和经济效益,N2O累积排放量减少了22.1%,亦显著降低了N2O排放强度 (P < 0.05)。【结论】在常规用氮量和减氮20%用量下,以缓释氮肥代替尿素基施,不仅可显著增加番茄的产量和效益,还显著推迟了番茄生长初期N2O释放高峰的出现,减少了整个生育期N2O的排放强度和累积排放量。其主要原因在于缓释氮肥有效控制了土壤中NH4+-N和NO3?-N含量的变化,进而减少了与硝化和反硝化相关的微生物数量。在使用缓释肥做基肥时,适当减少氮肥投入不会降低番茄的产量。  相似文献   

9.
【目的】为探讨滨海土壤盐渍化过程对氮转化的影响,本研究分析了滨海盐土自然盐度梯度下固氮菌和反硝化菌的分布特征。【方法】在莱州湾南岸及黄河口采集自然盐度梯度(0.64%~5.18%)土壤样品,人为划分为低盐度(0.64%~0.76%)、中盐度(1.25%~2.39%)、高盐度(3.49%~5.18%)三个梯度,利用荧光定量PCR和末端限制性片段长度多态性(T-RFLP)技术分析不同盐度梯度土壤中固氮菌(nifH基因)和反硝化菌(nosZ、nirS、nirK基因)的丰度、多样性及群落结构。【结果】固氮菌丰度在低盐区显著高于中、高盐区(P <0.05)。Spearman相关分析显示,nifH基因拷贝数与土壤NO3-含量显著正相关(P <0.05),Shannon指数与土壤平均粒径(d0.5)显著正相关(P <0.05)。典范对应分析表明,nifH基因群落结构与土壤盐度显著相关(P=0.04)。反硝化菌在该区域盐土中以nirK基因型占主导,nirK、nirS和nosZ三种基因的拷贝数受盐度影响不大,但(nirK+nirS)/nosZ...  相似文献   

10.
作为一种重要的土壤调节剂,生物质炭在固碳减排,尤其在氧化亚氮(N2O)减排方面的作用日益突出。本研究通过田间定位试验,分析稻麦轮作体系新鲜和田间不同时间老化生物质炭对N2O排放的影响,旨在明确生物质炭对田间N2O排放的持续效应及其作用机理。试验共设置5个处理,分别为CK(不施氮肥和生物质炭)、N(施氮肥)、NB0y(氮肥+新鲜生物质炭)、NB2y(氮肥+2年老化生物质炭)和NB5y (氮肥+5年老化生物质炭),动态监测稻麦轮作周期N2O排放,测定水稻和小麦收获后土壤理化性质和氮循环功能基因丰度。结果表明,生物质炭显著降低土壤N2O累积排放量32.4% ~ 54.0%,且表现为NB0y> NB2y> NB5y。与N处理相比,NB0y, NB2y 和NB5y处理显著提高土壤pH值0.6 ~ 1.2个单位、土壤有机碳(SOC)含量21.4 % ~ 58.6%、硝态氮(NO3--N)含量1.7% ~ 31.3%,对土壤pH改善能力随着生物质炭老化而下降。生物质炭处理显著提高nosZ基因丰度54.9% ~ 249.4%,土壤 (nirS+nirK)/nosZ比值随着生物质炭老化而增加。相关性分析表明,土壤N2O累积排放量与pH值呈显著负相关,与NO3--N含量和amoA-AOB(氨氧化细菌)丰度呈显著正相关。因此,新鲜和田间不同时间老化生物质炭均能显著改善土壤理化特性,降低土壤 N2O排放且新鲜生物质炭的作用效果优于老化生物质炭。土壤NO3--N 含量及(nirS+nirK)/nosZ比值的增加,是导致老化生物质炭减排N2O能力降低的主要原因。  相似文献   

