首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective population size (Ne) is a critical indicator of the vulnerability of a population to allele loss via genetic drift, and it can also be used to assess the evolutionary potential of a population. While some plant conservation plans have focused on outcrossing through cross-pollination as a way to increase estimated Ne, variance in reproductive output determined by ecological factors such as competition can also strongly affect estimated Ne. We examined the effects of intraspecific and interspecific competition, stressful soils, and local adaptation on estimates of Ne in an annual plant species. While ecological influences on plant growth rate variance have been predicted to influence estimates of Ne/N, we found a significant effect on the estimate of Ne/N, but no significant ecological effects on growth rate variance. Lower survivorship on stressful soil was the most important effect reducing estimates of Ne/N. If stochastic mortality is greater in environments that are abiotically stressful, then populations in these stressful environments may be slower to adapt because of lower census sizes and reduction of Ne/N. In populations of conservation concern, increasing survivorship may be of greater benefit for maximizing Ne than the reduction of variability in reproductive output among surviving adults.  相似文献   

2.
Populations with small effective sizes are at risk for inbreeding depression and loss of adaptive potential. Variance in reproductive success is one of several factors reducing effective population size (Ne) below the actual population size (N). Here, we investigate the effects of polygynous (skewed) mating and variation in female breeding success on the effective size of a small population of the Gunnison sage-grouse (Centrocercus minimus), a ground nesting bird with a lek mating system. During a two-year field study, we recorded attendance of marked birds at leks, male mating success, the reproductive success of radio-tagged females, and annual survival. We developed simulations to estimate the distribution of male reproductive success. Using these data, we estimated population size () and effective population size Ne for the study population. We also simulated the effects of population size, skewed vs. random mating, and female breeding failure on Ne. In our study population, the standardized variance in seasonal reproductive success was almost as high in females as in males, primarily due to a high rate of nest failure (73%). Estimated Ne (42) was 19% of in our population, below the level at which inbreeding depression is observed in captive breeding studies. A high hatching failure rate (28%) was also consistent with ongoing inbreeding depression. In the simulations, Ne was reduced by skewed male mating success, especially at larger population sizes, and by female breeding failure. Extrapolation of our results suggests that six of the seven extant populations of this species may have effective sizes low enough to induce inbreeding depression and hence that translocations may be needed to supplement genetic diversity.  相似文献   

3.
Loss of genetic variation through genetic drift can reduce population viability. However, relatively little is known about loss of variation caused by the combination of fluctuating population size and variance in reproductive success in age structured populations. We built an individual-based computer simulation model to examine how actual culling and hunting strategies influence the effective population size (Ne) and allelic diversity in Yellowstone bison over 200 years (~28 generations). The Ne for simulated populations ranged from 746 in stable populations of size 2000 up to 1165 in fluctuating populations whose census size fluctuates between 3000 and 3500 individuals. Simulations suggested that ~93% of allelic diversity, for loci with five alleles will be maintained over 200 years if the population census size remains well above ~2000 bison (and if variance in male reproductive success is high). However for loci with 20 alleles, only 83% of allelic diversity will be maintained over 200 years. Removal of only juveniles (calves and yearlings) resulted in longer generation intervals which led to higher maintenance of allelic diversity (96%) after 200 years compared to the culling of adults (94%) when the mean census size was 3250 (for loci with five alleles). These simulations suggest that fluctuations in population census size do not necessarily accelerate the loss of genetic variation, at least for the relatively large census size and growing populations such as in Yellowstone bison. They also suggest that the conservation of high allelic diversity (>95%) at loci with many alleles (e.g., ?5) will require maintenance of a populations size greater than approximately 3250 and removal of mainly or only juveniles.  相似文献   

