首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
三种城市景观竹土壤微生物群落结构特征   总被引:1,自引:0,他引:1  
付浩  曾歆花  宋志琳  兰思仁  黄卫昌 《土壤》2022,54(6):1165-1174
为探究城市景观竹林对土壤微生物群落的影响,选取上海辰山植物园种植的3种景观竹,利用Illumina MiSeq高通量测序结合土壤理化指标分析研究了不同景观竹林对土壤理化性质和微生物群落结构特征的影响。结果表明:不同竹林土壤全磷、有效磷、有机质、全氮、全钾含量和电导率存在显著差异(P<0.05);土壤细菌丰富度和多样性指数在毛竹林土壤中最高,在淡竹林土壤中最低;土壤细菌优势门为放线菌门(Actinobacteriota)、变形菌门(Proteobacteria)、酸杆菌门(Acidobacteriota)和绿弯菌门(Chloroflexi),真菌优势门为子囊菌门(Ascomycota),其中放线菌门和绿弯菌门在淡竹林土壤中的相对丰度最高,且显著高于其他竹林,而变形菌门、粘球菌门(Myxococcota)的相对丰度在毛竹林土壤中最高,土壤真菌优势门在不同竹林间的差异不显著。此外,土壤细菌群落结构和丰度受土壤p H、硝态氮、电导率、全磷、铵态氮、含水率、速效钾和微生物生物量碳影响显著,而真菌群落变化受全磷、电导率和全钾影响显著。  相似文献   

2.
土壤微生物是反映土壤环境质量的重要指标,为明确赤水河流域典型植被类型土壤微生物群落特征及优势菌属,为生态系统的恢复与管理提供理论依据,采用高通量测序技术研究了赤水河流域的5种典型植被类型(灌丛、针阔混交林、常绿阔叶林、杉木林和竹林)土壤的微生物群落结构及多样性,并探讨了其主要影响因子。结果表明:(1)不同植被类型的细菌和真菌丰富度Chao1指数差异均不显著,说明二者所观测到的物种总数没有差异。Shannon指数显示各植被类型微生物多样性存在一定差异,细菌多样性以竹林最低,显著性低于灌丛和针阔混交林(p<0.05); 真菌多样性以灌丛和杉木林显著性高于其他3种植被类型(p<0.05)。(2)5种植被类型土壤细菌优势门(相对丰度>10%)主要有变形菌门(Proteobacteria)、放线菌门(Actinobacteriota)和酸杆菌门(Acidobacteriota)。其中变形菌门(Proteobacteria)在灌丛、针阔混交林和常绿阔叶林中占绝对优势(相对丰度为29.70%~33.62%),而放线菌门(Actinobacteriota)则在杉木林和竹林中最为丰富,相对丰度占比分别为32.88%,29.88%。各植被类型土壤真菌门以子囊菌门(Ascomycota)为绝对优势菌群(相对丰度>49%)。(3)5种植被类型土壤细菌和真菌中优势菌属差异较大。在细菌属水平上,针阔混交林和竹林分别以未定名的Vicinamibacterales和芽孢杆菌属(Bacillus)为优势,而其他3种植被类型则以节杆菌属(Arthrobacter)最丰富。在真菌属水平上,灌丛和常绿阔叶林中优势关键属为子囊菌门(Ascomycota)未分类真菌属(unclassified_p_Ascomycota),杉木林以被孢霉属(Mortierella)最丰富,而针阔混交林和竹林中均以沙蜥属(Saitozyma)相对丰度最高。(4)NMDS分析表明,土壤细菌与真菌群落空间分布差异显著。(5)冗余分析表明,土壤含水量、pH值和TN(总氮)对土壤细菌群落结构具有显著性的影响,而pH值、容重、TOC(总有机碳)、TN和TP(总磷)对真菌群落结构影响显著。综合分析可知,针阔混交林土壤细菌群落较丰富,杉木林土壤真菌生长较旺盛,而灌丛土壤细菌和真菌多样性均较高,应采取有效措施提高主要林分土壤养分,从而激发微生物的生长,改善土壤环境。  相似文献   

