首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 491 毫秒
1.
2010年5~7月在山东威海乳山杜家岛基地,采用陆基围隔生态学实验方法和正交设计法,在不投饵模式下进行刺参Apostichopus japonicus和龙须菜Gracilaria lemaneiformis混养实验。刺参密度分别为15、20、25ind/m2,龙须菜初始密度分别为0、180、360g/m2,比较了不同处理下幼参和龙须菜的生长存活情况,并定期检测环境营养盐的变化。结果表明,刺参平均日增重率(Md-wg)、特定生长率(SGR)受刺参密度的影响显著,受龙须菜密度的影响不显著,受刺参与龙须菜之间交互效应影响不显著;刺参密度为15ind/m2、龙须菜密度为360g/m2时刺参平均日增重率、特定生长率最大;刺参密度为25ind/m2、龙须菜密度为360g/m2时龙须菜产量最高,刺参密度为25ind/m2、龙须菜密度为180g/m2时龙须菜特定生长率最高。水质分析结果表明,刺参密度为15ind/m2时底泥总氮、总磷含量降幅最大。实验结果显示,龙须菜和刺参混养可在一定条件下改善水质条件,提高刺参的特定生长率,在本实验条件下刺参密度15ind/m2、龙须菜密度360g/m2的混养配比较合理,其生态互利效果最好。  相似文献   

2.
以益生菌、水温、寡糖和配合饲料为因素,仿刺参幼参的特定生长率为指标,通过L9(34)正交试验方法,研究4种因子对仿刺参幼参生长的影响,获得各因子的最佳组合参数。试验结果显示,4种因子对幼参特定生长率的影响均极显著(P0.01),影响因素为益生菌水温寡糖配合饲料。最佳的因素搭配为益生菌5mL/m3,水温24℃,壳寡糖+褐藻胶寡糖混合0.002g/L,幼参B型配合饲料。各因素水平对仿刺参幼参特定生长率影响为益生菌5 mL/m315 mL/m310 mL/m3,水温24℃17℃10℃,壳寡糖+褐藻胶寡糖褐藻胶寡糖壳寡糖,幼参饲料B型幼参饲料加强型稚参饲料。  相似文献   

3.
人工饲料对刺参幼参生长贡献的碳稳定同位素法分析   总被引:3,自引:2,他引:1  
为了解不同养殖密度下刺参对人工饲料的吸收利用情况,实验采用碳稳定同位素法研究人工饲料对刺参幼参生长的食物贡献率.实验采用室内水族箱与刺参养殖池塘内围隔相结合的方法,刺参幼参的初始体质量为(4.78 ±0.58)g,水族箱(100 cm ×60 cm ×60 cm)内10头幼参用人工饲料按5%刺参初始体质量(湿重)连续喂养60 d;参池围隔(长8.0m×宽8.0m×高1.9m)内,投喂的实验组幼参在5、10、15、25和35 ind/m2的养殖密度下经人工饲料驯化后按5%刺参初始体质量(湿重)连续喂养6d,同时设不投饲的对照组,各4个重复.结果显示,水族箱内的刺参幼参的体质量经人工饲料饲喂60 d后均显著增加,其特定生长率(SGR)为(2.73±0.57) %/d,其稳定碳同位素比值(δ13 C值)由初始时的-18.633‰±0.552‰显著变化为-19.466‰±0.316‰(P =0.032).围隔实验中,实验组和对照组刺参的最终体质量都呈现不断减小的趋势,但同一密度的实验组刺参最终体质量均高于对照组;实验组刺参幼参的δ13C值随着养殖密度的增大由-13.262‰±0.183‰减小为-15.102‰±0.189‰,人工饲料对幼参的食物贡献在最低密度5 ind/m2下为最小值3.78% ±2.98%,在最高密度35 ind/m2下达到最大值为29.48%±3.31%.研究表明,利用碳稳定同位素法可有效分析刺参幼参的生长与摄食,人工饲料对刺参生长的贡献率随着养殖密度的增大显著增大(P<0.01),但比常见鱼虾等水产养殖品种要低得多,这与刺参自身摄食生理学特点、饲料质量、养殖模式及环境等多种因素相关.  相似文献   

