首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene, multi-wall carbon nanotube (MWCNT) and fine boron nitride (BN) particles were separately applied with a resin onto a cotton fabric, and the effect of the thin composite coatings on the thermal conductive property, air permeability, wettability and color appearance of the cotton fabric was examined. The existence of the fillers within the coating layer increased the thermal conductivity of the coated cotton fabric. At the same coating content, the increase in fabric thermal conductivity was in the order of graphene > BN > MWCNT, ranging from 132 % to 842 % (based on pure cotton fabric). The coating led to 73 %, 69 % and 64 % reduction in air permeability when it respectively contained 50.0 wt% graphene, BN and MWCNTs. The graphene and MWCNT treated fabrics had a black appearance, but the coating had almost no influence on the fabric hydrophilicity. The BN coating made cotton fabric surface hydrophobic, with little change in fabric color.  相似文献   

2.
Selective separation is an effective method for the removal of heavy metal ions and waste oil from wastewater. Polyvinylidene fluoride (PVDF) was functionalized with polyvinyl acetate (PVAc) by in-situ polymerization, and novel PVAc-g-PVDF coating on surface modified cotton fabric were prepared. The contact angle (CA), pure water flux (PWF) and self-cleaning ability of coated cotton fabric were investigated in detail. In addition, the separation performance of coated cotton fabric was reflected by the removal of heavy metal ions in simulated wastewater. The results revealed that the PVAc-g-PVDF-coated cotton fabric was free of waste oil adhesion and was self-cleaning from waste oil in aqueous environment. Meanwhile, this coated cotton fabric can effectively separate oil/water mixtures with a high flux and high oil rejection, and was easily recycled for long-term use. More importantly, the heavy metal ions rejection ratio and adsorption capacity of cotton fabric were also improved with the addition of PVAc-g-PVDF coating. PVAc-g-PVDF-coated cotton fabric exhibited excellent rejection stability and reuse performances after several times fouling and washing tests. It can be expected that the present work will provide insight into a scaled-up fabrication process of PVAc-g-PVDF coating for purifying wastewater.  相似文献   

3.
Multifunctional textiles have been widely investigated with antimicrobial, self-cleaning, UV-protective properties, etc. Especially sol-gel coating doped with bioactive agents and special agents provides to produce multifunctional textiles. In this study, dip-coating (pad-dry) and solvothermal (exhaustion) sol-gel processes were used for coating of cotton fabric with silica and titania sols to achieve the properties mentioned above. A quaternary ammonium salt and silver salts as antimicrobial doping agent were embedded in titania sols with or without silica. Antimicrobial properties against Staphylococcus aureus (S. aureus) of the coated fabrics were characterized. The effect of precursors, doping agents and different sol-gel processes were also compared on performance properties of the fabric samples.  相似文献   

4.
The intrinsic torque of freshly spun wool yarns is affected by ageing of wool roving prior to spinning as well as the storage time of the yarn after spinning. The effect of physical ageing of roving on yarn torque properties has not been observed before and this study shows that the yarn intrinsic torque increases with ageing of the roving and decreases or relaxes with the yarn storage time. The dependency of the intrinsic torque on the roving ageing time and the yarn storage time after spinning show a simple double-logarithmic shift factor of 0.42 compared with the value of 1 found generally for amorphous polymeric materials. The self-plying twist of the yarns used in this study shows a close link to the intrinsic torque and both are affected by the history of the roving prior to spinning. Significant reductions in the self-plying twist were obtained when deaged rovings were used in spinning. When self-plying twist is used as a predictor of fabric spirality the roving and yarn history needs to be considered. This study shows that low intrinsic torque yarns can be produced by deageing of the roving prior to spinning.  相似文献   

5.
Graphene is classified as a carbon-based material. Structurally, graphene is made up of carbon-based two-dimensional atomic crystals and a one atom thick planar sheet of sp2-bonded carbon atoms. This sort of arrangement in graphene makes it a unique material with exceptional mechanical, physicochemical, thermal, electrical, optical, and biomedical properties. Methods for graphene-based fabric production mainly use graphene-based materials such as graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO) coated on fabric or yarn. Waterborne polyurethane (WPU) is one of the most rapidly developing and active branches of polyurethane chemistry. More and more attention is being paid to graphene-coated fabrics owing to their low temperature flexibility, the presence of zero or very few VOCs (volatile organic compounds), water resistance, pH stability, superior solvent resistance, excellent weathering resistance, and desirable chemical and mechanical properties. It is used as a coating agent or adhesive for fibers, textiles, and leather. Also, graphene-containing materials have been used to enhance the properties of WPU. In this study, graphene/WPU composite solution and film was prepared to conduct basic research for developing electrical heating textiles which is not harmful to the human body, flexible and excellent in electrical properties. Graphene/WPU composite solutions were prepared with a graphene content of 0, 2, 4, 8, and 16 wt%, and graphene/WPU film was prepared with solution casting method. The graphene contents were analyzed for their surface morphology, electrical properties, and electrical heating properties.  相似文献   