3.
为研究亚热带不同森林植被类型土壤固碳微生物特征及其影响因子,选取毛竹林(Moso banboo groves)、阔叶林(Broad-leaved forest)、杉木林(Chinese fir forest)和马尾松林(Masson pine forest)等4种森林植被为研究对象,以 cbbL为固碳细菌指示基因,利用实时荧光定量PCR (Real-time quantitative PCR)和MiSeq高通量测序为研究手段。结果表明,4种林分土壤的细菌16S rRNA基因和固碳细菌cbbL基因丰度范围分别是5.40×10~(10)~2.81×10~(11) copies·g~(-1)干土和4.55×10~8~3.53×10~9 copies·g~(-1)干土,其中毛竹林显著高于其他三种林分(P0.05);基因丰度显著关联的环境因子是阔叶林土壤的有效磷、不同土层的pH(P0.05)。杉木林土壤固碳细菌多样性显著低于其他3种林分(P0.05),其亚表层土壤高于表层(P0.05);双因子分析表明,林型、土层之间土壤固碳细菌多样性均存在显著或极显著差异。所有土壤具有相似的优势属但相对丰度不同,其中毛竹林和杉木林土壤的甲基化石油杆菌属(Methylibium)和诺卡菌属(Nocardia)占比明显高于阔叶林和马尾松林。冗余分析结果显示,不同林分土壤pH、土壤有机碳、有效磷、全氮差异是影响土壤固碳细菌群落特征形成的主要因素。综上,4种植被对土壤固碳微生物数量及群落结构多样性影响明显,从土壤理化性质、固碳细菌基因丰度、多样性以及结构特征等多维度结果证明,毛竹林对土壤肥力以及固碳细菌影响效果最好,固碳微生物对毛竹林土壤有机质积累贡献大于阔叶林,定量结论有待进一步研究。  相似文献   

4.
【目的】毛竹是喜氮植物,土壤氮素水平对毛竹生长至关重要。生物固氮是土壤氮素的重要来源,因此,探索阔叶林改种毛竹后土壤固氮细菌和土壤氮素的变化具有重要意义。【方法】选择立地条件相近的毛竹林(100多年前由阔叶林改种而来)和阔叶林,每种林地在东北坡向位置随机选择4个10 m×10 m标准样地,每个标准样地选取5个采样点,分层采集0—20 cm(表层)和20—40 cm(次表层)土壤样品,分析了土壤pH、有机碳、碱解氮、有效磷、速效钾和含水量等常规理化性质; 采用引物对AQER和PolF,以土壤总DNA为模板扩增了固氮细菌功能基因(nifH )片段,应用变性梯度凝胶电泳(DGGE)和实时荧光定量PCR(Real-time PCR),分析了固氮细菌群落结构、多样性以及丰度(nifH 基因拷贝数)变化; 通过基因克隆测序对土壤固氮细菌进行初步鉴定。【结果】阔叶林改种毛竹后土壤pH显著(P0.05)提高; 毛竹林土壤的含水量、碱解氮以及表层土壤的速效钾显著高于(P0.05)同层的阔叶林土壤,而有效磷则显著(P0.05)低于同层的阔叶林土壤。总体来说,阔叶林改种毛竹后土壤养分含量明显提高; 阔叶林土壤固氮细菌DGGE条带数以及多样性指数(Shannon-Wiener index)都高于毛竹林; 基于DGGE条带信息的聚类分析和主成分分析(PCA)结果表明,阔叶林和毛竹林区分为2个类群,而同一林分的不同土层之间差异较小; 实时荧光定量PCR结果显示,毛竹林土壤的固氮细菌 nifH 基因丰度显著(P0.05)高于阔叶林土壤; 通过克隆测序,14个阳性克隆分别属于2个不同的菌属,其中13个均为Bradyrhizobium,1个为Azohydromonas lata,条带序列与已知序列的相似度为93%~98%。【结论】阔叶林改种毛竹后土壤固氮细菌的种类减少,而功能基因丰度却明显增加; 土壤氮素水平明显提高,这可能是土壤固氮能力增强的结果。  相似文献   

