首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saidy  Alieu  Arslan  Hakan 《Gesunde Pflanzen》2022,74(2):275-289

NERICA rice was developed through the hybridization of Oryza Glaberrima and Oryza sativa in an attempt to produce a higher yield in areas with a limited water supply. This study investigated the interactive effects of irrigation water salinities (0.38, 1.5, 3.0, 5.0, 7.0, 10.0 and 15?dSm?1) for various water depths (5, 10 and 15?cm) on crop yield and related components of NERICA rice variety. This study showed that increased levels of irrigation water salinity resulted in reduced rice yield, biomass weight, plant height, harvest index, 1000 grain weight, evapotranspiration, water use efficiency, stomatal conductance, and chlorophyll content, and increased plant sterility for all irrigation water depths. The threshold values of soil salinity for the NERICA rice for the 5, 10, and 15?cm depths were 2.14, 81 2.80, and 1.98 dSm?1, respectively. The study showed that the optimum salinity/water depth condition for the production of transplanted NERICA rice is irrigation water salinity <?1.50 dSm?1, and a 10?cm water depth. This irrigation water salinity level maintains the soil ECe at or below the salinity threshold value of 2.80 dSm?1. This study showed that NERICA rice has a salinity threshold value of 2.80 dSm?1. Since rice is generally considered to be more salt-sensitive during germination, it is recommended that farmers apply the least saline water available during the rice germination stage of growth. Information from this study will assist policymakers and farmers to better manage NERICA production in Sub-Saharan Africa.

  相似文献   

2.

Salinity is a crucial problem which has affected crop productivity globally. Ascorbic acid is considered helpful against abiotic stresses due to its powerful antioxidant potential. In the pot experiment, salinity stress (0, 35, 70, and 105?mM) was applied to sweet peppers in split doses after 20 days of transplantation. To mitigate the adverse effects of salinity, ascorbic acid (0, 0.40, 0.80, and 1.20?mM) was applied as foliar spray after a 6-day interval during vegetative growth. Sweet pepper plants sprayed with distilled water (control) recorded maximum plant height (cm), leaf area (cm2), number of branches, stem diameter (mm), number of fruit plant?1, fruit diameter (cm), yield plant?1 (g), and chlorophyll content (mg 100?g?1), while the maximum polyphenol oxidase (PPO) activity (unit mg protein?1 min?1) and ascorbate peroxidase (APX) activity (unit mg protein?1 min?1) were recorded in plants treated with 70?mM NaCl application. Salinity stress beyond 70?mM significantly reduced all the studied parameters. An ascorbic acid concentration of 1.20?mM significantly mitigated the negative effects of salt stress and recorded maximum plant height (cm), number of leaves plant?1, leaf area (cm2), number of branches plant?1, stem diameter (mm), number of fruit plant?1, fruit diameter (cm), yield plant?1 (g), chlorophyll content (mg 100?g?1), PPO activity (unit mg protein?1 min?1), and APX activity (unit mg protein?1 min?1). Hence, a 1.20?mM concentration of foliar ascorbic acid could be used in saline conditions up to 70?mM of sodium chloride (NaCl) for better growth, productivity, and enzymatic activity of sweet peppers.

  相似文献   

3.