4.
In order to predict and mitigate future climate change, it is essential to understand plant-mediated effects of elevated CO2 (eCO2) and O3 (eO3) on N-cycling, including N2O emissions. This is of particular interest for agroecosystems, since N-cycling and N2O emissions are responsive to adaptive management. We investigated the interaction of soil moisture content with eCO2 and eO3 on potential N2O emissions from SoyFACE during a 28-day laboratory incubation experiment. We also assessed field N2O fluxes during 2 soybean-growing seasons. In addition, we sought to link previously observed changes in soybean growth and production to belowground processes over a longer time scale by analyzing changes in natural abundance stable isotope ratios of soil N (δ15N). This method relies on the concept that soil δ15N can only change when inputs or outputs with an isotope signature different from that of soil N are altered. We found no major effects of eCO2 and eO3 on laboratory and field measured N2O emissions. Natural abundance isotope analyses suggested, however, a decrease in belowground allocation of biologically fixed N in combination with decreased total gaseous N loss by eCO2, resulting in a tighter N cycle in the longer-term. In contrast, the isotope data suggested an increase in belowground allocation of biologically fixed N under eO3, leading to increased gaseous N loss, most likely in the form of N2. Given that effects of eCO2 and eO3 on N pools and instantaneous transformation rates in surface soil layers of this agroecosystem have been minimal, our results illustrate the importance of evaluating longer-term changes in N turnover rates. We conclude that eCO2 decelerates whereas eO3 accelerates N-cycling in the longer-term, but feedback through changed N2O emissions is not occurring in this soybean system.  相似文献   

5.
The census population size (N) is usually the only information available for most threatened species. For evolutionary matters, the effective population size (Ne), not the census number, is a prime concern. Factors such as variation in the sex ratio of breeding individuals, variation of population size in different generations and mating system are important. The South American fur seal, Arctocephalus australis, has been exploited in Peru by humans since ca. 2000 BC and now the original population declined 72%, as a result of low food availability during the severe El Niño in 1997-1998. In this sense A. australis is now classified as in danger of extinction in Peru. We present the first estimate of Ne of the Peruvian population of A. australis that takes into account the effects of mating system and variation in population size caused by the 1997-1998 El Niño. The resulting Ne was 2153 specimens. We believe that the estimated Ne for the Peruvian population is a critical value, because it is significantly lower than the mean minimum viable population for vertebrates (7000 breeding age adults). This estimated Ne is of critical importance because combined with the current El Niño events are reasons of great concern for the survival of the species and should be taken into account in future management plans to ensure the conservation and protection of the species in the Peruvian coast.  相似文献   

6.
In the UK, Euphydryas aurinia exists in fragmented habitat patches, and undergoes population fluctuations as a result of a larval parasitoid. Its range is declining in the UK and conservation is thought to require a landscape approach since populations spread over large areas in some years and contract to core breeding patches in others. We examined populations at a range of geographic scales using allozyme electrophoresis to look for evidence of gene flow and differences in genetic diversity among populations. Nationally, our FST value was 0.1542 but between population groups within the suspected colonisation range of the butterfly (ca. 20 km), FST values were not significantly different from zero. Genetic diversity in terms of number of alleles and heterozygosity was reasonably high in natural populations (He=0.267) but low in an introduced, isolated population. We infer that migration between closely spaced subpopulations (in a metapopulation) maintains a high genetic effective population size (large number of individuals in a population that contribute genes to the next generation) which offsets any local reductions in population numbers due to stochastic extinctions or parasitoid effects. We therefore conclude that effective conservation of the species must seek to provide networks of suitable habitat for groups of subpopulations, rather than maintaining habitat for isolated populations.  相似文献   

7.
Unchecked exploitation of wildlife resources is one of the major factors influencing species persistence throughout the world today. A significant consequence of exploitation is the increasing rate at which genetic diversity is lost as populations decline. Recent studies suggest that life history traits affecting population growth, particularly in long-lived species, may act to moderate the impact of population decline on genetic variation and lead to remnant populations that appear genetically diverse despite having passed through substantial demographic bottlenecks. In this study we show that the retention of genetic variation in a partially recovered population of Nile crocodile is deceptive, as it masks the reality of a significant decline in the population’s effective size (Ne). Repeated episodes of unchecked hunting in the mid to late 20th century have today led to a five-fold decrease in the population’s Ne. Using current census data we estimate the contemporary Ne/N ratio as 0.05 and, in light of quotas that permit the ongoing removal of adults, simulated the likely effects of genetic drift on extant levels of variation. Results indicate that even if the current effective size is maintained, both allelic diversity and heterozygosity will decline. Our findings have complex implications for long-lived species; an emphasis on the retention of genetic variation alone, whilst disregarding the effects of population decline on effective size, may ultimately obscure the continued decline and extinction of exploited populations.  相似文献   