5.
为揭示凤阳山毛竹入侵杉木林后土壤真菌群落结构组成和多样性的变化,采用Illumina Miseq 测序技术,分析杉木纯林、毛竹纯林及毛竹入侵后的杉木林真菌群落结构特征。结果表明:3 种林型的土壤真菌类群为26 门60 纲113 属415 OTU,子囊菌门和担子菌门是绝对优势的两个菌门。两者的丰度占真菌总量80.80% ~ 83.92%,在3 种林型间均不存在显著差异。识别出的1% 以上的优势菌纲有8 个,为古根菌纲、伞菌纲、粪壳菌纲、锤舌菌纲、银耳纲、球囊菌纲、散囊菌纲和酵母菌纲。古根菌纲和伞菌纲占真菌总量的50.82% ~ 75.40%。古根菌纲在毛杉混交林的相对丰度显著高于毛竹纯林(P<0.05),与杉木纯林无显著差异。Archaeorhizomyces 为优势菌属(20.07% ~ 51.51%)且在毛杉混交林中最高、在毛竹纯林最低,毛杉混交林中全氮、碱解氮和速效钾含量均显著低于杉木纯林和毛竹纯林。土壤真菌优势菌属水平丰度与土壤环境因子的斯皮尔曼相关性分析表明,全磷与Meliniomyces、毛壳菌属、Hodophilus、瓶霉属、Heterocephalacria 呈显著正相关(P<0.05),与Wickerhamomyces 呈极显著正相关(P<0.01)。毛竹入侵杉木林后土壤理化性质变化显著,全磷、有效磷、pH、速效钾和碳磷比是影响土壤真菌群落结构的主要环境因子,研究结果可为控制毛竹扩张,维护生态稳定和多样性提供科学依据。  相似文献   

6.
缙云山森林土壤微生物数量与群落特征   总被引:1,自引:0,他引:1  
本文以重庆市缙云山国家森林保护区的毛竹林、 马尾松针叶林、 马尾松针阔混交林为供试对象,研究了不同森林群落的土壤微生物数量、 群落特征及其与土壤养分的关系。结果表明,毛竹林土壤中的细菌、 放线菌、 真菌数量最多,混交林次之,针叶林最少,高低之间分别相差 32.3倍(细菌)、 19.2倍(放线菌)和19.3倍(真菌)。说明森林植被群落的生产力越高,枯枝落叶量越大,土壤微生物数量越多。在毛竹林土壤中,微生物的多样性指数、 均匀度指数和优势度指数显著高于针叶林和混交林,说明毛竹土壤的生态环境相对稳定良好,微生物种群丰富,密度较大,种群优势突出。此外,土壤微生物存在明显的季节变化,夏季最高,冬季最低,与土壤有效氮、 磷的季节变化基本耦合。土壤微生物数量与土壤有机质和碱解氮呈显著正相关(r有机质=0.592**~0.741**,r碱解氮=0.490*~0.581**,n=24); 在毛竹林和混交林土壤中,土壤微生物数量与有效磷呈显著正相关(r毛竹林=0.461*,r 混交林=0.450*,n=24),说明微生物在土壤有机质转化和氮、 磷供应过程中起重要作用,与森林植被群落的生产力密切相关。  相似文献   

7.
周赛  梁玉婷  张厚喜  庄舜尧  孙波 《土壤》2015,47(2):369-377
针对我国中亚热带毛竹林主要分布区,在福建、浙江、湖南、江西沿经度和纬度设置2个采样带,从5个县(市)采集了15个表层(0~20 cm)土样和15个土壤剖面(0~60 cm),利用磷脂脂肪酸(phospholipid fatty acids,PLFAs)和聚合酶链式反应-变性梯度凝胶电泳(polymerase chain reaction-denaturing gradient gel electrophoresis,PCR-DGGE)方法研究毛竹林土壤微生物群落空间分布特征与剖面分布特征。结果表明:毛竹林表层土壤微生物生物量和细菌α多样性指数的地带性变化趋势不显著,但不同地点的土壤微生物群落结构存在显著差异;气候因子和土壤理化性质共同影响了土壤微生物的群落结构,但气候因子的影响随土壤剖面深度增加而减弱。毛竹林土壤细菌β多样性与距离之间存在显著的衰减关系,表层(0~20 cm)土壤细菌群落结构相似度(β多样性)随空间距离的衰减速率低于亚表层(20~40 cm)土壤,这可能与毛竹林根系的影响有关。总体上,环境选择和扩散限制共同影响了毛竹林土壤微生物的空间分布状况。  相似文献   

