首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study involving nine research stations from the NCR-42 Swine Nutrition Committee used a total of 1,978 crossbred pigs to evaluate the effects of dietary ZnO concentrations with or without an antibacterial agent on postweaning pig performance. In Exp. 1, seven stations (IA, MI, MN, MO, NE, ND, and OH) evaluated the efficacy of ZnO when fed to nursery pigs at 0, 500, 1,000, 2,000, or 3,000 mg Zn/kg for a 28-d postweaning period. A randomized complete block experiment was conducted in 24 replicates using a total of 1,060 pigs. Pigs were bled at the 28-d period and plasma was analyzed for Zn and Cu. Because two stations weaned pigs at < 15 d (six replicates) and five stations at > 20 d (18 replicates) of age, the two sets of data were analyzed separately. The early-weaned pig group had greater (P < 0.05) gains, feed intakes, and gain:feed ratios for the 28-d postweaning period as dietary ZnO concentration increased. Later-weaned pigs also had increased (P < 0.01) gains and feed intakes as the dietary ZnO concentration increased. Responses for both weanling pig groups seemed to reach a plateau at 2,000 mg Zn/kg. Plasma Zn concentrations quadratically increased (P < 0.01) and plasma Cu concentrations quadratically decreased (P < 0.01) when ZnO concentrations were > 1,000 mg Zn/kg. Experiment 2 was conducted at seven stations (KY, MI, MO, NE, ND, OH, and OK) and evaluated the efficacy of an antibacterial agent (carbadox) in combination with added ZnO. The experiment was a 2 x 3 factorial arrangement in a randomized complete block design conducted in a total of 20 replicates. Carbadox was added at 0 or 55 mg/kg diet, and ZnO was added at 0, 1,500, or 3,000 mg Zn/ kg. A total of 918 pigs were weaned at an average 19.7 d of age. For the 28-d postweaning period, gains (P < 0.01), feed intakes (P < 0.05), and gain:feed ratios (P < 0.05) increased when dietary ZnO concentrations increased and when carbadox was added. These responses occurred in an additive manner. The results of these studies suggest that supplemental ZnO at 1,500 to 2,000 mg Zn/kg Zn improved postweaning pig performance, and its combination with an antibacterial agent resulted in additional performance improvements.  相似文献   

2.
Two 28-d randomized complete block design experiments were conducted to evaluate the effects of concentrations and sources of Zn on growth performance of nursery pigs. Seven stations participated in Exp. 1, which evaluated the efficacy of replacing 2,500 ppm of Zn from ZnO with 125, 250, or 500 ppm of Zn from Zn methionine. A control diet with 125 ppm of supplemental Zn was included at all stations. A total of 615 pigs were used in 26 replicates. Average weaning age was 20.6 d and the average initial BW was 6.3 kg. There were no differences in any growth response among the three supplemental Zn methionine levels fed in Exp. 1. Zinc supplementation from Zn methionine improved ADG compared with the control during all phases (P < 0.05), due primarily to an increase in ADFI. Pigs fed 2,500 ppm of Zn from ZnO gained faster (P < 0.01) than those fed the control diet during all phases, and faster (P < 0.05) than those fed supplemental Zn from Zn methionine for the 28-d experiment. Differences in gain were again due mainly to differences in feed intake. A second experiment compared five sources of supplemental organic Zn (500 ppm of Zn) with 500 and 2,000 ppm supplemental Zn from ZnO and a control (140 ppm total Zn). Six stations used a total of 624 pigs, with an average weaning age of 20.4 d and averaging 6.2 kg BW in 15 replicates. Pigs fed 2,000 ppm of Zn from ZnO gained faster (P < 0.05) than pigs fed the control or any of the 500 ppm of Zn treatments (ZnO or organic Zn). Pigs fed the 2,000 ppm of Zn from ZnO also consumed more feed than those receiving 500 ppm of Zn from ZnO or from any of the organic Zn sources (P < 0.05). Organic sources of Zn did not improve gain, feed intake, or feed efficiency beyond that achieved with the control diet. Supplemental Zn at a concentration of 500 ppm, whether in the form of the oxide or in an organic form, was not as efficacious for improved ADG as 2,000 to 2,500 ppm of Zn from ZnO.  相似文献   

3.
Three experiments were conducted to evaluate the effect of feeding pharmacological concentrations of zinc (Zn), from organic and inorganic sources, on growth performance, plasma and tissue Zn accumulation, and Zn excretion of nursery pigs. Blood from all pigs was collected for plasma Zn determination on d 14 in Exp. 1, d 7 and 28 in Exp. 2, and d 15 in Exp. 3. In Exp. 1, 2, and 3, 90, 100, and 15 crossbred (GenetiPorc USA, LLC, Morris, MN) pigs were weaned at 24+/-0.5, 18, and 17 d of age (6.45, 5.47, and 5.3 kg avg initial BW), respectively, and allotted to dietary treatment based on initial weight, sex, and litter. A Phase 1 nursery diet was fed as crumbles from d 0 to 14 in Exp. 1, 2, and 3, and a Phase 2 nursery diet was fed as pellets from d 15 to 28 in Exp. 1 and 2. The Phase 1 and Phase 2 basal diets were supplemented with 100 ppm Zn as ZnSO4. Both dietary phases contained the same five dietary treatments: 150 ppm additional Zn as zinc oxide (ZnO), 500 ppm added Zn as ZnO, 500 ppm added Zn as a Zn-amino acid complex (Availa-Zn 100), 500 ppm added Zn as a Zn-polysaccharide complex (SQM-Zn), and 3,000 ppm added Zn as ZnO. Overall in Exp. 1, pigs fed 500 ppm added Zn as SQM-Zn or 3,000 ppm added Zn as ZnO had greater ADG (P < 0.05) than pigs fed 150 ppm, 500 ppm added Zn as ZnO, or 500 ppm added Zn as Availa-Zn 100 (0.44 and 0.46 kg/d vs 0.35, 0.38, and 0.33 kg/d respectively). Overall in Exp. 2, pigs fed 3,000 ppm added Zn as ZnO had greater (P < 0.05) ADG and ADFI than pigs fed any other dietary treatment. On d 14 of Exp. 1 and d 28 of Exp. 2, pigs fed 3,000 ppm added Zn as ZnO had higher (P < 0.05) plasma Zn concentrations than pigs on any other treatment. In Exp. 3, fecal, urinary, and liver Zn concentrations were greatest (P < 0.05) in pigs fed 3,000 ppm added Zn as ZnO. On d 10 to 15 of Exp. 3, pigs fed 3,000 ppm added Zn as ZnO had the most negative Zn balance (P < 0.05) compared with pigs fed the other four dietary Zn treatments. In conclusion, feeding 3,000 ppm added Zn as ZnO improves nursery pig performance; however, under certain nursery conditions the use of 500 ppm added Zn as SQM-Zn may also enhance performance. The major factor affecting nutrient excretion appears to be dietary concentration, independent of source.  相似文献   