4.
以益生菌、水温、寡糖和配合饲料为因素,仿刺参幼参的特定生长率为指标,通过L9(34)正交试验方法,研究4种因子对仿刺参幼参生长的影响,获得各因子的最佳组合参数.试验结果显示,4种因子对幼参特定生长率的影响均极显著(P<0.01),影响因素为益生菌>水温>寡糖>配合饲料.最佳的因素搭配为益生菌5 mL/m3,水温24℃,壳寡糖+褐藻胶寡糖混合0.002 g/L,幼参B型配合饲料.各因素水平对仿刺参幼参特定生长率影响为益生菌5 mL/m3>15 mL/m3>10 mL/m3,水温24℃>17℃>10℃,壳寡糖+褐藻胶寡糖>褐藻胶寡糖>壳寡糖,幼参饲料B型>幼参饲料加强型>稚参饲料.  相似文献   

5.
利用生态实验学方法,研究了密度(1.0、1.5、2.0、2.5 kg/m~2)、规格(200、100、50、20 ind/kg)和附着基(瓦片、空心水泥砖、塑料管)对刺参南移室内工厂化养殖效果的影响。通过对刺参生长(SGR)与个体生长差异(CV)的测定与分析,初步掌握了刺参南移室内水泥池工厂化养殖关键技术。试验结果表明:密度对刺参的生长有着显著的影响(P0.05),放养密度增加,刺参的特定生长率显著降低,而生长变异系数增大,但生长变异系数对1.0 kg/m~2和1.5 kg/m~2无统计学意义差异;规格对刺参的生长有着显著的影响(P0.05),200 ind/kg和100 ind/kg试验组特定生长率显著高于50 ind/kg和20 ind/kg试验组而生长变异系数显著低于50 ind/kg和20 ind/kg试验组;附着基对刺参的生长有着显著的影响(P0.05),空心水泥砖和瓦片试验组特定生长率显著高于塑料管组而生长变异系数显著低于塑料管组。结合生产实际,刺参南移室内水泥池养殖时,养殖密度应低于1.5 kg/m~2、附着基应采用空心水泥砖或瓦片,小规格刺参(200 ind/kg和100 ind/kg)更适宜室内水泥池养殖;养殖过程中,当养殖密度达到1.5 kg/m~2或刺参规格差异较大时,要适时分苗以减轻刺参个体生长差异。  相似文献   

6.
不同水温对刺参幼参生长、呼吸及体组成的影响   总被引:15,自引:1,他引:15  
设计不同温度梯度(10~25℃),对刺参(Apostichopusjaponicus)幼参的生长、耗氧率和体组成进行分析。结果表明,温度对刺参幼参生长有显著性影响,生长曲线呈"钟形",在水温10~15℃,特定生长率逐渐升高,在水温15~25℃,特定生长率逐渐降低。根据温度与特定生长率关系式计算得出,刺参最适生长温度为15 5℃。不同温度对刺参幼参耗氧率有显著性影响,在10~25℃,随着温度升高,刺参幼参耗氧率呈逐渐上升趋势。20~25℃的温度系数(Q10)高于10~15℃和15~20℃的Q10,表明高温时温度变化对刺参幼参影响较大。协方差分析表明,不同温度对刺参幼参体组成和能值有显著影响(P<0 05)。在10℃处理组,刺参体内粗蛋白、粗脂肪与能值均最高。随着温度的升高,粗脂肪含量和能值逐渐降低。  相似文献   