8.
不同森林植被下土壤水溶性有机碳研究   总被引:29,自引:0,他引:29  
在我国亚热带采集了常绿阔叶林、马尾松林、杉木林和毛竹林土壤,分析了土壤总有机碳和水溶性有机碳含量。结果表明:土壤总有机碳含量常绿阔叶林和毛竹林显著高于杉木林和马尾松林。土壤水溶性有机碳含量毛竹林显著高于杉木林,极显著高于马尾松林,阔叶林和杉木林也显著高于马尾松林。水溶性有机碳占总有机碳比率以杉木林最高,达1 26%(25℃)和1 82%(100℃),马尾松林最低,仅0 78%(25℃)和1 30%(100℃)。马尾松林、杉木林和毛竹林土壤水溶性有机碳与土壤总有机碳含量间的相关性均达显著水平,相关系数分别为0 5106 (100℃提取),0 4739 (25℃提取)和0 4752 (25℃提取)。  相似文献   

9.
为了探究腐熟羊粪有机肥与无机肥配施对洛阳烟区植烟土壤微生物群落结构和土壤肥力特性的影响,采用盆栽控制试验和高通量测序技术,研究了不施肥(CK)、100%无机氮肥(T0)、50%羊粪有机肥氮+50%无机氮肥(T50)和100%羊粪有机肥氮(T100)4个处理下植烟土壤细菌和真菌群落结构及多样性的差异,并结合土壤理化性质分析了土壤肥力指标与土壤微生物多样性的关系。结果表明:植烟土壤细菌优势菌门为变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)和放线菌门(Actinobacteria),土壤真菌优势菌门为子囊菌门(Ascomycota)和担子菌门(Basidiomycota);T50处理的变形菌门、酸杆菌门和子囊菌门相对丰度最高,但放线菌门和担子菌门相对丰度最低;NMDS分析和相似性分析发现,T50处理的土壤微生物群落结构与其他处理差异显著;Alpha多样性分析也表明,T50处理土壤细菌和真菌群落的丰富度和多样性最高。不同处理土壤理化性质和土壤关键酶活性差异显著,以T50处理土壤养分含量和土壤碳氮代谢酶的活性最高;Pearson相关性分析显示,土壤碱解氮、有效磷、速效钾含量及蛋白酶和脲酶活性与植烟土壤微生物多样的关系最为密切。总之,采用腐熟羊粪有机肥和无机肥配施通过影响植烟土壤细菌和真菌群落结构和多样性,促进了土壤养分的释放和转化,有利于土壤养分的供应和土壤质量的提升,研究结果为洛阳烟区应用羊粪有机肥改良土壤提供了理论依据。  相似文献   

10.
为探索设施连作西瓜土壤微生态环境变化,通过高通量测序对连作组(连作10年设施西瓜土壤)和对照组(连作10年设施西瓜棚外相同土质的露天西瓜土壤)样品进行测序分析,比较2组土壤细菌和真菌的群落结构差异,测定土壤理化性质及酶活性。结果表明,连作组土壤pH、铵态氮、速效钾、微生物量碳、土壤酶活性极显著低于对照,而硝态氮和有效磷极显著高于对照组。连作组土壤中细菌ACE指数和Chaol指数均极显著高于对照组,土壤中真菌ACE指数、Chaol指数、Simpson指数和Shannon指数均低于对照组。土壤微生物优势物种组成改变,连作组土壤细菌变形菌门、芽单胞菌门、绿弯菌门及硝化螺旋菌门相对丰度较对照组分别增加了9.80%、20.83%、21.76%和27.12%(P<0.05),而酸杆菌门和疣微菌门较对照组分别减少了21.7%和26.27%(P<0.05);连作组土壤真菌子囊菌门相对丰度较对照组增加了10.96%(P<0.05),担子菌门和罗兹菌门的相对丰度分别较对照组减少了13.42%和93.77%(P<0.05)。相关性分析显示,优势菌门除Latescibacteria和己科河菌门丰度与所有土壤环境因子相关性均不显著外,其他优势菌群都与所测土壤环境因子(有机质除外)存在密切相关关系,土壤pH、铵态氮、有效磷、速效钾是影响土壤中微生物群落的主要因素,担子菌门和绿弯菌门能够指示土壤微生物量,微生物群落结构的变化对土壤酶活性有较大的影响。综上,设施西瓜连作10年土壤理化性质、酶活性及微生物群落结构皆显著变化,西瓜连作障碍是多种因素综合作用的结果。  相似文献   