6.
The chemical composition of date palm rachis wastes, which are widely available cellulosic biomass-based agricultural crops in Tunisia, were characterized to determine if they had the potential for use as a starting raw material to prepare cellulose derivatives. To accomplish this, several sodium cellulose carboxylmethylates (NaCMCs) were prepared and tested as sizing agents for coating yarn. The synthesis of NaCMC was conducted in n-butanol containing NaOH (40 %) as a solvent mixture and monochloroacetic acid (MAC) as the etherifying reagent. The NaCMC samples were characterized based on their degrees of substitution (DS) and polymerization (DP). The prepared NaCMC samples were then tested as sizing agents for cotton yarn in textile applications. Specifically, different NaCMC samples were used to prepare a coating bath, which was then applied to size a cotton yarn textile. The quality of the coated yarns was subsequently evaluated by determining three parameters, yarn hairiness, the load at break, and the elongation at break. The sizing performances of the NaCMCs prepared from date palm rachis wastes were then compared with those of commercial NaCMC. The values of hairiness, breaking load, and breaking elongation of some of the NaCMC-treated yarns were as high as those prepared using commercial additives as sizing agents. These findings indicate that the cellulose derivatives prepared in this study are good candidates for alternatives to currently available additives.  相似文献   

7.
The main goal of present study was the fabrication of cotton fabric with special functions, including electrical conductivity, magnetic, antibacterial, and ultraviolet (UV) blocking. In this regard, the cotton fabric was primarily coated with graphene oxide and then reduction of graphene oxide and synthesis of magnetite nanoparticles accomplished in one step. The alkaline hydrolysis of magnetite precursors and reduction of graphene oxide was simultaneously performed using sodium hydroxide to produce reduced graphene oxide/Fe3O4 nanocomposite on the fabric surface. The prepared cotton fabrics were characterized with field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The treated fabrics with reduced graphene oxide/Fe3O4 nanocomposite displayed a low electrical resistivity i.e. 80 kΩ/sq. Furthermore, the coated fabrics showed reasonable magnetic properties due to the presence of magnetite nanoparticles on the surface of cotton fabrics. Moreover, this process imparted proper antibacterial properties and UV blocking activity to cotton samples.  相似文献   

8.
We present a rapid, simple, convenient and cost-effective method for producing nanosized stable silver particles on cotton fibers with complete control of the silver loading level using a thermal reducing silver carbamate complex. Cotton gauze was coated with silver 2-ethylhexylcarbamate solution. Silver nanoparticles on the cotton gauze were characterized by energy dispersive X-ray spectroscopy and X-ray diffraction. Particle size and lattice image of the silver nanoparticles were studied by scanning electron microscopy. The antibacterial activity of the silver coated cotton gauze against Escherichia coli and Staphylococcus aureus, whole blood clotting and physical properties including vertical wicking test, water retention time and absorption of 0.9 % (w/v) saline were studied. Silver coated cotton gauze showed a faster blood clotting rate than the untreated cotton gauze. Cotton gauzes treated with two different silver concentrations (0.01 %, 0.1 %) showed slightly better saline absorption and they had better vertical wicking and water retention time than pristine cotton gauze.  相似文献   

9.
Herein, an intelligent cotton fabric was fabricated using a non-ionic surfactant based macro structured carbonaceous coating through the ‘knife-over-roll’ technique. The developed novel fabric was tested as flexible, mechanically robust with prolonged chemical/moisture resistance. Various characterization techniques were thoroughly used to analyze the fabric. The as-prepared fabric shows an outstanding electromagnetic interference (EMI) shielding efficiency (SE) of about 21.5 dB even at the lowest possible coating thickness (0.20 mm) where the highest EMI SE of 30.8 dB is obtained at only 0.30 mm coating thickness over the X-band frequency range (8.2-12.4 GHz), possibly due to the three-dimensionally interconnected network structure of conducting carbon particles. The micro-computed tomography disclosed the porous architecture and “void-filler” arrangement within the fabrics. For the betterment of serviceability and practicability of the coated fabric, the water tolerance and contact angle studies were conducted. The relatively high contact angle than pure cotton fabric, and excellent water resistance after coating ensure improved endurance for external or industrial uses. Therefore, this proof-of-construct manifests commercialization of the developed fabric for multipurpose applications in a facile, less-hazardous and economical way.  相似文献   