Developing new tools for using low-quality irrigation waters is vital for the sustainability of irrigated agriculture and minimizing salt accumulation. Therefore, the present study focused on the interactive influence of irrigation treatments (magnetized (MT) and non-magnetized (NMT)) and water salinities (0.38, 1.5, 4.5, and 7.0?dSm?1) on soil salinity, water use efficiency, yield and morpho-physiological changes of Balk?z bean. A pot experiment was conducted in a randomized complete block design with three replications under the rain shelter condition. Irrigation water MT treatment increased fresh bean yield, water use efficiency (WUE) and irrigation water use efficiency (IWUE) by 21.35, 23.00 and 14.8%, respectively, while saturated soil salinity was reduced by 20%, compared to NMT treatments. The leaf area, stomata, and leaf succulence in green beans in the MT treatment significantly increased by 13.4, 23.9, and 3.3% compared with those in the NMT treatment. Stems of the bean crops were more sensitive to salinity stress followed by roots and leaves. The study revealed that irrigation with magnetically treated water manages salinity related yield loss through increased morphological features as well as osmotic and stomatal adjustments. In addition, the bean crops showed an ability to protect water in tissue against salinity toxicity up to 5.24?dSm?1 soil salinity level under magnetized saline water conditions. Finally, irrigation with magnetically treated 0.38?dSm?1 irrigation water can be recommended due to providing a higher yield, WUE, IWUE, and sustainable production under saline irrigation in water scarcity regions.

  相似文献   

4.
This study investigated survival of the pathogens Phytophthora ramorum, P. alni and P. kernoviae as zoospores or sporangia in response to an important water quality parameter, electrical conductivity (EC), at its range in irrigation water reservoirs and irrigated cropping systems. Experiments with different strengths of Hoagland’s solution showed that all three pathogens survived at a broad range of EC levels for at least 3 days and were stimulated to grow and sporulate at ECs > 1·89 dS m?1. Recovery of initial populations after a 14‐day exposure was over 20% for P. alni subsp. alni and P. kernoviae, and 61·3% and 130% for zoospores and sporangia of P. ramorum, respectively. Zoospore survival of these pathogens at ECs < 0·41 dS m?1 was poor, barely beyond 3 days in pure water; only 0·3% (P. alni), 2·9% (P. kernoviae) and 15·1% (P. ramorum) of the initial population survived after 14 days at EC = 0·21 dS m?1. The variation in rates of survival at different EC levels suggests that these pathogens survive better in cropping systems than in irrigation water. Containment of run‐off and reduction in EC levels may therefore be non‐chemical control options to reduce the risk of pathogen spread through natural waterways and irrigation systems.  相似文献   

5.
With declining availability of fresh surface water, brackish groundwater is increasingly used for irrigation in the arid and semi-arid southwestern United States. Brackish water can be desalinated by reverse osmosis (RO) but RO results in a highly saline concentrate. Disposal of concentrate is a major problem hindering augmentation of inland desalination in arid areas. The objective of this study was to determine the effect of texture and saline water irrigation on the physiology of six species (Atriplex canescens (Pursh) Nutt., Hordeum vulgare L., Lepidium alyssoides A. Gray, Distichlis stricta (L.) Greene, Panicum virgatum L., and ×Triticosecale Wittm. ex A. Camus [Secale?×?Triticum]). All species were grown in two contrasting soils and irrigated with the same volume of control water (EC 0.9?dS/m), brackish groundwater (4.1?dS/m), RO concentrate (EC 8.0?dS/m). Several plant physiological measurements were made during the growing season including height, number of stem nodes, average internodal length, number of leaves, leaf length, photosynthetic rates, stomatal conductance rates, transpiration rates, leaf temperatures, stem water potential, and osmotic potential. P. virgatum was the only species that showed significant decrease in plant height and growth with texture and irrigation water salinity. Except for A. canescens and L. alyssoides, number and length of leaves decreased with increasing salinity for all species. No significant differences were observed for photosynthetic, stomatal conductance, and transpiration rates by soil texture or irrigation water salinity. Stem water potential and osmotic potential did show some significant influence by soil texture and irrigation water salinity. Based on the results, RO concentrate can be reused to grow all six species in sand; however, growth of all species showed some limitations in clay. Local reuse of RO concentrate along desert margins with regular soil and environmental quality monitoring can accelerate implementation of inland desalination for sustaining food security.  相似文献   