8.
Eighty-seven Phaseolus vulgaris landraces, still cultivated in Calabria (Italy), were investigated in order to study the patterns of common bean genetic diversity in this region, to better understand the evolutionary development of beans in Europe and to properly manage these genetic resources. Four American accessions and five Italian varieties were also included. Different markers, such as 12 microsatellites, seed traits, phaseolins and 100-seed weight were combined with different statistical approaches. For each microsatellite, expected (H e ) and observed (H o ) heterozygosities, polymorphism information content (PIC), probability of identity (PI) and homozygosity were calculated. Furthermore, in Calabrian group of bean landraces, total (N a ) and private (N pa ) number of alleles, observed (H o ), expected heterozygosities (H e ) and allelic richness (AR) were calculated. Genetic distances among landraces were estimated using Nei’s coefficient and a cluster analysis using the UPGMA algorithm was performed. The results clearly indicated that: (1) Calabrian germplasm showed a high level of diversity (H e  = 0.595); (2) Mesoamerican and Andean gene pools were clearly distinguished in Calabrian germplasm, with the Andean gene pool predominating (83 %); (3) Calabrian landraces were largely hybridized within and between the gene pools. A model-based approach, using the STRUCTURE software, was adopted. Six groups, including 4 of Andean origin and one of Mesoamerican origin were identified. Even more interesting, a small group (8 %) showed a distinct genetic structure, in which interspecific hybridizations with runner bean (Phaseolus coccineus L.) could have occurred. Nevertheless, a relatively high proportion of Calabrian bean landraces (12.6 %) was derived from intra and interspecific hybridizations.  相似文献   

9.
Knowledge of the genetic and demographic consequences of rarity is crucial when evaluating the effects of habitat loss and fragmentation on population viability, and for creating management plans in rare plant species. Reduction in population size and in the number of populations can lead to decreased genetic diversity and increased inbreeding. Genetic diversity is often correlated with fitness and is frequently used to identify populations of greatest conservation concern, or those that may be good candidates for ex situ conservation programs. However, an association between these factors is not always clear, and crossing studies evaluating whether there is phenotypic differentiation among populations in fitness related traits can inform managers of suffering populations or good sources for ex situ materials. Crossing studies can also evaluate the potential for genetic rescue to boost fitness in suffering populations. To address these questions, we conducted two generations of controlled crosses between populations of the extremely rare and fragmented sunflower, Helianthus verticillatus. We measured achene viability, germination, survival, and pollen viability (F1 only) in 176 F1 and 159 F2 families. The populations were differentiated with respect to phenotypic fitness measures with one population having significantly lower achene viability and germination. Also, the potential for genetic rescue was observed as gene flow into the less fit population resulted in higher fitness measures in both the F1 and F2. Results are discussed with respect to the importance of combining genetic marker data with crosses and the implications for conservation in disjunct populations of rare species.  相似文献   

10.
Eremostachys superba Royle ex Benth. (Lamiaceae) has undergone a severe decline in population size since its discovery in the North-western Himalayas in late 19th century. One hundred and seventy-two plants from six populations in the Indian states of Uttar Pradesh and Jammu & Kashmir, located between 0.45 km and 455.72 km apart from each other were evaluated for RAPD polymorphism. Sixteen random primers generated 92 bands overall, 77 of which were polymorphic. Shannon’s index of genetic diversity within populations (H o) ranged between 0.305 and 0.421; the average within-population diversity (H pop) was 0.389; and the total species diversity (H sp) was 0.478. The population from Mohand (representing the type locality) had the fewest plants, at 18, and was genetically the most depauperate. Among the other populations, ranging in size between 52 and 1,022 individuals, no relation between population size and genetic diversity was evident. It is suggested that these six populations represent relics of a larger, extended population, in which the presence of perennating rootstocks has helped preserve historic patterns of genetic diversity. AMOVA revealed that 83.01% of the variation exists within populations, which was consistent with earlier studies on the reproductive biology of E. superba, which indicated this species is predominantly allogamous. FST distances between all populations were significant, indicating geographic differentiation despite some of them being closely separated. Habitat restoration and protection from indiscriminate harvesting are proposed as primary strategies for conserving E. superba. Rejuvenation of the Mohand population through intrapopulation crossing between plants bearing diverse molecular phenotypes is also suggested.  相似文献   