10.
The effects of some yarn properties (i.e. type, count, twist level, ply number, unevenness and crimp) and fabric constructional properties (i.e. cover, thickness and balance) on surface roughness values of cotton woven fabrics were investigated. A general overview of the results showed that surface roughness values of fabrics were affected from yarn and fabric properties and the effects were related to fabric balance, fabric cover (not cover factor), fabric thickness and crimp values of yarns in fabric structures. Surface roughness values of fabrics decreased as yarn fineness and yarn twist levels increased but as yarn ply number decreased. Also, surface roughness values gradually decreased from open-end yarn constituting fabrics to combed yarn constituting fabrics. Results showed that different properties of yarns caused changes in yarn crimps in fabric structure and also governed the changes in fabric balance, as well as changes in roughness of fabric surfaces. The changing properties of yarns and impact of these properties on fabric construction affected the formation of cotton fabric surfaces from smooth to coarse.  相似文献   

11.
An oil/water separation cotton fabric with high separation efficiency has been successfully developed by combining mussel-inspired one-step copolymerization approach and Michael addition reaction. The cotton fabric was first coated with the adhesive polydopamine (PDA) film by simple immersion in an aqueous solution of dopamine at pH of 8.5. Then n-dodecyl mercaptan (NDM) was conjugated with PDA film through Michael addition reaction at ambient temperature. The chemical structure, surface topography, and surface wettability of the fabric were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and contact angle experiments, respectively. The results showed that as-prepared cotton fabric had highly hydrophobicity with the water contact angle of 145° and superoleophilicity with the oil contact angle of 0°. It exhibited desirable property of oil/water separation, and it had excellent potential to be used in practical applications and has created a new field for oil/water separation.  相似文献   

12.
Cotton fabrics exhibiting superhydrophobic and antibacterial properties were prepared through a non-solvent induced phase separation method using hydrophobic poly(vinylidene fluoride) (PVDF) and its hybrids with photocatalytic zinc oxide nanoparticles (nano-ZnO) as surface modifying agents for cotton fabric. The effects of coagulating medium and temperature on microstructural morphology and surface hydrophobictity of the cotton fabrics were investigated by FE-SEM observation and contact angle measurement. Superhydrophobic cotton fabrics exhibiting water contact angle higher than 150 ° could be obtained by coating the fabrics with solutions of PVDF and nano-ZnO followed by coagulation in ethanol as non-solvent. This phenomenon is considered to be originated from both chemically hydrophobic PVDF layer and physical micro- and nano-bumps formed on the surface of cotton fabric, which are essential requirements for Lotus effect. Moreover, antibacterial properties could be synergistically obtained by utilizing photocatalytic effect of nano-ZnO.  相似文献   

13.
Cotton yarns were coated with a polymer solution to hold surface fibers to the yarn body, which caused fiber-fly generation during knitting process. The physical property of the coated yarn, especially a bending rigidity was investigated in order to evaluate the performance of the coated yarn during knitting. SEM images showing the surface condition of the coated yarn demonstrated that the thickness of a coating material increased as the concentration of the coating solution increased. The results of the bending rigidity measured using KES-FB2 system showed that the bending rigidity of the coated yarn increased as the concentration of the coating solution increased. The results also revealed the possibility that yarn coated with a low amount of coating material should be employed for further research of reducing fiber-fly generation during knitting process.  相似文献   

14.
This study was an attempt to spin 100% sunnhemp fibers, grown in Akola district of Maharashtra, India, on Jute spinning system. The sunnhemp fibers were first sprayed with oil and then softened. These fibers were then processed through various machine sequence by varying the number of carding and drawing machines. The yarn was spun in each case and tested for Count Strength Product and Evenness. This yarn was then used as a weft yarn to weave a 3/1-drill fabric with a cotton warp and tested for tensile strength. It was concluded that the set III with three carding and three drawing sequence gave an even yarn. The optimum twist per inch in the yarn was found to be 6.0.  相似文献   

15.
The stearyl methacrylate modified polysiloxane/nanocomposite was synthesized by graft copolymerization between stearyl methacrylate modified polysiloxane with pendent epoxy groups and amino-functionalized nano silica. Then it was utilized to fabricate the superhydrophobic cotton fabric by one-step method. The structures, chemical compositions, thermal properties, surface morphology and wettability were characterized by Fourier Transform Infrared Spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), Thermo-gravimetric analyzer (TGA), Scanning electron microscopy (SEM) and Static contact angle analyzer. Results showed that a hydrophobic polysiloxane film and many nano-scaled tubercles were coated on the surface of the treated cotton fabrics plus their inherent microscaled roughness, which were the reasons why cotton fabric changed from hydrophilicity to hydrophobicity. In addition, with increase of the amount of nanocomposite, hydrophobicity of the treated cotton fabric would be enhanced; water contact angle of this fabric could attain 157°, which was higher than 141.5° reached by the fabric treated with stearyl methacrylate modified polysiloxane. The superhydrophobic cotton fabric also possessed favorable washing durability. On the other hand, its air permeability, color and softness would not be influenced instead.  相似文献   