6.
微咸水膜下滴灌对土壤水盐分布及加工番茄产量的影响   总被引:2,自引:0,他引:2  
为探明微咸水膜下滴灌对土壤水盐分布及加工番茄生长和产量的影响,通过大田小区试验,设置灌水矿化度和灌水定额两个因素,其中3个灌溉水矿化度水平分别为S1:1 g·L~(-1)、S2:3 g·L~(-1)和S3:5 g·L~(-1),3个灌水定额分别为W1:305 m~3·hm~(-2)、W2:458 m~3·hm~(-2)和W3:611 m~3·hm~(-2),来进一步寻求适宜本地区加工番茄生长的微咸水膜下滴灌灌溉制度。结果表明:覆膜微咸水滴灌条件下土壤含水量垂直方向的变化趋势表现为0~20 cm土层随深度增加含水量逐渐降低、20~100 cm土层随深度增加含水量逐渐增大、60~100 cm范围内土层剖面含水量最大的分布规律;土壤含盐量随着灌水矿化度的增大而增加,且随着灌水量的增加土壤盐分逐渐向水平距滴灌带35 cm处聚集。灌水矿化度超过3 g·L~(-1)时加工番茄株高、茎粗均受到一定程度的抑制作用,但对产量影响不大。本文通过试验得出:灌水定额为611 m~3·hm~(-2)、矿化度为1 g·L~(-1)处理为本地区最佳微咸水膜下滴灌处理,加工番茄生长健壮且产量最高,达到127 613.2 kg·hm~(-2);同时认为,在我国淡水资源比较缺乏的新疆地区可以考虑采用灌水定额458 m~3·hm~(-2)和灌水矿化度3~5 g·L~(-1)的微咸水对盐分中等敏感的加工番茄进行灌溉。  相似文献   

7.

The objective of this study was to evaluate several selected Cucurbita genotypes for their salt resistance in a rootstock breeding program for grafted watermelon seedling production. Specifically, changes in the relative water content (RWC), leaf area (LA), total chlorophyll content (TCC) and proline concentration (PC) of a commercial cultivar (G32 code), two promising winter squash (G12 and G13 of Cucurbita maxima Duch.) lines, six pumpkin (G3, G27, G28, G29, G30 and G31 of Cucurbita moschata Duch.) lines, and four C. maxima?×?C. mochata hybrids (G14, G15, G40 and G42), were investigated with a control treatment and four levels of salt stress (4, 8, 12 and 16?dS/m). In this study, Cucurbita cultivars which showed significant differences according to RWC, LA, TCC and PC at least significant difference (LSD) tests (P?<?0.05) and had salinity sensitivity index (SSI) value lower than 20%, were assessed as salt tolerant genotypes. The salt tolerant genotypes were grouped with principal component analysis (PCA) in each salt level. At the end of the study, all genotypes for all characteristics were generally tolerant at 4?dS/m salinity level. The G3, G12, G13, G14, G29 and G42 genotypes were resistant at 8?dS/m salinity, while the G15, G31, G32 and G40 were the most resistant genotypes at 12 and 16?dS/m. In conclusion, the selection of more salt resistant cultivars in rootstock breeding programs should be a priority to maintain growth performance in saline environments.

  相似文献   

8.
为揭示长期咸水滴灌对灰漠土物理化学特性及棉花生长的影响,研究了咸水灌溉11 a后土壤盐分、容重、水力特性、棉花耐盐生理特征及产量。试验设置3个灌溉水盐度水平:0.35 dS·m~(-1)(淡水)、4.61 dS·m~(-1)(微咸水)和8.04 dS·m~(-1)(咸水)。研究表明:与淡水灌溉相比,微咸水和咸水灌溉显著增加土壤容重、盐分、pH值和土壤含水量,显著降低土壤孔隙度、全氮和有机质含量;土壤饱和导水率在微咸水和咸水灌溉处理下分别较淡水处理降低45%和60%,体积含水率随着灌溉水盐度的增加而增大;与淡水灌溉相比,微咸水和咸水灌溉显著降低棉花叶面积、叶水势、气孔导度、叶绿素含量和干鲜质量比,其中叶水势分别较淡水处理下降43.34%和63.46%;微咸水和咸水灌溉显著增加棉花叶片相对电导率和丙二醛含量,同时SOD、POD和CAT活性也显著增加,脯氨酸含量分别较淡水灌溉增加69.52%和212%;棉花总生物量在微咸水和咸水灌溉处理下分别较淡水灌溉处理降低14.15%和32.88%;籽棉产量分别较淡水灌溉降低12.6%和25.7%。综上所述,长期的微咸水和咸水灌溉显著增加土壤盐分含量、降低土壤养分含量,土壤水分的可利用性也显著下降,导致棉花生物量和产量降低。  相似文献   