7.
采用单因素实验方法对双线紫蛤(Sanguinolaria diphos)幼贝的存活与生长进行了研究。实验设置了7个盐度梯度(10~40)、5个密度梯度(500~10 000 ind/m2)和5种底质类型(全细砂、90%细砂+10%细泥、80%细砂+20%细泥、70%细砂+30%细泥、全粗砂),研究了不同盐度、密度、底质对其存活、生长的影响。结果表明:盐度20、25和30组存活率、生长率差异不显著(P0.05);不同密度条件下幼贝存活率、生长率差异显著(P0.05);不同底质类型对幼贝生长影响差异明显。双线紫蛤幼贝最适生长盐度范围为20~25;最适养殖密度范围为500~1 000 ind/m2,最佳养殖底质为细砂底质。研究结果为双线紫蛤池塘人工增养殖提供参考。  相似文献   

8.
研究了在一定养殖空间内刺参–鼠尾藻适宜的养殖容量和养殖密度。将不同密度的平均体重为(16.7±0.95)g的刺参和鼠尾藻混养在1 m3水体的塑料桶内,实验分为12组,每组设3个重复,对刺参、鼠尾藻的生长及养殖水环境因子的变化情况进行了研究与分析。结果显示,1)刺参、鼠尾藻平均日增重率(Mdwg)和特定生长率(SGR)受刺参密度和鼠尾藻密度影响显著(P<0.05)。作为对照,无鼠尾藻、刺参密度为750、500、250 g/m3时,其生长均相对较差;刺参密度为250 g/m3、鼠尾藻密度为1000、1500 g/m3时,刺参生长相对最好。刺参密度为750 g/m3、鼠尾藻密度为500 g/m3时,鼠尾藻特定生长率(SGR)最大;刺参密度为250 g/m3、鼠尾藻密度为1500 g/m3时,鼠尾藻特定生长率(SGR)最小;2)NH4+-N、NO2–-N、NO3–-N和PO4–-P含量变化受刺参和鼠尾藻养殖量的影响显著(P<0.05)。无鼠尾藻,刺参密度为750、500、250 g/m3时,实验组NH4+-N、NO2–-N、NO3–-N和PO4–-P含量相对较高,其中,刺参为750 g/m3实验组含量最高;刺参密度为250 g/m3、鼠尾藻密度为1000、1500 g/m3时,实验组NH4+-N、NO2–-N、NO3–-N和PO4–-P含量相对较低。研究结果显示,鼠尾藻密度的大小对促进刺参的生长有非常显著的影响,同时对养殖水体中的营养因子具有较强的吸收能力。本研究条件下,刺参密度为250 g/m3、鼠尾藻密度为1000、1500 g/m3模式参藻搭配比例较合适,其生态互利效果最好。  相似文献   

9.
研究了在一定养殖空间内刺参–鼠尾藻适宜的养殖容量和养殖密度。将不同密度的平均体重为(16.7±0.95)g的刺参和鼠尾藻混养在1 m3水体的塑料桶内,实验分为12组,每组设3个重复,对刺参、鼠尾藻的生长及养殖水环境因子的变化情况进行了研究与分析。结果显示,1)刺参、鼠尾藻平均日增重率(Mdwg)和特定生长率(SGR)受刺参密度和鼠尾藻密度影响显著(P0.05)。作为对照,无鼠尾藻、刺参密度为750、500、250 g/m3时,其生长均相对较差;刺参密度为250 g/m3、鼠尾藻密度为1000、1500 g/m3时,刺参生长相对最好。刺参密度为750 g/m3、鼠尾藻密度为500 g/m3时,鼠尾藻特定生长率(SGR)最大;刺参密度为250 g/m3、鼠尾藻密度为1500 g/m3时,鼠尾藻特定生长率(SGR)最小;2)NH4+-N、NO2–-N、NO3–-N和PO4–-P含量变化受刺参和鼠尾藻养殖量的影响显著(P0.05)。无鼠尾藻,刺参密度为750、500、250 g/m3时,实验组NH4+-N、NO2–-N、NO3–-N和PO4–-P含量相对较高,其中,刺参为750 g/m3实验组含量最高;刺参密度为250 g/m3、鼠尾藻密度为1000、1500 g/m3时,实验组NH4+-N、NO2–-N、NO3–-N和PO4–-P含量相对较低。研究结果显示,鼠尾藻密度的大小对促进刺参的生长有非常显著的影响,同时对养殖水体中的营养因子具有较强的吸收能力。本研究条件下,刺参密度为250 g/m3、鼠尾藻密度为1000、1500 g/m3模式参藻搭配比例较合适,其生态互利效果最好。  相似文献   