11.
The genetic variability of 14 wild Prunus armeniaca populations was investigated using morphological analysis and inter-simple sequence repeat markers. 10 morphological characters revealed a high level variation, especially Fruit number, Fruit weight, Seed weight and Tree height. Totally, 15 selected primers generated 155 loci, with an average of 10.3 bands per primer. Nei’s gene diversity (H e ) and Shannon’s index of diversity (I) were fairly high at the species level (H e  = 0.2741, I = 0.4220). High molecular and morphological variability indicated that wild apricots in the Ili Valley still maintained a relatively high level of diversity. The G ST of 0.2275 revealed a low level of genetic differentiation among populations, and genetic variation mainly resided within populations (81.51 %), which was identified with the moderate gene flow value (N m  = 1.6974). The relatively high intraspecific genetic diversity and low inter-population genetic differentiation was largely attributed to long-distance dispersal of pollen, continuous distribution of populations and the self-incompatible breeding system.  相似文献   

12.
Oryzomys couesi cozumelae is an endemic, threatened rodent from Cozumel Island, Mexico. We estimated its genetic diversity and structure by analyzing microsatellite loci in 228 samples from 12 sampling sites widely distributed throughout the island. Unexpected high levels of genetic and allelic diversity were found: a total of 54 alleles, an average of 10.8 alleles per locus, and high heterozygosity values (mean HO = 0.624, HE = 0.690 and HNei = 0.689). These values are higher than those reported for small sized insular mammals, higher than that found in 37 individuals of the mainland O. couesi from southern Mexico (HO = 0.578) that we analyzed for comparative purposes, and similar to those of other mainland small mammal populations. Despite factors that affect Cozumel’s biota, such as exotic predators and competitors, hurricanes, seasonal population fluctuations and anthropogenic activities, no evidence of genetic bottlenecks was found. A significant population structure was observed and a model of isolation-by-distance was supported. Our findings render O. c. cozumelae a high conservation value, not only for its high genetic diversity and structure, but because available data suggests that its population has declined significantly in recent years. Further habitat fragmentation and population isolation could result in a higher genetic structure and loss of genetic diversity. The protection of habitat, the maintenance of habitat connectivity and the removal of introduced competitors and predators are a conservation priority. Acknowledging that the genetic structure of populations has crucial conservation implications, the present genetic information should be taken into account in management plans for the conservation of O. c. cozumelae.  相似文献   

13.
Decreasing habitat fragment area and increasing isolation may cause loss of plant population genetic diversity and increased genetic differentiation between populations. We studied the relation between the historical and the present landscape configuration (i.e., patch area and patch connectivity), and the present management of calcareous grassland fragments on the one hand, and the within and between population genetic structure of 18 Anthyllis vulneraria populations on the other hand. Despite the long-time fragmentation history and the mainly selfing breeding system of the species, we detected very low genetic differentiation (Φst = 0.056) among habitat fragments and no significant isolation-by-distance relation. Average within fragment genetic diversity measured as molecular variance and expected heterozygosity, were relatively high (16.46 and 0.28, respectively), and weakly positively correlated with the current fragment area, most likely because larger fragments contained larger populations. We found no effects of the historical landscape configuration on the genetic diversity of the populations. Our data suggest that the consequences of habitat fragmentation for genetic differentiation and genetic diversity of A. vulneraria are relatively minor which is very likely due to the historical high levels of seed exchange among fragments through grazing and roaming livestock. This study provides indirect evidence that nature management by grazing not only positively affects habitat quality but that it might also mitigate the genetic consequences of habitat fragmentation. From the conservation point of view, this study illustrates the importance of grazing and of the regular transport of livestock between fragments to prevent the long-term effects of fragmentation on the genetic diversity of the populations studied.  相似文献   

14.
Habitat reserves are a common strategy used to ensure viability of wildlife populations and communities. The efficacy of reserves, however, is rarely empirically evaluated. We examined the likelihood that small (650 ha), isolated habitat reserves composed of old-growth Sitka spruce (Picea sitchensis)-western hemlock (Tsuga heterophylla) rain forest (upland-OG) and mixed-conifer peatlands (peatland-MC) would sustain populations of northern flying squirrels (Glaucomys sabrinus) in the absence of immigration or emigration within the Tongass National Forest in Southeast Alaska. We used demographic data obtained from a study of flying squirrels on Prince of Wales Island in Southeast Alaska and litter size from flying squirrels in similar habitat to estimate per capita rate of increase (r) of flying squirrels in upland-OG (r = 0.14, SD = 0.42) and peatland-MC habitats (r = 0.01, SD = 0.39). Our results indicated that peatland-MC habitat was unlikely to sustain populations and that viability of flying squirrel populations in small habitat reserves largely depended on the upland-OG forest component. We subsequently estimated time to extinction (TN) based on r, its variance (v), and the potential population ceiling (K). We used TN to calculate the probabilities (Pt) that squirrel populations would persist in small reserves containing 100%, 50%, and 25% upland-OG habitat for 25, 50, and 100 years. In each scenario, we calculated TN and Pt for 2 levels of v. For the best-case scenario (100% upland-OG forest, lowest variance, t = 25 years), TN was 507 years and Pt was 0.95. For the worst-case scenario (25% upland-OG forest, highest variance, t = 100 years), TN was 237 years and Pt was 0.66. Minimum patch size of upland-OG forest required for a high probability (Pt = 0.95) of sustaining a flying squirrel population in isolation with relatively low demographic variability (v = 0.34) for 25, 50, or 100 years was 578, 5077, and 78,935 ha, respectively. We concluded that it was unlikely that small isolated habitat reserves could sustain populations of flying squirrels for >25 years in the absence of immigration. Consequently, dispersal among small reserves is critical to ensure that they function to support metapopulations of northern flying squirrels.  相似文献   