9.

Weeds are a major biotic constraint; compete with crop for the same resources and ultimately reduce productivity. This study evaluated the impact of irrigation intervals and weed management treatments on chlorophyll content and morphological growth of tomato to find an appropriate integrated weed management strategy. Two-year field experiments (2018/2019) were conducted at district Mardan (34°15′38″ N and 72°6′36″ E). Tomato F1 hybrid (Taj?3592) was transplanted during March. The experiments were laid out in a randomized complete-block design in split-plot arrangement with three replications. The main block comprised three irrigation intervals (3, 6, and 9 days) and the sub-block included weed management treatments: transparent polythene, black polythene, weeding except Orobanche, sole weeding of Orobanche, weeding of all weeds, copper oxychloride 1.5?kg a.i ha?1 (single dose), copper oxychloride 1.5?kg a.i ha?1 (split doses), copper oxychloride?+?humic acid 25?kg ha?1 (single dose), copper oxychloride?+?humic acid 25?kg ha?1 (split doses), copper sulphate 2?kg ha?1 (single dose), copper sulphate 2?kg ha?1 (split doses), ammonium sulphate 200?kg ha?1 (single dose), ammonium sulphate 200?kg ha?1 (split doses), pendimethalin 33 EC 1.44?kg a.i ha?1, glyphosate 48 SL 1.5?kg a.i ha?1, and weedy check. Lowest relative weed density (RWD) of O. cernua (2.23%) and highest RWD of O. cernua (38.01%) were recorded in the 3? and 9?day irrigation intervals, respectively. However, 3?day irrigation interval resulted in highest fresh weed biomass (5794?kg ha?1). Moreover, the 6?day irrigation interval significantly increased chlorophyll content by 11 and 5%, leaf area by 23 and 6%, and number of branches plant?1 by 30 and 22% compared to 9? and 3?day irrigation intervals, respectively. Among the weed management treatments, black polythene resulted in the highest weed control efficiency (96%), increasing chlorophyll content by 16%, leaf area by 33%, and number of branches plant?1 by 64% vs. weedy check. Consequently, 6?day irrigation intervals?×?black polythene could be the best weed management strategy, followed by transparent polythene, weeding of all weeds, pendimethalin, glyphosate, and ammonium sulphate.

  相似文献   

10.
Accurately mapping and monitoring the spatial distribution pattern of soil salinity is essential for sustainable soil management and decision-making. The kriging-based interpolation technique is generally used to map the spatial distribution of soil salinity; however, this technique neglects the variation caused by interpolation for each unsampled location. The sequential gaussian simulation (SGS) is an effective tool to collect mapping uncertainties at several locations simultaneously, which is not possible in the kriging-based technique. Soil electrical conductivity has been widely used as an index for soil salinity. Based on 0–100?cm soil profile from 117 locations in the Manas River basin, Northwest China, the SGS algorithm was used to assess the uncertainty of the spatial distribution of soil electrical conductivity. It was found that the SGS algorithm was reliable in reproducing the spatial distribution of soil electrical conductivity. The SGS algorithm reproduced the sample statistics reasonably well. The standard deviations of the samples generated by the SGS algorithm (0.463–0.508 (dS m?1)) were closer to the actual samples (0.675 (dS m?1)) than those generated by kriging (0.454 (dS m?1)). Most of the study area was lightly affected by salinity. Around 30% of the study area was moderately affected, and the heavily affected areas were sporadically scattered across the study area. The spatial uncertainty at multiple point presented a declining trend as the critical probability at a single point increased. The spatial estimation of the soil electrical conductivity in multiple point was more robust than that in the local location because of the low uncertainty.  相似文献   