4.
Benefits of feeding pharmacological concentrations of zinc (Zn) provided by Zn oxide (ZnO) to 21-d conventionally weaned pigs in the nursery have been documented; however, several management questions remain. We conducted two experiments to evaluate the effect on growth from feeding 3,000 ppm Zn as ZnO during different weeks of the nursery period. In Exp. 1 (n = 138, 11.5 d of age, 3.8 kg BW) and Exp. 2 (n = 246, 24.5 d of age, 7.2 kg BW), pigs were fed either basal diets containing 100 ppm supplemental Zn (adequate) or the same diet with an additional 3,000 ppm Zn (high) supplied as ZnO. Pigs were fed four or two dietary phases in Exp. 1 and 2, respectively, that changed in dietary ingredients and nutrient content (lysine and crude protein) to meet the changing physiological needs of the pigs for the 28-d nursery period. Dietary Zn treatments were 1) adequate Zn fed wk 1 to 4, 2) high Zn fed wk 1, 3) high Zn fed wk 2, 4) high Zn fed wk 1 and 2, 5) high Zn fed wk 2 and 3, and 6) high Zn fed wk 1 to 4. In Exp. 1 and 2, pigs fed high Zn for wk 1 and 2 or the entire 28-d nursery period had the greatest (P < .05) ADG. During any week, pigs fed high Zn had greater concentrations of hepatic metallothionein and Zn in plasma, liver, and kidney than those pigs fed adequate Zn (P < .05). In summary, both early- and traditionally weaned pigs need to be fed pharmacological concentrations of Zn provided as ZnO for a minimum of 2 wk immediately after weaning to enhance growth.  相似文献   

5.
Two experiments were conducted to evaluate the effects of dietary Zn and Fe supplementation on mineral excretion, body composition, and mineral status of nursery pigs. In Exp. 1 (n = 24; 6.5 kg; 16 to 20 d of age) and 2 (n = 24; 7.2 kg; 19 to 21 d of age), littermate crossbred barrows were weaned and allotted randomly by BW, within litter, to dietary treatments and housed individually in stainless steel pens. In Exp. 1, Phases 1 (d 0 to 7) and 2 (d 7 to 14) diets (as-fed basis) were: 1) NC (negative control, no added Zn source); 2) ZnO (NC + 2,000 mg/kg as Zn oxide); and 3) ZnM (NC + 2,000 mg/kg as Zn Met). In Exp. 2, diets for each phase (Phase 1 = d 0 to 7; Phase 2 = d 7 to 21; Phase 3 = d 21 to 35) were the basal diet supplemented with 0, 25, 50, 100, and 150 mg/kg Fe (as-fed basis) as ferrous sulfate. Orts, feces, and urine were collected daily in Exp. 1; whereas pigs had a 4-d adjustment period followed by a 3-d total collection period (Period 1 = d 5 to 7; Period 2 = d 12 to 14; Period 3 = d 26 to 28) during each phase in Exp. 2. Blood samples were obtained from pigs on d 0, 7, and 14 in Exp. 1 and d 0, 7, 21, and 35 in Exp. 2 to determine hemoglobin (Hb), hematocrit (Hct), and plasma Cu, (PCu), Fe (PFe), and Zn (PZn). Pigs in Exp. 1 were killed at d 14 (mean BW = 8.7 kg) to determine whole-body, liver, and kidney mineral concentrations. There were no differences in growth performance in Exp. 1 or 2. In Exp. 1, pigs fed ZnO or ZnM diets had greater (P < 0.001) dietary Zn intake during the 14-d study and greater fecal Zn excretion during Phase 2 compared with pigs fed the NC diet. Pigs fed 2,000 mg/kg, regardless of Zn source, had greater (P < 0.010) PZn on d 7 and 14 than pigs fed the NC diet. Whole-body Zn, liver Fe and Zn, and kidney Cu concentrations were greater (P < 0.010), whereas kidney Fe and Zn concentrations were less (P < 0.010) in pigs fed pharmacological Zn diets than pigs fed the NC diet. In Exp. 2, dietary Fe supplementation tended to increase (linear, P = 0.075) dietary DMI, resulting in a linear increase (P < 0.050) in dietary Fe, Cu, Mg, Mn, P, and Zn intake. Subsequently, a linear increase (P < 0.010) in fecal Fe and Zn excretion was observed. Increasing dietary Fe resulted in a linear increase in Hb, Hct, and PFe on d 21 (P < 0.050) and 35 (P < 0.010). Results suggest that dietary Zn or Fe additions increase mineral status of nursery pigs. Once tissue mineral stores are loaded, dietary minerals in excess of the body's requirement are excreted.  相似文献   