15.
Fragmentation of tropical forest represents a major threat to some tree populations by reducing local population size and gene flow from other populations. Both processes can decrease outcrossing rates and genetic variation in remnant stands. Despite these risks, some tree species have pollen vectors that mitigate these negative consequences for fragmented populations. In this paper, we assess both pollen flow and diversity of pollen sources in continuous forest and isolated stands of Swietenia humilis, a tropical tree species pollinated by small insects. Using seven nuclear microsatellite markers, we test the hypothesis that genetic diversity and the number of pollen donors are lower in remnant populations. Results show that allelic richness of seeds is lower in isolated populations (6.1 vs. 8.3 alleles per locus), even though adult populations do not show this difference.Pollen pool structure is greater in isolated patches (ΦIso = 0.26) than in continuous forest (ΦFor = 0.14), which yields estimates of the average effective number of pollen donors (Nep) of 1.9 and 3.6 respectively. In addition, estimates of number of sires per mother indicate that isolated trees have half the number of pollen sources (4.98) than trees in the forest (9.8). Although extensive pollen movement (>2000 m) was recorded on both habitat conditions, indicating that fragmented patches are not isolated from pollen-mediated gene flow, this extensive pollen flow among trees in fragmented landscapes may not serve to counteract deleterious reproductive and genetic consequences of habitat fragmentation.  相似文献   

16.
Levels of genetic variation and intrapopulation genetic structures of Leontice microrhyncha S. Moore (Berberidaceae) were assessed for six populations in South Korea, representing the southern most range of a species found in Northeast China and the Korean peninsula. Detected genetic diversity (Hes) was very low (0.024) and FIS values showed large heterozygote deficiencies. The small percentage of polymorphic loci and numbers of alleles per locus suggest that L. microrhyncha has a history of severe or long-lasting population bottlenecks that have eroded genetic diversity. This study suggests that the Korean population appears to consist of two historically isolated and independently evolving populations. It seems likely that these groups have been isolated and unstable for a significant period of time. However, the effects of recent habitat fragmentation on the historically disjunct and fragmented population system found in L. microrhyncha were not those predicted from the lack of significant relationships between population-level patterns of genetic variation and population sizes. Most non-unique genotypes were shared by most individuals and the lower level of diversity, high levels of inbreeding and population differentiation as well as high rate of seed production indicated that this species is autogamous and self-compatible and probably largely selfing. Therefore, to preserve extant genetic variation, all populations must be protected across the small geographic range of the species to retain both allelic and genotypic diversity.  相似文献   

17.
The demand for live bottlenose dolphins for commercial use is growing in Mexico, making the need for stock assessment and management ever more essential given their protected status. Tursiops truncatus is known to exhibit high levels of phenotypic polymorphisms. In the Gulf of California (GC), coastal and offshore ecotypes have been identified based on morphological, behavioral and ecological evidence, including different prey and habitat preferences. However, the extent to which this ecological and phenotypic variation is genetically correlated is unknown. Here we assess this correlation in GC bottlenose dolphins classified as coastal or offshore based on habitat, morphological and trophic evidence. Significant (p < 0.0001) haplotype heterogeneity (exact test) and genetic differentiation (FST = 0.069) were found in the mitochondrial control region, indicating some reproductive isolation between ecotypes. As elsewhere, coastal dolphins were less diverse than offshore. Phylogenetic analyses revealed paraphyletic coastal and offshore lineages and no evidence of lineage sorting, possibly due to recent isolation or gene flow. This is the first time that genetic, morphological and stable isotope evidence has been used to recognize ecotypes as different stocks for management purposes in bottlenose dolphins. Our results indicate that diversifying forces are shaping their phenotypic and genetic variation in the GC. Management and conservation efforts in this strategic region should aim to preserve these forces.  相似文献   