11.
Salinity reduces plant biomass and may lead to death when severe. To cope with the negative effects of this stress, plant species present specific physiological or biochemical responses. In this work, we hypothesized that spraying salt-stressed thyme leaves with K+ and Ca2+ could mitigate the negative effects of salinity on plant growth and metabolism. To test this hypothesis, we grew thyme plants under salinity stress for two and four weeks before applying foliar sprays. Also, to test the effect of stress relief, treated plants were allowed two weeks of recovery after four weeks of salt stress. In general, after two and four weeks of salinity stress, the leaf fresh weight of thyme plants was reduced by 31 and 43%, respectively. Salinity also decreased the relative water content, water, and osmotic potentials and led to ion imbalances and nutrient deficiencies. Salinity altered concentration of some essential oils, but leaf antioxidant contents remained fairly stable, except for a significant increase for plants under NaCl?+?KCl two weeks after treatment. Our results indicated that stressed plants accumulated significantly more soluble sugars and amino acids in comparison with the control. Foliar sprays with KCl and CaCl2 reversed the negative effects of salinity on plant biomass and induced the accumulations of compatible solutes. Moreover, concentrations of some essential oils and gallic acid increased in sprayed plants, but these effects were dependent on the type and duration of the treatment. Overall, spraying leaves with K+ and Ca2+ was able to mitigate salinity stress in Thymus vulgaris even during the recovery period.  相似文献   

12.
Bulut  Sancar  Çağlar  Özcan  Öztürk  Ali 《Gesunde Pflanzen》2022,74(2):291-301

In this study, effects of different sowing dates and seeding rates on N uptake efficiency (NUE), N translocation efficiency (NTE), agronomic efficiency (AE), physiological efficiency (PE), water use efficiency for grain yield (WUEg) and water use efficiency for biomass (WUEb) of facultative wheat were investigated. As the average of cropping year, sowing dates and seeding rates, N uptake efficiency (NUE), N translocation efficiency (NTE), agronomic efficiency (AE), physiological efficiency (PE), water use efficiency for grain yield (WUEg) and water use efficiency for biomass (WUEb) values were respectively obtained as 1.17?kg Nuptake/kg Napplied, 68.5%, 36.9?kg grain/kg Napplied, 31.2?kg grain/kg Nuptake, 5.19?kg ha?1 mm?1 and 18.04?kg ha?1 mm?1.

Nitrogen and water use efficiencies decreased with delayed sowing dates and increased with increasing seeding rates. It is possible to maintain a high wheat yield, nitrogen and water use efficiency by increasing plant density through winter sowing. It was concluded based on present findings that sowing date and seeding rates had significant effects on nitrogen and water use efficiencies and winter sowing should be practiced as not to cause yield losses and high seeding rates (575 seeds m?2) yielded greater nitrogen-water use efficiencies.

  相似文献   

13.