10.
在五触手幼体、附板稚参和幼参阶段的养殖水体中添加筒柱藻液,探讨筒柱藻对刺参养殖水质及生长性能方面的影响。试验设1个对照组和5个筒柱藻不同添加密度组,每组3个平行,进行150天。结果表明,筒柱藻投喂密度为20亿个/m3组的稚参附板率及总成活率显著高于对照组(P〈0.05),且投喂此密度组对于早期幼参的特定生长率和表观消化率影响显著,投喂筒柱藻对幼参中后期的生长性能影响不大;投喂筒柱藻较小程度增加刺参养殖水体中的氨氮含量(P〉0.05),较大程度增大刺参养殖水体的亚硝态氮含量,但投喂筒柱藻各试验组水体均符合刺参养殖水质标准。因此,筒柱藻较适合附板稚参及幼参前期添加,且最适添加密度为20亿个/m3。  相似文献   

11.
为研究在海参商品饲料中添加不同含量的活性污泥对刺参养殖的效果,进行了60 d养殖试验,结果表明:添加20%和30%活性污泥组刺参增重率、日增重和特定生长率最高,投喂海参商品饲料组次之,而投喂污泥组刺参的生长最慢。投喂活性污泥和商品饲料的刺参摄食率、排粪率、饲料转化率、有机质同化率都高于投喂污泥组,在活性污泥组中,四个指标随着活性污泥添加量增加而总体呈递减趋势。投喂商品饲料和投喂20%、30%活性污泥添加量的刺参耗氧率和排氨率与污泥组相比较高。这些结果表明饲料中添加活性污泥可以促进刺参生长,提高刺参的摄食率和同化效率,对刺参耗氧率和排氨氯有一定的影响。  相似文献   

12.
将体长为(3.59±0.26)cm的凡纳滨对虾(Litopenaeus vannamei)按1 800尾.m-3、1 500尾.m-3和1 200尾.m-3的密度分别饲养在注水0.3 m3的圆形玻璃纤维桶(容量为0.5 m3)中30 d,检测了基本水质因子、对虾肝胰腺和肌肉组织中的酚氧化酶(PO)活力、超氧化物歧化酶(SOD)活力、抗菌活力(Ua)、碱性磷酸酶(AKP)活力、体质量增长和成活率,研究了不同放养密度对凡纳滨对虾稚虾免疫指标及生长的影响。统计分析发现,试验过程中水体理化因子均在适宜范围,各处理间水质因子的差异不显著;对虾的PO活力、Ua和AKP活力均随着密度的增加而降低,SOD活力则反之;对虾的体质量增长、体质量特定增长率和成活率随着密度的增加而降低,成活率差异显著(P〈0.05)。结果表明,凡纳滨对虾(体长〈4.8 cm或体质量〈1.2 g)在密度为1 200~1 800尾.m-3时,密度胁迫可明显影响其免疫指标和生长。  相似文献   

13.
在水温(16±1)℃、盐度27.6±0.5、pH值7.5~8.3条件下,将体重为(28.47±2.02)g的刺参Apostichopus japonicus分别饥饿0(空白对照)、5、10、15和20d(分别记为T0、T5、T10、T15和T20)后再饱食投喂至40d。实验结果表明,随着饥饿时间的延长,刺参的耗氧率呈急速下降、上升、再下降的变化规律;排氨率呈先上升、后下降的变化规律;氧氮比呈先下降、后上升的变化规律。饥饿结束时刺参的体重,除T5组外,其余各组均显著小于T0组(P0.05),且各自均有不同程度的下降,耗氧率和排氨率与T0组比较均呈显著性差异(P0.05)。饥饿对刺参O/N比值的影响显著(P0.05),饥饿初期刺参O/N比值平均为10左右,随着饥饿时间的延长,刺参O/N比值降为小于7。实验结束时,各饥饿组刺参的体重和特定生长率均小于T0组(P0.05),除T5组外,各组的耗氧率和排氨率,均未能恢复至T0组水平(P0.05)。可见,饥饿后恢复投喂的刺参不具有补偿生长的特征。  相似文献   