6.
Four experiments were conducted to determine the interactive effects of pharmacological amounts of Zn from ZnO and Cu from organic (Cu-AA complex; Cu-AA) or inorganic (CuSO(4)) sources on growth performance of weanling pigs. The Cu was fed for 4 (Exp. 1) or 6 (Exp. 2, 3, and 4) wk after weaning, and Zn was fed for 4 (Exp. 1) or 2 (Exp. 2, 3, and 4) wk after weaning. Treatments were replicated with 7 pens of 5 or 6 pigs per pen (19.0 ± 1.4 d of age and 5.8 ± 0.4 kg of BW, Exp. 1), 12 pens of 21 pigs per pen (about 21 d of age and 5.3 kg of BW, Exp. 2), 5 pens of 4 pigs per pen (20.3 ± 0.5 d of age and 7.0 ± 0.5 kg of BW, Exp. 3), and 16 pens of 21 pigs per pen (about 21 d of age and 5.7 kg of BW, Exp. 4). In Exp. 1 and 2, Cu-AA (0 vs. 100 mg/kg of Cu) and ZnO (0 vs. 3,000 mg/kg of Zn) were used in a 2 × 2 factorial arrangement. Only Exp. 1 used in-feed antibiotic (165 mg of oxytetracycline and 116 mg of neomycin per kilogram feed), and Exp. 2 was conducted at a commercial farm. In Exp. 3, sources of Cu (none; CuSO(4) at 250 mg/kg of Cu; and Cu-AA at 100 mg/kg of Cu) and ZnO (0 vs. 3,000 mg/kg of Zn) were used in a 3 × 2 factorial arrangement. In Exp. 4, treatments were no additional Cu, CuSO(4) at 315 mg/kg of Cu, or Cu-AA at 100 mg/kg of Cu to a diet supplemented with 3,000 mg/kg of Zn from ZnO and in-feed antibiotic (55 mg of carbadox per kilogram of feed). In Exp. 1 and 2, both Zn and Cu-AA improved (P < 0.001 to P = 0.03) ADG and ADFI. No interactions were observed, except in wk 1 of Exp. 2, where Zn increased the G:F only in the absence of Cu-AA (Cu-AA × Zn, P = 0.04). A naturally occurring colibacillosis diarrhea outbreak occurred during this experiment. The ZnO addition reduced (P < 0.001) the number of pigs removed and pig-days on antibiotic therapy. In Exp 3, ADFI in wk 2 was improved by Zn and Cu (P < 0.001 and P = 0.09, respectively) with no interactions. In wk 1, G:F was reduced by ZnO only in the absence of Cu (Cu × Zn, P = 0.03). Feeding Zn decreased fecal microbiota diversity in the presence of CuSO(4) but increased it in the presence of Cu-AA (Cu source × Zn, P = 0.06). In Exp. 4, Cu supplementation improved the overall ADG (P = 0.002) and G:F (P < 0.001). The CuSO(4) effect on G:F was greater (P < 0.001) than the Cu-AA effect. Our results indicate that pharmacological amounts of ZnO and Cu (Cu-AA or CuSO(4)) are additive in promoting growth of pigs after weaning.  相似文献   

7.
Three experiments were conducted to evaluate the effects of feeding dietary concentrations of organic Zn as a Zn-polysaccharide (Quali Tech Inc., Chaska, MN) or as a Zn-proteinate (Alltech Inc., Nicholasville, KY) on growth performance, plasma concentrations, and excretion in nursery pigs compared with pigs fed 2,000 ppm inorganic Zn as ZnO. Experiments 1 and 2 were growth experiments, and Exp. 3 was a balance experiment, and they used 306, 98, and 20 crossbred pigs, respectively. Initially, pigs averaged 17 d of age and 5.2 kg BW in Exp. 1 and 2, and 31 d of age and 11.2 kg BW in Exp. 3. The basal diets for Exp. 1, 2, and 3 contained 165 ppm supplemental Zn as ZnSO4 (as-fed basis), which was supplied from the premix. In Exp. 1, the Phase 1 (d 1 to 14) basal diet was supplemented with 0, 125, 250, 375, or 500 ppm Zn as Zn-polysaccharide (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). All pigs were then fed the same Phase 2 (d 15 to 28) and Phase 3 (d 29 to 42) diets. In Exp. 2, both the Phase 1 and 2 basal diets were supplemented with 0, 50, 100, 200, 400, or 800 ppm Zn as Zn-proteinate (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). For the 28-d Exp. 3, the Phase 2 basal diet was supplemented with 0, 200, or 400 ppm Zn as Zn-proteinate, or 2,000 ppm Zn as ZnO (as-fed basis). All diets were fed in meal form. In Exp. 1, 2, and 3, pigs were bled on d 14, 28, or 27, respectively, to determine plasma Zn and Cu concentrations. For all three experiments, there were no overall treatment differences in ADG, ADFI, or G:F (P = 0.15, 0.22, and 0.45, respectively). However, during wk 1 of Exp. 1, pigs fed 2,000 ppm Zn as ZnO had greater (P < or = 0.05) ADG and G:F than pigs fed the basal diet. In all experiments, pigs fed a diet containing 2,000 ppm Zn as ZnO had higher plasma Zn concentrations (P < 0.10) than pigs fed the basal diet. In Exp. 1 and 3, pigs fed 2,000 ppm Zn as ZnO had higher fecal Zn concentrations (P < 0.01) than pigs fed the other dietary Zn treatments. In conclusion, organic Zn either as a polysaccharide or a proteinate had no effect on growth performance at lower inclusion rates; however, feeding lower concentrations of organic Zn greatly decreased the amount of Zn excreted.  相似文献   