11.
【目的】 农田条件下研究用有机肥替代部分尿素、用秸秆生物炭替代秸秆对黑土有机质提升和温室气体排放的影响,为秸秆有效还田和“固碳减排”提供理论依据。 【方法】 2013—2015年在东北典型春玉米区进行田间定位试验,所有处理采用相同方法施用同量磷钾化肥,磷肥为磷酸氢二铵 (P5O2 60 kg/hm2),钾肥为硫酸钾 (K2O 75 kg/hm2),在施用4 t/hm2玉米秸秆前提下,设置:1) 不施尿素氮 (N0);2) 尿素氮100% (N 165 kg/hm2,N1);3) 尿素氮60% + 有机肥氮20% + 缓释氮20% (N2)。另外,处理4) 除了用2 t/hm2玉米秸秆炭替代4 t/hm2玉米秸秆外,其他与N2一致 (N3)。各生育期测定生态系统温室气体 (CO2、N2O和CH4) 排放量,收获期测定作物产量和地上部生物量。 【结果】 N1、N2、N3处理间玉米产量差异不显著。在等氮条件下,N1、N2、N3处理生态系统CO2排放分别为13170、10521、9994 kg/hm2,N2和N3处理降低CO2排放的效果显著好于N1,N2和N3处理差异不显著 (P < 0.05),N1、N2、N3处理N 2O累积排放分别为6.092、6.597、3.604 kg/hm2,N3降低N2O累积排放的效果显著好于N1和N2处理;N1、N2、N3处理CH4累积排放分别为0.694、1.652、–2.107 kg/hm2,N3处理降低CH4累积排放的效果显著好于N1和N2处理。农田系统净碳收支 (NECB,除土壤固碳外,作物?土壤系统产生的碳收支,如作物光合、呼吸和产量移出等),N2处理为C 766.5 kg/hm2,是碳汇,而N1和N3处理是碳源 (C ?621.3 kg/hm 2和?673.3 kg/hm2)。当季作物尺度上用NECB估算的土壤固碳效应N1、N2和N3处理分别为C ?142.9、176.3、1385.1 kg/hm 2,N3处理土壤固碳效应显著好于N2和N1处理。在化肥生产和运输以及农事操作等投入产生的间接碳排放量方面,化肥氮是农业投入的主要碳源,分别占N1、N2和N3处理农业投入的73%、71%和66%。综合考虑农事操作带来的碳排放,化学品投入带来的碳排放,以及农田系统温室气体排放和土壤固碳的收支,综合净温室效应N1、N2、N3处理分别为2535.2、1488.2、–3769.7 CO2 eq. kg/hm2,只有N3处理是碳汇。 【结论】 在供试黑土条件下,用有机肥替代部分化肥增加生态系统净碳收入;用秸秆生物炭替代秸秆显著增加土壤固碳效应、减少N2O排放;从综合净温室效应看,有机肥与秸秆生物炭分别替代部分化肥与秸秆“固碳减排”效果最佳。   相似文献   

12.
北京设施菜地N2O和NO排放特征及滴灌优化施肥的减排效果   总被引:2,自引:0,他引:2  
【目的】量化设施菜地N2O、NO排放特征,分析其影响因素,以期为科学评估农田生态系统N2O、NO排放提供关键参数。【方法】以黄瓜品种‘金胚98’为供试材料,在北京房山区窦店乡的温室大棚内进行了田间试验,供试土壤类型为石灰性褐土,质地为壤土。试验共设4个处理:漫灌,不施氮肥 (CK);漫灌,农民习惯施肥 (FP);滴灌,农民习惯施肥 (FPD);滴灌,优化施氮 (OPTD)。常规氮肥施用量为N 1200 kg/hm2,优化后氮肥施用量为N 920 kg/hm2。70%的化肥氮和钾肥,分6次随灌溉追施。采用自动静态箱–氮氧化物分析仪法,对黄瓜生长季的N2O、NO排放量进行了田间原位观测,同时监测了5 cm深土壤温度、0—15 cm土层土壤孔隙水分含量,分析了N2O、NO季节排放与土壤温度和湿度的相关性,比较了不同处理措施的减排效果。【结果】施肥和灌溉后1~2天,N2O会出现明显的排放高峰,NO排放峰出现在施肥和灌溉后2~4天,对照无明显N2O、NO排放峰值。CK、FP、FPD和OPTD处理N2O季节排放量分别为N 7.32、28.69、18.62、12.16 kg/hm2;NO季节排放量分别N 0.32、0.86、0.77和0.70 kg/hm2; NO排放量分别占 (N2O + NO) 总量的4.2%、2.9%、4.0%、5.4%。相同氮肥施用量条件下,滴灌施肥处理 (FPD) 相比漫灌施肥 (FP),不仅能保持作物产量,而且能减少N2O、NO排放总量34.4%、9.0%;滴灌施肥条件下,减少40%氮肥投入 (OPTD) 比FPD分别减少N2O和NO排放34.7%和9.1%。FP、FPD和OPTD处理的N2O排放系数依次为1.78%、0.94%、0.53%,NO排放系数依次为0.08%、0.06%和0.09%。【结论】京郊设施菜地夏季N2O排放强,NO排放弱。在不改变施肥量前提下,采用滴灌施肥可在保持作物产量的同时,显著减少N2O和NO排放。采用滴灌的同时,优化肥料施用量可以进一步减少N2O、NO排放。  相似文献   