14.
以定向选育的刺参(Apostichopus japonicus)多刺品系子三代(G3组)和未经选育的普通刺参(C组)[(50.04±0.02)g/头]为研究对象,在养殖池塘环境中,比较了两个群体在3~10月连续养殖周期内生长指标和关键经济性状的差异。结果表明:在生长指标方面,3-4月G3组和对照组刺参的相对增重率(RWGR)、平均体重、排粪率(DR)均随温度的升高呈升高的趋势,且两组刺参差异不显著(P>0.05),但G3组一直高于对照组;G3组和对照组刺参相对增重率(RWGR)随温度升高呈先下降后上升的趋势;在7月高温期,两组刺参的相对增重率和平均体重都出现了明显下降,排粪率(DR)降为零,刺参进入夏眠状态;8-10月两组刺参相对增重率(RWGR)、平均体重和排粪率随温度下降呈上升趋势,且10月份三项指标均存显著差异(P<0.05)。在经济性状方面,经过3-10月一个周期的连续养殖,G3组在棘刺数量、出皮率和成活率方面均高于对照组,且存在显著差异(P<0.05)。实验数据表明,经过定向选育的刺参多刺品系子三代比未经选育的普通刺参,生长速度提高27.6%,成活率提高17.5%,棘刺数量保持在40个以上且稳定遗传。  相似文献   

15.
通过自然常温饲育和人工控温(23.6±0.5)℃的降温饲育,研究了3种规格体质量(10、20、50个/kg)刺参于浙江南部海区室内水泥池的度夏。结果表明,常温饲育下,3种规格的刺参体质量均呈负增长,且特定负生长率随着刺参体质量的增加而升高;降温饲育下,10个/kg与20个/kg体质量刺参组呈负增长,而50个/kg体质量刺参组略呈正增长,第30 d与第60 d的特定生长率分别为0.0496%与0.0513%。降温(23.6±0.5)℃饲育能有效提高刺参度夏时的存活率,有效降低刺参的特定负生长率,且刺参体质量越大,有效降低的体质量下降幅度也越大。在浙江南部海区室内水泥池养殖刺参,温度保持在(23.6±0.5)℃时,50个/kg的刺参不夏眠。  相似文献   

16.
通过室内40 d养殖实验,研究了4个养殖密度G0(250尾/m^3)、G1(500尾/m^3)、G2(1000尾/m^3)、G3(2000尾/m^3)对体重为0.08 g的中国对虾(Fenneropenaeus chinensis)幼虾生长、抗氧化系统功能及水质指标的影响。研究表明,密度胁迫20 d时,G1、G2生长和成活率与G0差异不显著(P>0.05),G3显著低于G0(P<0.05);胁迫40 d时,G1生长和成活率显著低于G0(P<0.05),G2生长显著低于G0(P<0.05),G2成活率与G0差异极显著(P<0.01),G3生长和成活率均与G0差异极显著(P<0.01)。通过检测血淋巴、肝胰腺、鳃和肌肉组织中抗氧化系统指标发现,中国对虾的总抗氧化能力(T-AOC)、超氧化歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPx)随密度增加呈先升高后降低的趋势:20 d时,4种酶的活性在G1和G2中显著高于G0(P<0.05);40 d时,则显著降低(P<0.05)。中国对虾中丙二醛(MDA)含量随密度的增加呈上升趋势,G3的MDA含量始终显著高于G0(P<0.05);G1、G2的MDA含量仅在40 d肝胰腺中显著高于G0(P<0.05),其他组织内均差异不显著(P>0.05)。不同养殖密度对主要水质指标pH、DO、NO2-N、NO3-N、NH3-N和COD无显著影响(P>0.05),均在中国对虾生长的适宜范围内。本研究表明,密度胁迫显著影响中国对虾的生长及抗氧化能力,养殖20 d时的适宜密度为1000尾/m^3,40 d时的适宜密度为250尾/m^3。  相似文献   