8.
Three experiments were conducted to evaluate the effects of increasing dietary Cu and Zn on weanling pig performance. Diets were fed in 2 phases: phase 1 from d 0 to 14 postweaning and phase 2 from d 14 to 28 in Exp. 1 and 2 and d 14 to 42 in Exp. 3. The trace mineral premix, included in all diets, provided 165 mg/kg of Zn from ZnSO(4) and 16.5 mg/kg of Cu from CuSO(4). In Exp. 1, treatments were arranged in a 2 × 3 factorial with main effects of added Cu from tri-basic copper chloride (TBCC; 0 or 150 mg/kg) and added Zn from ZnO (0, 1,500, or 3,000 mg/kg from d 0 to 14 and 0, 1,000, or 2,000 mg/kg from d 14 to 28). No Cu × Zn interactions were observed (P > 0.10). Adding TBCC or Zn increased (P < 0.05) ADG and ADFI during each phase. In Exp. 2, treatments were arranged in a 2 × 3 factorial with main effects of added Zn from ZnO (0 or 3,000 mg/kg from d 0 to 14 and 0 or 2,000 mg/kg from d 14 to 28) and Cu (control, 125 mg/kg of Cu from TBCC, or 125 mg/kg of Cu from CuSO(4)). No Cu × Zn interactions (P > 0.10) were observed for any performance data. Adding ZnO improved (P < 0.02) ADG and ADFI from d 0 to 14 and overall. From d 0 to 28, supplementing CuSO(4) increased (P < 0.02) ADG, ADFI, and G:F, and TBCC improved (P = 0.006) ADG. In Exp. 3, the 6 dietary treatments were arranged in a 2 × 2 factorial with main effects of added Cu from CuSO(4) (0 or 125 mg/kg) and added Zn from ZnO (0 or 3,000 mg/kg from d 0 to 14 and 0 or 2,000 mg/kg from d 14 to 42). The final 2 treatments were feeding added ZnO alone or in combination with CuSO(4) from d 0 to 14 and adding CuSO(4) from d 14 to 42. Adding ZnO increased (P < 0.04) ADG, ADFI, and G:F from d 0 to 14 and ADG from d 0 to 42. Dietary CuSO(4) increased (P < 0.004) ADG and ADFI from d 14 to 42 and d 0 to 42. From d 28 to 42, a trend for a Cu × Zn interaction was observed (P = 0.06) for ADG. This interaction was reflective of the numeric decrease in ADG for pigs when Cu and Zn were used in combination compared with each used alone. Also, numerical advantages were observed when supplementing Zn from d 0 to 14 and Cu from d 14 to 42 compared with all other Cu and Zn regimens. These 3 experiments show the advantages of including both Cu and Zn in the diet for 28 d postweaning; however, as evident in Exp. 3, when 3,000 mg/kg of Zn was added early and 125 mg/kg of Cu was added late, performance was similar or numerically greater than when both were used for 42 d.  相似文献   

9.
Studies were conducted to evaluate zinc methionine (ZnMet) as a source of Zn for ruminants. Experiment 1 compared the availability of Zn in ZnMet and zinc oxide (ZnO) in lambs fed a semi-purified diet deficient in Zn. Based on growth rate and animal performance, plasma Zn and plasma alkaline phosphatase activity, no differences in Zn availability were detected between the two Zn sources. Apparent absorption of Zn also was similar, but Zn retention was higher (P less than .01) in lambs fed ZnMet because of a tendency for lower urinary Zn excretion (P less than .19) in this group. Zinc absorption and retention by lambs were similar for the two Zn sources in Exp. 2 when 20 mg Zn/kg was added to an orchardgrass hay-based diet containing 30 mg Zn/kg. In Exp. 3, lambs were dosed orally with 300 mg of Zn as ZnO or ZnMet, and the increase in plasma Zn following dosing was monitored. The increase in plasma Zn above predosing values was similar at 6 h but was higher at 12 (P less than .10) and 24 h (P less than .05) postdosing in lambs given ZnMet. Thirty-six Hereford x Simmental heifers (271 kg) were used in Exp. 4 to determine the influence of supplementing Zn (25 mg/kg) as ZnO or ZnMet of growth performance and Zn status. Heifers were fed a corn silage-based diet that contained 23.1 mg Zn/kg during the 126-d study. Zinc supplementation to the basal diet increased (P less than .05) gain and feed/gain during the first 56 d, but not for the entire 126-d study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Three zinc depletion-repletion assays were carried out with chicks to determine Zn bioavailability in five sources of ZnO, three sources of ZnSO4.H2O, and two sources of Zn metal. A standard 23% CP corn-soybean meal diet was fed during the first 3 d posthatching, after which it was replaced with a Zn-deficient soy concentrate diet (13.5 mg Zn/kg) until d 7. On d 8 after an overnight period of feed withdrawal, chicks were fed for 12 d the Zn-deficient basal diet containing 0, 4.76, and 9.90 (Assay 1); 0, 5.06, or 10.12 (Assay 2); or 0, 4.73, or 9.13 (Assay 3) mg/kg supplemental Zn from analytical grade (AG) ZnSO4.7H2O (22.7% Zn) to generate a standard response curve. The AG and feed-grade (FG) Zn sources being evaluated were then provided at a level that would fall within the standard curve. Weight gain (Assays 1, 2, and 3) and total tibia Zn (Assay 1) responded linearly (P<.01) to Zn supplementation from ZnSO4.7H2O. Weight gain regressed on supplemental Zn intake gave standard-curve equations with fits (r2) ranging from .94 to .97. In Assay 1, regression of total tibia Zn (Y, in micrograms) on supplemental Zn intake (X, in milligrams/12 d) gave the equation Y = 13.2+6.74X (r2 = .90). Standard-curve methodology was used to estimate relative Zn bioavailability (RBV), with RBV of Zn in the ZnSO4.7H2O standard set at 100%. Four sources of FG ZnO were evaluated: Source 1 (78.1% Zn, hydrosulfide process, U.S.), Source 2 (74.1% Zn, Waelz process, Mexico), Source 3 (69.4% Zn, China), and Source 4 (78.0% Zn, French process, Mexico). Analytical-grade ZnO (80.3% Zn) was also evaluated. Feed-grade ZnO Sources 1 and 4 as well as AG ZnO produced average RBV values that were not different (P>.10) from the standard, but average RBV values for FG Source 2 and FG Source 3 were only 34 (P<.05) and 46% (P<.05), respectively. All sources of ZnSO4.H2O, which included two FG sources (source 1, 36.5% Zn; source 2, 35.3% Zn) and one food-grade source (36.5% Zn), were not different (P>.10) in RBV from the ZnSO4.7H2O standard. Two Zn metal products, Zn metal dust (100% Zn) and Zn metal fume (91.5% Zn), were also evaluated, and they were found to have Zn RBV values of 67 (P<.05) and 36% (P<.05), respectively. Feed-grade sources of ZnO vary widely in color, texture, Zn content, and Zn bioavailability.  相似文献   