11.
ABSTRACT

The neutral monosaccharide composition of forest soils differs from that of non-forest soils suggesting there is an accumulation of microbial saccharides. Ectomycorrhizal (ECM) fungi can be responsible as the fungi are typical in forest soils. We investigated neutral saccharides of ECM fungal sclerotia to determine what part it might play in the origin of forest soil polysaccarides. Sclerotial grain (SG) was collected from the O, A1 and A2 horizons of a soil of subalpine forest of Mt. Ontake, central Japan. Neutral saccharides in soil and SG were analyzed by two step hydrolysis with sulfuric acid and gas-chromatography of alditol acetate derivatives. Saccharides accounted for 6.0?16% of the SG by carbon content. The SG contained predominantly easily hydrolysable (EH)-glucose, which accounted for 75–85% of the composition depending on grain size and the soil horizon, followed by mannose (7.7?15%), galactose (2.2?4.8%) and non-easily hydrolysable (NEH)-glucose (1.7?6.1%). The SG contained all of these sugars irrespective of its size. The SG collected from the A1 and A2 horizons contained all sugar components found in that from the O horizon, except for fucose in that from A2 horizon. The monosaccharide composition of SG indicates that accumulation of ECM fungal sclerotial polysaccharides might have been responsible for enlarging the molar ratios of (galactose + mannose) /(arabinose + xylose) and EH-glucose/NEH-glucose of forest soils. The proportions of SG saccharides relative to soil saccharides were 3.6, 1.2, and 0.83% for the O, A1 and A2 horizons, respectively. These levels of the proportion are considerable as ECM fugal sclerotia are the products of a limited species among hundreds and thousands of microbial species inhabiting forest soils. The sclerotia forming ECM fungal species such as Cenococcum geophilum may be key sources of forest soil polysaccharides.  相似文献   

12.
  目的  掌握榆林沙区典型林地土壤微生物特征,明确地上植被对土壤微生物群落结构的影响。  方法  采集榆林沙区四种林分类型土壤,分析其土壤微生物群落结构。  结果  测序共产生有效操作分类单元(OTU)15,509个,各林分间OTU及各类多样性指数没有显著性差异。优势菌种及其丰度土层间变化较大,但林分间优势细菌种一致,丰度排名前五的分别是变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、厚壁菌门(Firmicutes)和绿弯菌门(Chloroflexi);樟子松、油松林下土壤中,酸杆菌门所占比例最大、分别达到22.32%和29.02%,而在沙柳和小叶锦鸡儿林下土壤中,变形菌门又成为优势菌,比例占到27.64%和28.51%。变形菌门和放线菌门在灌木林土壤中所占比例要高于乔木。  结论  虽然各优势种丰度在林分间略有差别,但差异不显著(P < 0.05)。说明在一定区域内微生物群落结构复杂程度是受土壤本底的影响,不同季节或者土壤温度、湿度的变化对微生物群落结构的影响在一段时间后消除,群落结构归于稳定。  相似文献   

13.
Zhang  Wenyuan  Liu  Shun  Zhang  Manyun  Li  Yinan  Sheng  Keyin  Xu  Zhihong 《Journal of Soils and Sediments》2019,19(7):2913-2926
Purpose

Rhizosphere and fertilization might affect soil microbial activities, biomass, and community. This study aimed to evaluate the impacts of Phyllostachys edulis (moso bamboo) rhizospheres on soil nutrient contents and microbial properties in a moso bamboo forest with different fertilizer applications and to link soil microbial activities with abiotic and biotic factors.

Materials and methods

The experiment included three treatments: (1) application of 45% slag fertilizer (45%-SF); (2) application of special compound fertilizer for bamboos (SCF); and (3) the control without any fertilizer application (CK). Simultaneously, bulk soils and 0.5, 2.5, 4.5, and 6.5-year-old (y) bamboo rhizosphere soils were selected. Soil nutrient contents were analyzed. Microbial activities were evaluated based on the activities of soil enzymes including β-glucosidase, urease, protease, phosphatase, and catalase. The total microbial biomass and community were assessed with the phospholipid fatty acids (PLFAs) method.