17.
以慢性驯化后的上海、山东、河北品系尼岁岁非鱼(Oreochromis niloticus)幼鱼为试验材料,比较它们在盐度组(0、15和20)、碳酸氢钠(NaHCO3)碱度组(1 g·L^-1、2 g·L^-1和3 g·L^-1)以及盐碱混合组(15,1 g·L^-1;15,2 g·L^-1;15,3 g·L^-1;20,1 g·L^-1;20,2 g·L^-1和20,3 g·L^-1)条件下网箱养殖成活率和日均增重率差异.62d试验结果表明,上海、山东、河北品系尼罗罗非鱼幼鱼在不同盐度、碱度、盐碱混合处理组中的成活率差异不显著(P>0.05),而日均增重率的差异显著(P<0.05).随着盐度、碱度增加,尼罗罗非鱼生长速度大体呈下降趋势;盐碱混合组生长速度较单盐、单碱组减慢.还发现不同品系尼罗罗非鱼在不同盐碱梯度下表现出不同的相对生长优势.研究结果为尼罗罗非鱼适宜养殖的盐碱范围确定、品系筛选提供了重要的基础资料.  相似文献   

18.
换水率和密度对刺参生长和水质的影响   总被引:1,自引:0,他引:1  
为探究日换水率(0、10%、20%、30%和100%)和养殖密度[0.980±0.008、1.760±0.005、2.810±0.007和(3.640±0.006)kg/m3]对刺参(Apostichopus japonicus)生长率和养殖水质的影响,养殖试验首先在非循环水养殖条件下,测定各组刺参综合特定生长率(ISGR)及养殖水体中氨氮及亚硝酸盐氮质量浓度。结果显示,日换水率为10%和20%处理组的ISGR分别达到每天(1.330±0.161)%和(1.410±0.182)%,显著高于其他处理组;密度养殖试验证明,随着养殖密度的增加,ISGR逐渐降低,分别达到每天(0.610±0.500)%,(0.570±0.030)%,(0.560±0.045)%和(0.320±0.040)%,各组换水率及养殖密度组水体中氨氮及亚硝酸盐氮均在安全浓度范围内波动;养殖结果显示,循环水养殖试验组刺参的ISGR高于非循环水养殖组,可达(0.130±0.007)%,且氨氮及亚硝酸盐氮质量浓度在0.020 mg/L以下,而非循环水养殖的分别积累到(0.600±0.015)mg/L和(0.076±0.002)mg/L。研究表明,在换水率15%,养殖密度(2.810±0.007)kg/m3的循环水养殖条件下,可以保证水体水质稳定,刺参生长良好。  相似文献   

19.
本文主要研究密度对网箱养殖硬头鳟Oncorhynchus mykiss存活和生长的影响。在水温8.2~19.1℃下,将体质量1.02 kg的硬头鳟鱼种养殖在5m×10m×6m网箱中,网箱放置在松花江上游的松山水库中,密度分别为5尾/m~2(Ⅰ组)、8尾/m~2(Ⅱ组)、11尾/m~2(Ⅲ组)和14尾/m~2(Ⅳ组),投喂粗蛋白含量为42%、粗脂肪22%的颗粒饲料,常规养殖。145d的养殖表明:网箱养殖的放养密度对硬头鳟的生长有一定影响。第Ⅳ组鱼的存活率显著低于其他3组(P0.05);放养密度为5~11尾/m~2时硬头鳟的生长与密度呈正相关,大于此密度范围则呈负相关。第Ⅲ组鱼的终末体质量、日增重、增重率、利润和利润率显著高于其余3组(P0.05);4个密度组硬头鳟的产量随放养密度增加而递增。本试验表明:网箱养殖硬头鳟的放养密度为11尾/m~2较适宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号