11.
Two experiments were conducted to evaluate receiving-period performance, morbidity, and humoral immune response, as well as finishing performance and carcass characteristics of heifers fed different sources of supplemental Zn. In Exp. 1, 97 crossbred beef heifers (initial BW = 223.4 kg) were fed a 65% concentrate diet with no supplemental Zn (control) or 75 mg of supplemental Zn/kg of DM from Zn sulfate, Zn methionine, or Zn propionate. During a 35-d receiving period, heifers were monitored daily for signs of bovine respiratory disease. Serum samples were collected for Zn analysis on d 0, 14, and 28. After the receiving period, heifers were adapted to and fed a high-concentrate diet with no supplemental Zn for 42 d. Heifers were then assigned to finishing diet treatments, with the same concentrations and sources of supplemental Zn as during the receiving period and fed for an average of 168 d. Serum samples also were obtained on d 0 and 56 of the finishing period and at the end of the study. During the receiving period, control heifers had a greater (P < or = 0.05) BW and G:F on d 35 than heifers in the other treatments, but no differences were observed among treatments for morbidity or serum Zn concentrations (P > or = 0.50). For the finishing period, DMI and ADG did not differ among treatments; however, overall G:F tended (P = 0.06) to be less for control heifers than for heifers in the 3 supplemental Zn treatments. On d 56 of the finishing period, control heifers tended (P = 0.06) to have a lower serum Zn concentration than heifers in the 3 supplemental Zn treatments. In Exp. 2, 24 crossbred beef heifers (initial BW = 291.1 kg) were fed the same 4 treatments as in Exp. 1 for a 21-d period. The humoral immune response to treatments was determined by measuring specific antibody titers after s.c. injection of ovalbumin on d 0 and 14. Body weights and blood samples for serum Zn concentration and ovalbumin IgG titers were collected on d 0, 7, 14, and 21. Serum Zn concentration and specific ovalbumin IgG titers did not differ (P > 0.10) among the 4 treatments on any sampling day. Results from these 2 studies showed no major differences among the sources of supplemental Zn for receiving period morbidity, ADG, DMI, and humoral immune response of beef heifers; however, a lack of supplemental Zn during an extended finishing period tended to negatively affect G:F.  相似文献   

12.
Three experiments were conducted to determine the effects of phytase, excess Zn, or their combination in diets for nursery pigs. In all experiments, treatments were replicated with five to seven pens of six to seven pigs per pen, dietary Ca and available P (aP) levels were decreased by 0.1% when phytase was added to the diets, excess Zn was added as ZnO, a basal level of 127 mg/kg of Zn (Zn sulfate) was present in all diets, and the experimental periods were 19 to 21 d. In Exp. 1, pigs (5.7 kg and 18 d of age) were fed two levels of phytase (0 or 500 phytase units/kg) and three levels of excess Zn (0, 1,000, or 2,000 ppm) in a 2 x 3 factorial arrangement. Added Zn linearly increased ADG and ADFI during Phase 1 (P = 0.01 to 0.06), Phase 2 (P = 0.02 to 0.09), and overall (P = 0.01 to 0.02). Gain:feed was linearly increased by Zn during Phase 1 (P = 0.01) but not at other times. Dietary phytase decreased ADG in pigs fed 1,000 or 2,000 ppm Zn during Phase 2 (Zn linear x phytase interaction; P = 0.10), did not affect (P = 0.27 to 0.62) ADFI during any period, and decreased G:F during Phase 2 (P = 0.01) and for the overall (P = 0.07) period. Plasma Zn was increased by supplemental Zn (Zn quadratic, P = 0.01) but not affected (P = 0.70) by phytase addition. In Exp. 2, pigs (5.2 kg and 18 d of age) were fed two levels of phytase (0 or 500 phytase units/kg) and two levels of Zn (0 or 2,000 ppm) in a 2 x 2 factorial arrangement. Supplemental Zn increased ADG and G:F during Phase 2 (P = 0.02 to 0.09) and overall (P = 0.07 to 0.08), but it had no effect (P = 0.11 to 0.89) on ADG during Phase 1 or ADFI during any period. Phytase supplementation increased ADG (P = 0.06) and G:F (P = 0.01) during Phase 2. Gain:feed was greatest for pigs fed 2,000 ppm Zn and phytase (Zn x phytase interaction; P = 0.01). Bone (d 20) and plasma Zn (d 7 and 20) were increased (P = 0.01) by added Zn but not affected (P = 0.51 to 0.90) by phytase. In Exp. 3, pigs (5.7 kg and 19 d of age) were fed a basal diet or the basal diet with Ca and aP levels decreased by 0.10% and these two diets with or without 500 phytase units/kg. Supplemental phytase had no effect (P = 0.21 to 0.81) on growth performance. Reduction of dietary Ca and aP decreased (P = 0.02 to 0.08) ADG, ADFI, and G:F for the overall data. These results indicate that excess dietary supplemental Zn increases ADG and plasma and bone Zn concentrations. Dietary phytase did not affect plasma or bone Zn concentrations.  相似文献   