The aim of this study was to evaluate the water and nitrogen use efficiency and some quantitative and qualitative characteristics of forage beet cultivars under the influence of different irrigation methods and nitrogen levels in two cropping years, 2017–18 and 2018–19, at Agricultural Research Station in Karaj, Iran. Experimental factors included the first factor with four irrigation methods (normal leakage, alternate furrow irrigation, fixed furrow irrigation, type (drip-strip)), the second factor was the amount of nitrogen fertilizer with three levels (150, 200 and 250?kg N ha?1) and the third factor included three forage beet cultivars (Sbsi052, Jamon and Kyros). Among irrigation treatments, alternate furrow irrigation and fixed furrow irrigation had the highest sugar content with 9.28% and 9.17%, respectively. The highest yield of digestible organic matter was obtained in leakage irrigation treatment, nitrogen fertilizer of 250?kg ha?1 and in Kyros at the rate of 19.45?t ha?1. The highest yield of root digestible dry matter, potassium, sodium and free nitrogen was observed in leakage irrigation treatment and consumption of 200?kg ha?1 nitrogen was observed in foreign cultivars. The highest crude protein was observed in alternate furrow irrigation conditions with a consumption of 200?kg ha?1 nitrogen in cultivar Sbsi052 at 13.08%. Leakage irrigation and type tape had the highest consumption efficiency and efficiency of nitrogen uptake with application of 150 and 200?kg ha?1 N, and the highest water use efficiency was also observed in leakage irrigation and type tape with application of 250?kg ha?1 N in domestic and foreign cultivars. The type irrigation method showed better quantitative and qualitative yield than the furrow irrigation methods.

  相似文献   

14.

Abiotic stress has a negative impact on plant physiology, influencing the overall growth and development of plant crops. Saline stress is one of the most serious environmental issues limiting crop plant production. Biofertilizers are reparative elements used in soil to increase tolerance to salinity and drought stress. We investigated the effect of salinity stress on qualitative and quantitative characteristics of cherry tomato plants (Lycopersicon esculentum cerasiforme) with biofertilizer application 0, 15 and 30 days after transplanting in this study. After different days of transplantation, different levels of salinity (0, 50, 100, and 150?mM) were used with biofertilizer (Azospirillum sp. and Azotobacter sp.) application (0, 15 and 30 days). The salinity (150?mM NaCl) significantly affected the studied variables, which were recorded with minimum levels of leaf area (52.42?cm2), root length (6.54?cm), fresh root weight (13.64?g), yield (6.52 tons/ha), leaf chlorophyll content (36.11?mg/m2) and maximum levels of total soluble solids (TSS, 8.87 °Brix). Control samples had higher leaf area (58.35?cm2), root length (15.23?cm), fresh root weight (17.86?g), yield (9.39 tons/ha), leaf chlorophyll content (44.09?mg/m2), and lower TSS (7.93 °Brix). Plants that received biofertilizer (15 days after transplanting) had higher plant height (73.41?cm), stem diameter (0.74?cm), leaf area (61.16?cm2), root length (15.35?cm), fresh root weight (18.38?g), root dry matter (60.41%), yield (10.43?t/ha), leaf chlorophyll content (42.55?mg/m2), fruit dry matter content (10.12?g), pH 4.52, and TSS (9.30 °Brix). The minimum plant height (51.33?cm), stem diameter (0.55?cm), leaf area (49.60?cm2), root length (7.04?cm), fresh root weight (12.76?g), root dry matter (42.16?g), yield (5.15 tons/ha), leaf chlorophyll content (35.18?mg/m2), fruit dry matter content (6.59?g), pH 4.27 and TSS (7.55 °Brix) were recorded in plants with no application of biofertilizer. The present study revealed that most growth and quality variables were negatively affected by salinity except for TSS, which showed positive effect with application of 150?mM of NaCl. Biofertilizer application at 15 days significantly influences the quantitative and qualitative attributes of cherry tomato under different levels of salinity.