13.
  【目的】  研究生物炭性质与氮肥用量对河套灌区春玉米田温室气体排放和产量的影响,为河套灌区高效利用生物炭固碳减排提供理论支撑。  【方法】  试验采用室内培养与田间试验相结合的方法,供试材料为秸秆生物炭和竹炭。田间试验设常规施氮300 kg/hm2对照(N)、常规氮量配施秸秆炭(SB+N)、常规氮量配施竹炭(BB+N)、减氮50%配施秸秆炭(SB+50%N)、减氮50%配施竹炭(BB+50%N)。采用静态暗箱–气象色谱法测定春玉米田温室气体排放量,并测定玉米产量。室内培养试验中分别制备热解温度为200℃、400℃和600℃的秸秆炭(S)和竹炭(B)加入土壤中,平衡3天后施入N 300 kg/hm2开始恒温恒湿培养,共培养14天。监测了不同培养时间土壤中N2O、CO2及CH4气体的排放通量。  【结果】  与N处理相比,SB+N、BB+N、SB+50%N和BB+50%N处理0—5 cm深土壤温度分别提高了0.50℃、1.84℃、0.35℃和1.37°C,0—10 cm深土壤温度分别提高了0.43℃、1.83℃、0.39℃和1.11°C;0—10 cm土壤含水率分别提高13.70%、8.90%、12.33%和8.90%。与N处理相比,在春玉米整个生育期内SB+N、BB+N、SB+50%N和BB+50%N处理的土壤N2O累积排放量分别减少了21.91%、23.16%、25.98%和28.17% (P<0.05);SB+N和BB+N处理的CO2累积排放量分别提高了7.96%和9.94% (P<0.05),而SB+50%N和BB+50%N处理的分别降低了11.54%和10.74% (P<0.05);整个春玉米生育期各生物炭处理的CH4累积排放量为负值,显著低于N处理(P<0.05);SB+N、BB+N、SB+50%N和BB+50%N处理土壤的全球增温潜势(GWP)分别降低了23.26%、23.98%、27.00%和29.14%,温室气体排放强度(GHGI)分别降低了27.24%、28.97%、32.57%和34.68% (P<0.05)。生物炭添加能够提高玉米产量,SB+N、BB+N、SB+50%N和BB+50%处理较N处理分别增加5.47%、7.01%、8.26%和8.47% (P<0.05)。培养试验发现生物炭能够减少土壤N2O和CO2的排放。N2O和CO2的排放通量随生物炭热解温度升高而减少,在相同热解温度下,竹炭的减排效果优于秸秆炭。各处理下土壤CH4的排放均表现为碳汇,其中600°C制备的竹炭对CH4的吸收量最高。  【结论】  施用生物炭能够改善土壤温度和土壤含水率,并显著降低N2O和CH4累积排放量,但常规施氮量下施用生物炭会提高CO2累积排放量。施用生物炭能够显著提高春玉米的产量并降低春玉米田GWP和GHGI。培养试验进一步说明了竹炭的减排效果优于秸秆炭,高热解温度的生物炭减排效果优于低热解温度生物炭,综合考虑田间与室内培养试验的结果、环境效益和经济效益,减氮50%配施竹炭的处理是河套灌区春玉米田提高产量并减少温室气体排放较为合适的措施。  相似文献   

14.
【目的】 优化华北平原农田土壤的施肥措施,实现维持农田作物产量、提升土壤肥力的同时减少温室气体排放。 【方法】 基于长期定位试验观测数据,选取氮磷钾化肥 (NPK)、有机肥配施化肥 (NPKM) 和单施有机肥 (OM) 三个试验处理来评价和验证过程模型 (SPACSYS) 对不同施肥措施下的作物产量、土壤有机碳 (SOC) 和土壤全氮 (TN) 储量及土壤CO2和N2O排放动态变化的模拟效果,并预测至2050年不同施肥情景和肥料配施情景下作物产量、SOC、TN储量及土壤CO2和N2O排放量。 【结果】 统计分析结果表明,SPACSYS模型的小麦和玉米产量模拟值与实测值的相关系数R2为0.63~0.78,RMSE为3.78%~4.86%,EF为0.59~0.73;土壤有机碳和全氮储量模拟值与实测值的R2为0.73~0.89,RMSE为2.69%~3.79%,EF为0.67~0.82;土壤CO2和N2O排放量模拟值与实测值的R2为0.16~0.80,RMSE为4.03%~9.99%,EF为0.24~0.78,相关性均达到显著水平,表明SPACSYS模型模拟值的可靠性和准确性较高。利用该模型进行预测,结果显示到2050年,在当前施氮水平下,减氮50%会显著降低玉米产量约9%;减氮25%,与单施化肥处理相比,有机肥配施化肥处理和单施有机肥处理分别显著提高SOC年均储量约31%和62%,提高TN年均储量约18%和6%,而CO2和N2O年均排放量均没有显著增加。 【结论】 SPACSYS模型可以模拟中国华北平原典型农田冬小麦?夏玉米轮作体系的农作物产量、SOC和TN储量以及土壤CO2和N2O的排放情况。但是模型低估了OM处理的全氮储量,下一步研究需对模型做相应改进。至2050年,施用化肥和有机肥均可不同程度地提高有机碳和全氮储量,且该地区可适当降低氮肥施用量 (减氮25%),并采用有机肥配施化肥或单施有机肥的方式来维持作物产量、提升土壤肥力,同时降低温室气体排放。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号