13.
Fifty weanling crossbred pigs averaging 6.2 kg of initial BW and 21 d of age were used in a 5-wk experiment to evaluate lower dietary concentrations of an organic source of Zn as a Zn-polysaccharide (Zn-PS) compared with 2,000 ppm of inorganic Zn as ZnO, with growth performance, plasma concentrations of Zn and Cu, and Zn and Cu balance as the criteria. The pigs were fed individually in metabolism crates, and Zn and Cu balance were measured on individual pigs (10 replications per treatment) from d 22 to 26. The basal Phase 1 (d 0 to 14) and Phase 2 (d 14 to 35) diets contained 125 or 100 ppm added Zn as Zn sulfate, respectively, and met all nutrient requirements. Treatments were the basal Phase 1 and 2 diets supplemented with 0, 150, 300, or 450 ppm of Zn as Zn-PS or 2,000 ppm Zn as ZnO. Blood samples were collected from all pigs on d 7, 14, and 28. For pigs fed increasing Zn as Zn-PS, there were no linear or quadratic responses (P > or = 0.16) in ADG, ADFI, or G:F for Phases 1 or 2 or overall. For single degree of freedom treatment comparisons, Phase 1 ADG and G:F were greater (P < or = 0.05) for pigs fed 2,000 ppm Zn as ZnO than for pigs fed the control diet or the diet containing 150 ppm Zn as Zn-PS. For Phase 2 and overall, ADG and G:F for pigs fed the diets containing 300 or 450 ppm of Zn as Zn-PS did not differ (P > or = 0.29) from pigs fed the diet containing ZnO. Pigs fed the diet containing ZnO also had a greater Phase 2 (P < or = 0.10) and overall (P < or = 0.05) ADG and G:F than pigs fed the control diet. There were no differences (P > or = 0.46) in ADFI for any planned comparison. There were linear increases (P < 0.001) in the Zn excreted (mg/d) with increasing dietary Zn-PS. Pigs fed the diet containing ZnO absorbed, retained, and excreted more Zn (P < 0.001) than pigs fed the control diet or any of the diets containing Zn-PS. In conclusion, Phase 2 and overall growth performance by pigs fed diets containing 300 or 450 ppm Zn as Zn-PS did not differ from that of pigs fed 2,000 ppm Zn as ZnO; however, feeding 300 ppm Zn as Zn-PS decreased Zn excretion by 76% compared with feeding 2,000 ppm Zn as ZnO.  相似文献   

14.
Three experiments were conducted to evaluate the efficacy of phosphorylated mannans (MAN) and pharmacological levels of ZnO on performance and immunity when added to nursery pig diets. Pigs (216 in each experiment), averaging 19 d of age and 6.2, 4.6, and 5.6 kg of BW in Exp. 1, 2, and 3, respectively, were blocked by BW in each experiment, and penned in groups of six. A lymphocyte blastogenesis assay was performed in each experiment to measure in vitro lymphocyte proliferation response. In Exp. 1, diets were arranged as a 2 x 2 factorial with two levels of Zn (200 and 2,500 ppm) and two levels of MAN (0 and 0.3% from d 0 to 10, and 0 and 0.2% from d 10 to 38). Zinc oxide increased (P < 0.05) ADG, ADFI, and G:F from d 0 to 10, and ADG and ADFI from d 10 to 24. In Exp. 2, diets were arranged as a 2 x 3 factorial with two levels of Zn (200 and 2,500 ppm) and three levels of MAN (0, 0.2, and 0.3%). Pigs fed 2,500 ppm Zn from d 0 to 10 had greater (P < 0.05) ADG, ADFI, and G:F than pigs fed 200 ppm Zn. From d 10 to 24, ADG was similar when pigs were fed 200 ppm Zn, regardless of MAN supplementation; however, ADG increased (P < 0.05) when 0.2% MAN was added to dietscontaining 2,500 ppm Zn (MAN x Zn interaction, P < 0.05). In Exp. 3, diets were arranged as a 2 x 3 factorial with two levels of MAN (0 and 0.3%) and three levels of Zn (200, 500, and 2,500 ppm). Zinc was maintained at 200 ppm from d 21 to 35, so only two dietary treatments (0 and 0.3% MAN) were fed during this period. Average daily gain was greater (P < 0.05) from d 7 to 21 when pigs were fed 2,500 ppm Zn compared with pigs fed 200 or 500 ppm Zn. The addition of MAN improved (P < 0.05) G:F from d 7 to 21 and d 0 to 35. Lymphocyte proliferation of unstimulated cells and phytohemagglutinin-stimulated cells was decreased (P < 0.05) in cells isolated from pigs fed MAN compared with cells isolated from pigs fed diets without MAN. Lymphocyte proliferation of pokeweed mitogen-stimulated cells isolated from pigs fed MAN was less (P < 0.05) than for pigs fed diets devoid of MAN when diets contained 200 ppm Zn; however, MAN had no effect on lymphocyte proliferation when the diet contained 500 or 2,500 ppm Zn (MAN x Zn interaction, P < 0.05). Although the magnitude of response to MAN was not equivalent to that of pharmacological concentrations of Zn, MAN mayimprove growth response when pharmacological Zn levels are restricted.  相似文献   