  相似文献   

15.
About 900.000 ha of Egypt’s agricultural lands are suffering from salinity build-up problem. Therefore, two field experiments were conducted in split-split plot design with four replications to study α?tocopherols foliar application with 100 and 200 ppm and hand hoeing (two and three hand hoeing, plus unweeded) and their interactive effects on growth, osmoprotectants, mineral contents, seed yield, yield components, and nutritive value of the lupine plants and its associated weeds grown under salt-affected soil at 1.30, 3.20 and 4.23 dS m?1. Three hand hoeing treatment achieved the highest weed depression expressed in the lowest number and dry matter of broad-leaved, narrow-leaved and total weeds, and reduction % in dry matter were 80.75, 78.25 and 79.26 % compared with unweeded, respectively. Salinity stress significantly decreased total chlorophyll content, leaf area index and plant dry weight, while α?tocopherol and hoeing increased in all previous traits relative to corresponding controls. Lupine seed yield, yield components, and oils, carbohydrates, proteins, carotenoids and alkaloids in the yielded seeds were significantly reduced by increasing salinity levels, meanwhile hoeing and α?tocopherol treatments improved them. Total essential amino acids were decreased by increasing salinity levels and increased by increasing α?tocopherol concentrations and number of hoeing treatments. It could be concluded that α?tocopherol especially at 200 ppm partially alleviated the harmful effects of salinity stress on the growth of lupine plants and nutritive value of the yielded seeds. Three hand hoeing treatment was the optimum and safe method in controlling weeds associated with lupine plant grown under salinity stress.  相似文献   

16.
This factorial study was conducted based on randomized complete block design with three replications in a greenhouse during spring 2015 to investigate changes in dry matter mobilization, grain filling period, and some physiological characteristics of wheat. Treatments were four salt levels [0 (S1), 30 (S2), 60 (S3), and 90 (S4) mM sodium chloride (NaCl) equivalent to 2.76, 5.53, and 8.3 dS m?1, respectively], four biofertilizers levels [(no biofertilizer (F0), seed inoculation by Azotobacter chroococcum Beijerinck strain 5 (F1), Pseudomonas putida (Trevisan) Migula strain 186 (F2), both inoculation Azotobacter?+?Pseudomonas (F3)], and three cycocel levels [(without cycocel as control (C0), application of 600 (C1), and 1000 (C2)?mg?L?1)]. Salinity stress increased leaf electrical conductivity and decreased chlorophyll index, quantum yield, relative water content, and stomata conductance. However, the application of cycocel and biofertilizer reduced the negative impacts at each level of salinity tested. When treated with cycocel, salt stressed plants demonstrated a significant decrease in stomata conductance compared to the salt-treated plants with no cycocel. The results revealed that the maximum shoot and stem dry matter mobilization (0.89 and 0.67?g, respectively) and contribution of stem reserves to grain yield (38.01%) were observed in salinity severe stress (90?mM) and no cycocel application. The application of Azotobacter?+?Pseudomonas had the greatest grain filling rate (0.002?g day?1) without salinity stress. The greatest grain filling period (43.26 days) was achieved by the highest cycocel level without salinity stress. The application of biofertilizer and cycocel as F3C2 had 24.7% more grain yield in comparison to the controls.  相似文献   

17.
Effect of air temperature, rain and drought on hot water weed control   总被引:1,自引:1,他引:1  
The influence of rain and drought before, and air temperature during, weed control with hot water was studied in laboratory experiments on the test weed Sinapis alba (white mustard). The plants were grown in a greenhouse and treated outdoors. There was no difference in weed control effect when S. alba plants at the four‐leaf stage were treated at the air temperatures 7°C and 18°C. The effective energy dose for a 90% fresh weight reduction was 465 kJ m?2 for both air temperatures. Weed control of S. alba at the four‐ to six‐leaf stage in rainfall above the rainwater run‐off level increased the required effective energy dose by 20% (i.e. 120 kJ m?2) compared with dry plants. A short period of drought just before treatment on S. alba at the two‐ to four‐leaf stage increased the plant fresh weight reduction, which was 22% at low energy dose (190 kJ m?2) and 44% at high energy dose (360 kJ m?2). Hot water weed control should thus be carried out when the plants are drought stressed and avoided when the plants are wet. The air temperature seems to be of little importance in the range 7–18°C.  相似文献   