Results and discussion

In the CK and SCF treatments, organic matter contents of rhizosphere soils were significantly higher than those of bulk soils. Soil β-glucosidase, urease, protease, phosphatase, and catalase activities in rhizosphere soils were higher than those of bulk soils, with the sole exception of β-glucosidase of 0.5 y rhizosphere soil in the 45%-SF treatment. Compared with the CK treatment, fertilizer applications tended to increase soil total PLFAs contents and changed soil microbial community. Moso bamboo rhizospheres did not significantly increase the total microbial biomass. In the SCF treatment, the Shannon index of bulk soil was significantly lower than those of rhizosphere soils.

Conclusions

Our results suggested that both rhizospheres and fertilizer applications could change the soil microbial community structures and that moso bamboo rhizosphere could increase microbial activity rather than biomass in the forest soils with different fertilizer applications.

  相似文献   

14.
Zhao  Fengyan  Zhang  Yongyong  Li  Zhijun  Shi  Jinwei  Zhang  Guoxian  Zhang  Hui  Yang  Lijuan 《Journal of Soils and Sediments》2020,20(1):380-391
Purpose

At present, the improvement of soil microbial function by the application of vermicompost in long-term monoculture system is rarely reported. We took advantage of a greenhouse pot experiment that examined the effects of vermicompost on soil microbial properties, enzyme activities, and tomato yield.

Materials and methods

Three soils subjected to 0, 5, and 20 years of continuous tomato cropping in a greenhouse were collected for a pot experiment. Treatments include chemical fertilizer (CF), vermicompost (VM), and poultry manure compost (PM). No fertilization was established as a control (CK). Biolog Eco microplates were used to measure soil microbial function.

Results and discussion

The results showed that compared to the CF and PM treatments, the VM treatment increased the abundances of bacteria (Bac, average 41% and 103%, respectively) and actinomycetes (Act, average 8.59% and 16.36%, respectively), while decreased the abundance of fungi (Fun, average 39% and 29%, respectively), and had the highest ratio of bacteria to fungi. Soil microbial activity, which was represented as the average well color development (AWCD), and microbial functional diversity were higher in the VM treatment than in the CF and PM treatments. The VM treatment led to greater improvement in soil health than the PM treatment, which expressed as the higher utilization of carboxylic acids and phenolic compounds in each type of soil. Catalase (Cat) and polyphenoloxidase (Ppo) activities in the VM treatment were significantly higher than those in the CF and PM treatments. We also found that the soil Cat activity, pH, available P, acid phosphatase (Pac) activity, and Ppo activity were important contributors to variation in the microbial population. Moreover, compared to CK, fruit yield in the VM treatment increased by 74%, 43%, and 28% in soils subjected to 0, 5, and 20 years of planting, respectively.

Conclusions

Our findings indicated that vermicompost can replace poultry manure compost to improve soil quality in greenhouse due to the ability of vermicompost to improve soil microbial functions.

  相似文献   

15.
Wu  Chunfa  Zhang  JinLu  Zhang  Yu  Deng  Shaopo  Wang  Chong  Fu  Zhaocong 《Journal of Soils and Sediments》2022,22(9):2365-2380
Purpose

Phosphorus (P)-containing passivators have a stabilizing effect on cadmium (Cd)-contaminated agricultural soils to be safely used, offering good potential for risk control of Cd-contaminated agricultural soils to be strictly controlled. In this study, an incubation experiment was conducted to evaluate the risk control effects of using hydroxyapatite (HAP) and monocalcium phosphate (MCP) on Cd-contaminated agricultural soils to be strictly controlled.

Materials and methods

Samples of topsoil were collected (0–20 cm) from agricultural land near a lead–zinc mine in Southwestern China containing 32.07 mg kg?1 Cd with a pH of 7.28. The amounts of passivators added were equal to approximately 3% of the soil by weight. The soil Cd content, physicochemical properties, enzyme activity, and microbial community were analyzed.

Results

The results showed that the application of HAP and MCP decreased the activity and mobility of Cd in soils to be strictly controlled. HAP was more effective in decreasing the exchangeable Cd (CdEx) than MCP (rate of decrease was 48.1% for HAP and 24.4% for MCP). According to the results of the geometric mean (GMean) and the integrated total enzyme activity (TEI) index, the total soil enzyme activity of the HAP treatment was higher than that of CK and MCP treatment. HAP and MCP significantly decreased the Chao and Shannon bacterial community indices and the Shannon index of the soil fungal community. HAP increased Actinobacteria abundance, which is beneficial to soil fertility enhancement and plant growth, and MCP increased Rhizobiales abundance, which promotes soil P cycling and plant growth. Primary driving factors for the changes in bacterial and fungal community composition in the stabilized soils were CEC and CdEx for bacteria and Cd bound to carbonates (CdCar) and residual Cd (CdRes) for fungi.