15.
The effect of dietary phytase and the prebiotic inulin on apparent mineral digestibility, bone mineralization, and tissue mineral contents was evaluated in weanling and growing pigs. In Exp. 1, inulin and phytase were incorporated in a 2 × 3 factorial arrangement of treatments with 8 replicate pens per treatment in a randomized complete block design. There were 2 levels of phytase [0 and 1000 phytase units (FTU)/kg] and 3 levels of chicory inulin (0, 3, and 6%). Weanling pigs (17 d of age; 5 or 4 pigs per pen) with an initial BW of 6.0 ± 0.6 kg were evaluated for 35 d postweaning. Macromineral digestibility was calculated using chromic oxide as an index in fecal samples collected during the final week of the experiment in replicates 1 through 4. On d 36, 1 pig per pen was killed and the heart, liver, kidney, and left tibia were excised and weighed. Inulin did not have any effect on growth performance measurements. Phytase increased (P < 0.05) BW on d 35 and ADG and ADFI during the 21-to-35-d and 0-to-35-d periods. Inulin did not result in increased tissue mineral concentrations on a per unit (mg/kg) or total tissue basis. Phytase increased (P < 0.05) the concentration of Zn in the liver, Mn and Zn in the heart, and Mg and Mn in the kidney. Phytase also increased (P < 0.05) total P, Mg, S, Mn, Se, and Zn in the liver as well as tibia ash. Phytase increased the digestibility of Ca (P < 0.01) and P (P < 0.05). Experiment 2 was conducted with growing pigs (initial BW, 41 ± 5 kg) to evaluate 2 levels of inulin (0 or 6%) and 2 levels of phytase (0 or 1000 FTU/kg) in a 2 × 2 factorial with 6 replicates in a randomized complete block design. Total urine and feces were collected for 10 d from each of 24 barrows after a 21-d acclimation period. Inulin inclusion resulted in reduced Ca digestibility (P < 0.05). Phytase increased (P < 0.05) the digestibility of both Ca and P. These results indicate that dietary inulin does not affect the overall mineral status or growth performance of pigs, whereas phytase increases the utilization of Ca and several microminerals, in addition to P, and also increases growth performance. Inulin and phytase do not appear to interact to affect pig growth or mineral status.  相似文献   

16.
Four experiments involving 1,005 crossbred pigs weaned at 19 +/- 2 d of age evaluated the effect of diet complexity and lactose level on starter pig performances. Experiment 1 was a randomized complete block (RCB) conducted in nine replicates with 135 pigs. A complex diet using several protein sources, a semicomplex diet with fewer protein sources, and a simple diet of corn and soybean meal comprised the three treatment groups. All diets contained 25% lactose (as-fed basis) with lysine (total) constant from d 0 to 14 (1.55%) and d 14 to 28 (1.45%), respectively. Gain, feed intake, and feed efficiency (P < 0.05) improved as diet complexity increased during both periods. In Exp. 2, 240 pigs in eight replicates in a RCB design were fed complex diets, but dietary lactose (total; as-fed basis) levels ranged from 10 to 35% in 5% increments from 0 to 14 d after weaning. From 14 to 30 d, a common 17% lactose diet was fed to evaluate the effects of early lactose level on subsequent responses. Gains (P < 0.05) increased for the 0- to 7- and 0- to 14-d periods as lactose increased to 30%. Similar gains resulted for all treatment groups from 14 to 30 d after weaning, with no evidence of compensatory responses to early lactose levels. In Exp. 3, 330 pigs were fed complex diets. From 0 to 7 d after weaning, the diets contained 25% lactose (as-fed basis), and from 7 to 21 d postweaning, the lactose levels ranged from 7 to 31% in 5% increments. Gain (P < 0.01) and feed efficiency (P < 0.05) increased from 7 to 21 d to the 17% lactose level. In Exp. 4, 300 pigs were fed 25 and 17% (as-fed basis) lactose diets from 0 to 7 and 7 to 21 d postweaning, respectively. From 21 to 35 d postweaning, lactose levels of 0 to 20% in 5% increments were added to a corn-soybean meal diet. The experiment was conducted as a RCB design in 12 replicates. Gain (P < 0.05) and feed intake (P < 0.05) increased to 10 to 15% lactose. When the data from Exp. 4 were partitioned into lighter (15.0 kg) and heavier (17.7 kg) pig weight replicates, only the lighter replicates had significant improvements in gain, feed intake, and feed efficiency (P < 0.05) in response to dietary lactose. These results demonstrated that starter pigs performed better when fed complex diets, that dietary lactose levels of 25 to 30% (to 7 kg BW) during the initial week postweaning, 15 to 20% lactose during d 7 to 21 (to 12.5 kg BW), and 10 to 15% lactose during d 21 to 35 postweaning (to 25 kg BW) resulted in maximum performance.  相似文献   

17.
Five experiments were conducted to test the effects of various dietary humic substances (HS; HS1, 2, 3, and 4, each with different fulvic and humic acid contents) on pig growth, carcass characteristics, and ammonia emission from manure. In Exp. 1, 120 pigs were allotted to 3 dietary treatments without HS (control) or with HS1 at 0.5 and 1.0% (8 pens/treatment and 5 pigs/pen) and fed diets, based on a 5-phase feeding program, from weaning (d 21.3 +/- 0.3 of age) to 60 kg of BW. In Exp. 2 and 3, 384 pigs (192 for each experiment) were allotted to 3 dietary treatments without HS, with HS1, or with HS2 (0.5%) for Exp. 2 and without HS, or with HS3 or HS4 (0.5%) for Exp. 3 (8 pens/treatment and 8 pigs/pen in each experiment). Pigs were fed diets, based on a 6-phase feeding program, from weaning (25.4 +/-0.2 and 23.6 +/-0.3 d of age for Exp. 2 and 3, respectively) to 110 kg of BW. In Exp. 4, 96 pigs were weaned at 22.1 +/-0.2 d of age and allotted to 2 treatments without or with HS1 at 0.5% (6 pens/treatment and 8 pigs/pen), and in Exp. 5 96 pigs were weaned at 20.9 +/-0.3 d of age and allotted to 3 treatments without HS, or with HS3 or HS4 (0.5%; 4 pens/treatment and 8 pigs/pen). Pigs were fed the diets for at least 2 wk before they were moved to an environmental chamber to measure aerial ammonia and hydrogen sulfide for 48 h at 5-min intervals. In Exp. 1, pigs fed diets with HS1 at 0.5% had greater (P < 0.05) ADG during phase 3 and greater (P < 0.05) G:F during phases 3 and 5 than control pigs. In Exp. 2, pigs fed diets with HS1 or HS2 at 0.5% had greater (P < 0.05) ADG and G:F than control pigs during the entire feeding period, whereas in Exp. 3 HS3 or HS4 did not improve pig growth performance. Ammonia emission from manure was reduced by 18 or 16% when pigs were fed diets with HS1 (P = 0.067) or HS4 (P = 0.054), respectively. The results of this study indicate that the effects of dietary HS are variable but may improve growth performance of pigs and reduce ammonia emission from manure. Further research is needed to clarify these effects and the mechanisms by which HS may cause them.  相似文献   