18.
Tetraena mongolica Maxim, is a critically endangered and endemic species of westem Inner Mongolia in China. Genetic variability within and among eight extant populations of this species was assessed using ISSR PCR (13 primers). We expected a low genetic diversity level, but our results revealed an intermediate level of intraspecific genetic diversity, probably resulting from this species being in a refuge during the last glaciation (at population level: P=48.1%, Ae=1.305, HE=0.177 and Hpop=0.264; at species level: P=63.3%, A=1.368, HT=0.213 and Hsp=0.324). A low level of genetic differentiation among populations was detected based on Nei's genetic diversity analysis (16.91%), Shannon's diversity index (18.83%) and AMOVA (15.2%). Populations shared high levels of genetic identity (I=0.9516±0.013). The extensive gene flow was a plausible reason for the low genetic differentiation.  相似文献   

19.
Management policies to save threatened species are not always successful, often due to the lack of a scientific basis and evaluation of the species response. We describe the ecological studies and the conservation actions taken between 1985 and 1992 on Cousin Island (29 ha, Seychelles) to safeguard the future of the highly threatened Seychelles warbler (Acrocephalus sechellensis), which until 1988 only occurred on this island. A detailed field study was designed to (1) identify the key processes influencing warbler demography, (2) identify appropriate management techniques to increase the warbler population, and (3), assess the influence of the resulting habitat management. Since 1980 the island has been saturated with c. 115 territories and c. 320 birds. The warbler is purely insectivorous. Morinda (Morinda citrifolia), the most insect rich tree, is preferred for foraging. The higher the insect abundance (and Morinda cover) in territories the higher the reproductive success and survival of warblers. Insect numbers were highest in the central part of Cousin and decreased towards the coast. Coastal territories protected by a salt tolerant hedge of Scaevola (Scaevola taccada) had more insects and higher reproductive success than unprotected territories. Between 1990 and 1992 Morinda trees were planted on the island and Scaevola along the coast. Although these habitat restoration measures have not resulted in higher numbers of adult warblers and territories due to habitat saturation, they have been successful in terms of improving the quality of existing breeding territories and with that the reproductive success of breeding birds (including the number of territories producing recruits), and the exchange of individuals (genetic material) between territories. We provide evidence that the high reproductive potential of this species is likely to improve the resilience of the species to catastrophic events.  相似文献   

20.
Even among widespread species with high reproductive potentials and significant dispersal abilities, the probability of extinctions should be correlated both with population size variance and with the extent of population isolation. To address how variation in demographic characteristics and habitat requirements may reflect on the comparative risk of species decline, I examined 617 time series of population census data derived from 89 amphibian species using the normalized estimate of the realized rate of increase, ΔN, and its variance. Amphibians are demonstrably in general decline and exhibit a great range of dispersal abilities, demographic characteristics, and population sizes. I compared species according to life-history characteristics and habitat use. Among the populations examined, census declines outnumbered increases yet the average magnitudes for both declines and increases were not demonstrably different, substantiating findings of amphibian decline. This gives no support for the idea that amphibian population sizes are dictated by regimes featuring relatively rare years of high recruitment offset by intervening years of gradual decline such that declines may outnumber increases without negative effect. For any given population size, those populations living in large streams or in ponds had significantly higher variance than did populations of completely terrestrial or other stream-dwelling amphibians. This could not be related to life-history complexity as all the stream-breeding species examined have larvae and all of the wholly terrestrial species have direct development without a larval stage. Variance in ΔN was highest amongst the smallest populations in each comparison group. Estimated local extinction rates averaged 3.1% among pond-breeding frogs, 2.2% for pond-breeding salamanders, and negligible for both stream-breeding and terrestrial direct-developing species. Recoveries slightly exceeded extinctions among European pond-breeding frogs but not among North American pond-breeding frogs. Less common species had greater negative disparities between extinctions and recoveries. Species with highly fluctuating populations and high frequencies of local extinctions living in changeable environments, such pond- and torrent-breeding amphibians, may be especially susceptible to curtailment of dispersal and restriction of habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号