Conclusions

HAP is more suitable for risk control of Cd-contaminated agricultural soils to be strictly controlled than MCP from the perspective of soil Cd activity and mobility, soil enzyme activity, and diversity and composition of the soil microbial community.

  相似文献   

16.
Abstract

There is limited knowledge about the differences in carbon availability and metabolic quotients in temperate volcanic and tropical forest soils, and associated key influencing factors. Forest soils at various depths were sampled under a tropical rainforest and adjacent tea garden after clear-cutting, and under three temperate forests developed on a volcanic soil (e.g. Betula ermanii and Picea jezoensis, and Pinus koraiensis mainly mixed with Tilia amurensis, Fraxinus mandshurica and Quercus mongolica), to study soil microbial biomass carbon (MBC) concentration and metabolic quotients (qCO2, CO2-C/biomass-C). Soil MBC concentration and CO2 evolution were measured over 7-day and 21-day incubation periods, respectively, along with the main properties of the soils. On the basis of soil total C, both CO2 evolution and MBC concentrations appeared to decrease with increasing soil depth. There was a maximal qCO2 in the 0–2.5 cm soil under each forest stand. Neither incubation period affected the CO2 evolution rates, but incubation period did induce a significant difference in MBC concentration and qCO2 in tea soil and Picea jezoensis forest soil. The conversion of a tropical rainforest to a tea garden reduced the CO2 evolution and increased the qCO2 in soil. Comparing temperate and tropical forests, the results show that both Pinus koraiensis mixed with hardwoods and rainforest soil at less than 20 cm depth had a larger MBC concentration relative to soil total C and a lower qCO2 during both incubation periods, suggesting that microbial communities in both soils were more efficient in carbon use than communities in the other soils. Factor and regression analysis indicated that the 85% variation of the qCO2 in forest soils could be explained by soil properties such as the C:N ratio and the concentration of water soluble organic C and exchangeable Al (P < 0.001). The qCO2 values in forest soils, particularly in temperate volcanic forest soils, decreased with an increasing Al/C ratio in water-soluble organic matter. Soil properties, such as exchangeable Ca, Mg and Al and water-soluble organic C:N ratio, were associated with the variation of MBC. Thus, MBC concentrations and qCO2 of the soils are useful soil parameters for studying soil C availability and microbial utilization efficiency under temperate and tropical forests.  相似文献   

17.
Conversion of natural forests into pure plantation forests is a common management practice in subtropical China. To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in topsoils (0-10 cm) were quantified in two 33-year-old monoculture plantations of Castanopsis kawakamii Hayata (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF), and compared to a neighboring relict natural C. kawakamii forest (NF), in Sanming, Fujian. Five soil samples were collected once each in January, April, July, September and November in 2000 in each forest for laboratory analysis. Over the sampling year, there were significant differences for bacteria, fungi and actinomycetes between forests and between seasons (P < 0.05). The largest bacteria and fungi populations were in NF, while CF contained the greatest number of actinomycetes. There were also significant differences (P < 0.05) with microbial respiration for forests and seasons. Additionally, compared with NF, urease and acid phosphatase were significantly lower (P < 0.05) in CK and CF. Also, the correlations of soil hydrolysable N and available P to soil microbial and enzymatic activities were highly significant (P < 0.01). Thus, to alter the traditional Chinese fir monoculture so as to mimic the natural forest conditions, managing mixed stands of Chinese fir and broadleaf trees or conducting crop rotation of conifers and broadleaf trees as well as minimizing forest disturbances like clear-cutting, slash burning and soil preparing, could be utilized.  相似文献   