18.
Zinc bioavailability in feed-grade sources of zinc   总被引:4,自引:0,他引:4  
Chick bioassays were used to assess bioavailability of zinc (Zn) from inorganic Zn sources. A soy isolate-dextrose diet containing 13 mg Zn/kg diet was supplemented with feed-grade sources of ZnSO4.H2O (ZnSO4) or ZnO and fed for 2 wk after a 7-d Zn-depletion protest period. Bioavailability of Zn in ZnO relative to ZnSO4 (set at 100%) was determined by multiple regression slope-ratio methodology, using both growth and tibia Zn accumulation in chicks fed graded levels of ZnO and ZnSO4. Linear responses for gain and tibia Zn occurred at dietary Zn levels (ZnSO4.7H2O) between 13 mg/kg (basal) and 33 mg/kg (gain) or 53 mg/kg (total tibia Zn). Therefore, two bioavailability assays were conducted using supplemental Zn levels of 0, 7.5 and 15 mg/kg from each Zn source. When weight gain was regressed on supplemental Zn intake, bioavailability of Zn in ZnO was only 61.2% (P less than .01) that of ZnSO4. When total tibia Zn was regressed on supplemental Zn intake, bioavailability of Zn compared with ZnSO4 (set at 100.0%) was 44.1% (P less than .001) for ZnO. With chicks fed soy-based diets, bioavailability of Zn from ZnO was less than that of ZnSO4.  相似文献   

19.
Sixty Angus and Angus x Hereford steers (246 kg initial BW) were used to determine the effects of Zn level and source on performance, immune response, and carcass characteristics of growing and finishing steers. Treatments consisted of 1) control (no supplemental Zn), 2) ZnO, 3) Zn proteinate-A (ZnProt-A, 10% Zn), and 4) ZnProt-B (15% Zn). Treatments 2, 3, and 4 supplied 25 mg of supplemental Zn/kg diet. Steers were individually fed a corn silage-based diet during the 84-d growing phase and a high corn diet during the finishing phase. Cell-mediated and humoral immune response measurements were obtained between d 67 and 74 of the growing phase. Equal number of steers per treatment were slaughtered after receiving the finishing diets for 84 or 112 d. Performance and carcass measurements were similar in steers fed the two ZnProt sources. Zinc supplementation, regardless of source, increased (P < 0.05) ADG during the growing phase. In the finishing phase, ADG (P = 0.10) and gain/feed (P = 0.07) tended to be higher for steers fed ZnProt compared with those supplemented with ZnO. Gain and feed efficiency were similar for control and ZnO-supplemented steers during the finishing phase. Steers fed ZnProt had heavier (P < 0.05) hot carcass weights and slightly higher (P < 0.05) dressing percentages than those in the control or ZnO treatments. Quality grade, yield grade, marbling, and backfat were increased by Zn supplementation, but were not affected by Zn source. In vitro response of lymphocytes to mitogen stimulation and in vivo swelling response following intradermal injection of phytohemagglutinin were not affected by Zn level or source. Humoral immune response following vaccination with infectious bovine rhinotracheitis also was not affected by treatment. Soluble concentrations of Zn in ruminal fluid were higher (P < 0.05) in steers fed ZnProt compared to ZnO steers. Results indicate that ZnProt may improve performance of finishing steers above that observed with inorganic Zn supplementation.  相似文献   

20.
A pig trial and a chick trial were done to determine the effect of high levels of Zn and Cu on the P-releasing efficacy of phytase. Ninety-nine individually fed pigs (7.2 kg) were given ad libitum access to one of 11 experimental diets for a period of 21 d. Fibula ash (mg) was regressed against supplemental inorganic P (iP) intake (g) to establish the standard curve, from which phytase treatments were compared to determine P-releasing efficacy. The basal diet was a corn-soybean meal diet with no supplemental P (21% CP, 0.075% estimated available P, 130 mg of Zn/kg, as-fed basis). Diets included three graded levels of supplemental iP (0, 0.075, 0.150%) from reagent-grade KH2PO4, two levels of phytase (500 and 1,000 FTU/kg) from EcoPhos, 1,500 mg of Zn/kg from either Waelz ZnO or basic Zn chloride (Zn5Cl2(OH)8), and all combinations of phytase and Zn. One phytase unit (FTU) was defined as the amount of enzyme required to release 1 micromol of iP per minute from sodium phytate at 37 degrees C and pH 5.5. Phytase supplementation improved (P < 0.01) weight gain, G:F, and fibula ash (% and mg). Bone ash (mg) was highest (P < 0.01) for pigs fed diets containing 1,000 FTU/kg of phytase. Supplemental Zn had no effect (P > 0.50) on growth performance, but decreased (P < 0.05) fibula ash (mg). Comparison of the phytase treatments to the standard curve (r2 = 0.87) revealed P-release values of 0.130 and 0.195% for 500 and 1,000 FTU of phytase/kg, respectively, in the absence of Zn, whereas in the presence of Zn (pooled), P-release values were decreased (P < 0.01) to 0.092 and 0.132%, respectively. The effects of high levels of supplemental Zn (basic Zn chloride) and Cu (CuSO4 x 5H2O) on phytase efficacy also were investigated in a 12-d chick trial. Dietary treatments were arranged according to a 2(3) factorial, with two levels each of supplemental phytase (0 and 500 FTU/kg from EcoPhos), Zn (0 and 800 mg/kg), and Cu (0 and 200 mg/kg). There was a phytase x Zn interaction (P < 0.01) for tibia ash. Thus, Zn supplementation decreased tibia ash in the presence, but not in the absence, of phytase. Supplemental Cu did not affect (P > 0.30) the response to phytase. These results suggest that pharmacological levels of Zn chelate the phytate complex, thereby decreasing its availability for hydrolysis by phytase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号