18.
The stability of some diluted emulsifiable concentrate formulations in clear liquid fertilizers, as affected by the nature and concentration of the salt solutions, was checked by a static test. The time-induced changes in the concentration of the dispersed phase were estimated by visual observations and turbidity measurements. For each formulation a specific relationship between the electrical conductivity of all the fertilizer solutions and the emulsion stability was found. This was valid for a pH range between 4.6–6.3; in alkaline conditions the emulsion stability was relatively lower. A critical electrical conductivity range, above which irreversible destabilization occurred, was observed for each formulation: 100-120 dS m?1 for fenamiphos, 60-70 dS m?1 for metolachlor, 30-50 dS m?1 for chlorpyrifos, and about 45 dS m?1 for S-ethyl dipropylthiocarbamate (EPTC). The correlation observed between the emulsion stability and the electrical conductivity could be used in a simple and rapid qualitative test to estimate the physical compatibility between emulsifiable concentrate formulations and liquid fertilizers.  相似文献   

19.
The objective of this study was to investigate the potential of native Thai species for reclaiming salt-affected areas in Thailand. Plant species diversity in Nakhon Ratchasima Province in northeast Thailand, and their soil characteristics (texture, electrical conductivity (ECe), exchangeable sodium percentage (ESP), and pH) were measured. A total of 19 species in 16 genera of 12 families were found, among which the most abundant species belonged to the Poaceae and Cyperaceae families. The highest values of ECe were found near the surface (0–20?cm) with an average range between 30–80?dS?m?1, while lower values in the range of 15–25?dS?m?1 were found at lower depths (20–100?cm). Soil conditions in the subplots with plant coverage showed lower ECe and ESP when compared to plots without vegetation. Seeds from the three most frequently occurring species, including Azima sarmentosa, Gymnosporia mekongensis, and Buchanania siamensis, were then tested for germination at different salinities. Seeds of all three species germinated at high salinities, from 25–45?dS?m?1, with total germination ranging 40–90%. Together with the ability to germinate at high salinities, these native species showed deep, rapid root elongation, likely to escape high surface ECe levels (approximately the top 30?cm). Planting these species in areas with vegetation coverage would aid successful reclamation of saline areas. Reclaiming salt-affected soils will not only improve local farmer’s economic status, but can also reduce the extent of deforestation, benefiting the entire ecosystem.  相似文献   

20.
In arid and semi-arid regions, freshwater scarcity and high water salinity are serious and chronic problems for crop production and sustainable agriculture development. We conducted a field experiment to evaluate the effect of irrigation water salinity and nitrogen(N) application rate on soil salinity and cotton yield under drip irrigation during the 2011 and 2012 growing seasons. The experimental design was a 3×4 factorial with three irrigation water salinity levels(0.35, 4.61 and 8.04 dS/m) and four N application rates(0, 240, 360 and 480 kg N/hm2). Results showed that soil water content increased as the salinity of the irrigation water increased, but decreased as the N application rate increased. Soil salinity increased as the salinity of the irrigation water increased. Specifically, soil salinity measured in 1:5 soil:water extracts was 218% higher in the 4.61 dS/m treatment and 347% higher in the 8.04 dS/m treatment than in the 0.35 dS/m treatment. Nitrogen fertilizer application had relatively little effect on soil salinity, increasing salinity by only 3%–9% compared with the unfertilized treatment. Cotton biomass, cotton yield and evapotranspiration(ET) decreased significantly in both years as the salinity of irrigation water increased, and increased as the N application rate increased regardless of irrigation water salinity; however, the positive effects of N application were reduced when the salinity of the irrigation water was 8.04 dS/m. Water use efficiency(WUE) was significantly higher by 11% in the 0.35 dS/m treatment than in the 8.04 dS/m treatment. There was no significant difference in WUE between the 0.35 dS/m treatment and the 4.61 dS/m treatment. The WUE was also significantly affected by the N application rate. The WUE was highest in the 480 kg N/hm2 treatment, being 31% higher than that in the 0 kg N/hm2 treatment and 12% higher than that in the 240 kg N/hm2 treatment. There was no significant difference between the 360 and 480 kg N/hm2 treatments. The N use efficien  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号