18.
Abstract

Plantation establishment using exotic species on disturbed cultivated and undisturbed primary forest soils is common in Gambo district, southern Ethiopia, but their effects on soil properties are not fully known. This study investigated the effects of plantation species on major soil physical and chemical properties and further evaluated the soil quality under different land uses. Soil samples in triplicates, collected under different plantations, were analysed for their physical and chemical properties. Based on these soil properties, an integrated soil quality index was determined. The soil bulk density (BD) varied from 0.72 to 0.80 cm?3 in plantations established on primary forest land and natural forest and from 0.86 to 1.14 g cm?3 in those plantations established on cultivated soils. Also significantly lower pore volume and infiltration rate were observed under plantations established on cultivated lands than those on primary forest soils. Higher water volume (% at ?1500 kPa matric potential) was obtained in soils under Juniperus procera and natural forest compared with that under the rest of the plantations investigated. The concentration of soil organic carbon (SOC) varied from 3.4 to 10.2%, N from 0.3 to 1.0% and Av.P from 1.5 to 7.0% in soils under plantations and natural forest. Exchangeable cations generally showed a decreasing trend with depth in all land use types with minor exceptions. The concentrations of exchangeable Ca+2 varied from 6.5 to 22.7 cmol kg?1 and were significantly higher under Juniperus procera than under Eucalyptus species. The soil under plantations on previously cultivated lands showed soil quality index below 0.5 (the baseline value), while those established on undisturbed forest soil were generally above that value. The study results suggest that selecting species such as Juniperus procera and prolonging the harvesting period would improve and maintain the quality of soil properties.  相似文献   

19.
Summary Microbial populations were estimated in four different forest stands at different regenerational stages, two each at higher and lower altitudes. The fungal and bacterial populations showed marked seasonal variations at both altitudes. Quantitatively, the bacterial population was higher than the fungal population. Although 25 fungal species were isolated at the lower altitude, only 15 were obtained at the higher altitude. Penicillium chrysogenum and Trichoderma viride were dominant at the lower and higher altitudes, respectively. In the more degraded forest stand at the lower altitude both the fungal and the bacterial population showed a significant positive correlation with organic C (r=0.658 and 0.735, respectively), whereas in the less degraded forest stand there was a significant correlation only between the fungal population and organic C (r=0.835). At the higher altitude, however, a highly significant correlation (P<0.05) was observed between the fungal population, soil moisture and organic C in both the forest stands. Disturbance to the soil and vegetation adversely affected the microbial population, and also affected endogonaceous spores. At the lower altitude, plants in the more degraded forest stand were more mycotrophic compared to those in the less degraded stand. The level of mycorrhizal infection showed a highly positive correlation with soil moisture, organic C, total N, and available P. The spore population, however, was correlated negatively with these parameters. Three different endogonaceous genera, Glomus, Gigaspora, and Acaulospora, were identified during the course of investigation. Glomus, however, was dominant.  相似文献   

20.

Purpose

Nitrogen (N) is one of the most important elements that can limit plant growth in forest ecosystems. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are considered as the key drivers of global N biogeochemical cycling. Soil ammonia-oxidizing microbial communities associated with subtropical vegetation remain poorly characterized. The aim of this study was to determine how AOA and AOB abundance and community structure shift in response to four typical forest vegetations in subtropical region.

Materials and methods

Broad-leaved forest (BF), Chinese fir forest (CF), Pinus massoniana forest (PF), and moso bamboo forest (MB) were widely distributed in the subtropical area of southern China and represented typical vegetation types. Four types of forest stands of more than 30 years grew adjacent to each other on the same soil type, slope, and elevation, were chosen for this experiment. The abundance and community structure of AOA and AOB were characterized by using real-time PCR and denaturing gradient gel electrophoresis (DGGE). The impact of soil properties on communities of AOA and AOB was tested by canonical correspondence analysis (CCA).

Results and discussion

The results indicated that AOB dominated in numbers over AOA in both BF and MB soils, while the AOA/AOB ratio shifted with different forest stands. The highest archaeal and bacterial amoA gene copy numbers were detected in CF and BF soils, respectively. The AOA abundance showed a negative correlation with soil pH and organic C but a positive correlation with NO3 ??N concentration. The structures of AOA communities changed with vegetation types, but vegetation types alone would not suffice for shaping AOB community structure among four forest soils. CCA results revealed that NO3 ??N concentration and soil pH were the most important environmental gradients on the distribution of AOA community except vegetation type, while NO3 ??N concentration, soil pH, and organic C significantly affected the distribution of the AOB communities.

Conclusions

These results revealed the differences in the abundance and structure of AOA and AOB community associated with different tree species, and AOA was more sensitive to vegetation and soil chemical properties than AOB. N bioavailability could be directly linked to AOA and AOB community, and these results are useful for management activities, including forest tree species selection in areas managed to minimize N export to aquatic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号