16.
以纯苎麻纱和细旦涤纶为原料编织麻盖涤双面针织物;用亲水性硅油、水性聚氨酯、纤维素酶等进行吸湿快干、柔软以及消除刺痒感的整理。结果表明:麻盖涤针织面料的吸湿快干性能比棉盖涤好,通过应用合适的整理剂和整理工艺能有效地解决麻盖涤针织物手感和刺痒感问题。本文还对纯苎麻纱针织织造中断纱爆孔问题提出了解决的措施。  相似文献   

17.
Peirce’s fabric model has been widely used to predict the structural behavior of various plain woven fabrics. The structure of plain woven fabric can be defined in terms of the warp yarn number, weft yarn number, warp fabric density, weft fabric density, warp crimp, and weft crimp. The warp and weft yarn diameters are calculated from the warp and weft yarn numbers, and the effective coefficient of the yarn diameter is defined by using this model. We have investigated structural properties, such as the effective coefficient of the yarn diameter, yarn crimp, and fabric thickness for two different fabrics in which the constituent yarns are assumed to be either incompressible or compressible. This model is also applied to various plain fabrics woven from cotton, rayon, wool, linen, nylon, acetate, polyester, and silk yarns.  相似文献   

18.
The bamboo yarn of Ne 40s was used for the preparation of the Gauze fabric. The physical properties such as areal density and stiffness of fabrics were measured. The fabric was then scoured and bleached as per the standard procedure using distilled water. Chitosan-sodium alginate, Calcium-sodium alginate polymer and their mixture were coated separately on the gauze structure to improve the antibacterial and wound healing property of the bandage. Scanning electron microscope (SEM) analysis was carried out to observe the uniform distribution of polymers in the samples. The antibiotic drugs were selected based on the antibiotic sensitivity test. The drugs such as Tetracycline hydrochloride (250 mg), Chloramphenicol (250 mg) and Rifampicin (250 mg) were immobilized on the polymer coated fabrics to increase the rate of wound healing and antibacterial activity. The drug loaded samples were subjected to drug release study for about four days in a static condition. The results show that good amount of drug was released during all the four days. Further, the antibacterial activity of the drug loaded and polymer coated samples were evaluated against S. aureus and Proteus bacteria. The results show excellent antibacterial activity.  相似文献   

19.
Tearing strength is one of the most important and critical properties related to durable press finished cotton woven fabric. In the past, modelling of tearing strength of cotton woven fabrics was based on untreated cotton woven fabric but not in durable pressed finished fabric. In this paper, a mathematical model was established to demonstrate the tearing strength mechanism of durable press finished cotton woven fabrics by dimensional analysis based on yarn diameter, cover factor, Young’s modulus and fabric elongation. The proposed model agreed well with experimental results and the proposed model can be used for optimizing durable press finishing process of cotton woven fabric.  相似文献   

20.
A simple and facile method for fabricating the cotton fabric with superhydrophobicity, self-cleaning and flame retardancy was described in the present work. Three types of antimony pentoxide sol (Sb2O5), aluminum hydroxide sol (Al(OH)3) and 1H,1H,2H,2H-perfluorodecyltriethoxysilane (fluoroalkyl silanes) were used as coating for the cotton fabric. It was found that Sb2O5 and Al(OH)3 exhibited significant synergistic effects on the flame retardancy. When the weight ratio of Sb2O5/Al(OH)3(content 30 wt%) was 1:3, the results showed that the limiting oxygen index (LOI) value was 45.1 %, smoke density (SDR) value was 35 %, and it still passed UL94 V-0 rating. The cotton fabrics coated with fluoroalkyl silanes/Sb2O5/ Al(OH)3 showed a superhydrophobicity, anti-contamination and self-cleaning properties. In addition, the results exhibited the outstanding superhydrophobicity, oil/water separation, excellent waterproofing durability and flame retardancy of cotton fabric after 1000 cycles of washing by water, the LOI value was 40.1 %, SDR value was 39 % and WCA was 152° after 1000 cycles of washing. We believe that this simple, environmentally friendly and versatile fabrication of the cotton fabric had excellent real-life applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号