首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effects of temperature and sulfonation on the deformation of spruce wood at conditions comparable to those during screw press impregnation prior to mechanical pulping were studied using a dynamic testing method. In addition to the physical properties of wood, shear fracture surfaces obtained at different deformation temperatures and at different sulfonation levels were studied using scanning electron microscopy (SEM).The results showed that the failure energy of wood decreased gradually with increased deformation temperature in the tested range of 20–95 °C, due to thermal softening of the material. In addition to thermal treatment, the failure energy could also be reduced by sulfite treatment of the wood before deformation, and decreased with increasing sulfonation degree.The SEM analysis showed that increasing the deformation temperature causes the fracture plane to travel around the fiber walls instead of through them, thus exposing a smoother wood surface with less fiber damage. At a given deformation temperature, particularly at the lower temperatures, sulfonation improves fiber separation.Financial support from the Swedish National Board for Industrial and Technical Development (NUTEK) is gratefully acknowledged  相似文献   

2.
Summary The angle at which the slip plane traverses the wall of cells subjected to longitudinal compression has been studied in detail and appears to be a function of the angle of the microfibrils in the middle layer of the secondary wall together with the ratio of the modulus of elasticity in the longitudinal and radial planes. These parameters can adequately explain the observed variations in slip plane angle that occurred between species, between early and late wood, and at different temperatures. Significant differences were absent in the comparison of radial and tangential walls, normal and compression wood, and samples at different moisture content.  相似文献   

3.
On the fracture morphology in wood   总被引:5,自引:0,他引:5  
Summary Structural changes in spruce and aspen wood samples subjected to axial compression were examined by means of the scanning electron microscope. For comparison, macroscopic model experiments were carried out on tube-shaped samples made of paper so as to represent segments of fibriform xylem cells. The results show that there are fracture patterns characteristic of wood in general and others characteristic of the species of wood. The phenomena characteristic of wood in general are prevalent at the cellular level and in the fracture behaviour of the cell wall layers and perforations. The characteristics of the various species of wood dominate at the level of the growth rings and are decisively influenced by the composition and arrangement of the tissues. The model experiments show that the failure morphology of the individual cells of the xylem may be explained to some extent by their geometry.  相似文献   

4.
The effects of high temperature steam pretreatment on the change in wood moisture content (MC) and characteristics of vacuum drying were investigated in this study. Poplar and manchurian walnut woods were pretreated with high temperature steam at 100°C and 140°C, prior to vacuum drying. A comparison of the characteristics of vacuum drying between steam pretreated wood and untreated wood was carried out. The results show that during steam pretreatment, the MC of wood decreased within a few hours. The reduction of MC varied with the temperature; the higher the temperature, the faster the MC dropped. During the vacuum drying stage, the rates of drying of pretreated samples were higher than those of untreated samples when MC was below the fiber saturation point. Furthermore, the total drying time of samples treated at a steam temperature of 140°C was lower than that of untreated samples. Therefore, a vacuum procedure after steam pretreatment can effectively shorten the drying time when drying wood.  相似文献   

5.
Wood density, a gross measure of wood mass relative to wood volume, is important in our understanding of stem volume growth, carbon sequestration and leaf water supply. Disproportionate changes in the ratio of wood mass to volume may occur at the level of the whole stem or the individual cell. In general, there is a positive relationship between temperature and wood density of eucalypts, although this relationship has broken down in recent years with wood density decreasing as global temperatures have risen. To determine the anatomical causes of the effects of temperature on wood density, Eucalyptus grandis W. Hill ex Maiden seedlings were grown in controlled-environment cabinets at constant temperatures from 10 to 35 degrees C. The 20% increase in wood density of E. grandis seedlings grown at the higher temperatures was variously related to a 40% reduction in lumen area of xylem vessels, a 10% reduction in the lumen area of fiber cells and a 10% increase in fiber cell wall thickness. The changes in cell wall characteristics could be considered analogous to changes in carbon supply. Lumen area of fiber cells declined because of reduced fiber cell expansion and increased fiber cell wall thickening. Fiber cell wall thickness was positively related to canopy CO2 assimilation rate (Ac), which increased 26-fold because of a 24-fold increase in leaf area and a doubling in leaf CO2 assimilation rate from minima at 10 and 35 degrees C to maxima at 25 and 30 degrees C. Increased Ac increased seedling volume, biomass and wood density; but increased wood density was also related to a shift in partitioning of seedling biomass from roots to stems as temperature increased.  相似文献   

6.
将针叶材的超微结构破坏分为细胞壁间分离和细胞壁断裂两种形式。在制备其超细木粉过程中,涉及到针叶材细胞的破壁力计算时,提出以细胞壁中存在大量的原生细观缺陷作为已存在的裂纹,将单一细胞壁看作是带有裂纹体受拉应力的平板,利用弹塑性断裂力学中J积分与积分路径无关这一常数的性质,避开裂纹尖端的弹塑性区域进行理论计算,应用J积分与应力强度因子在平面应力下的关系,计算出针叶材细胞壁断裂韧性的大小,并将不同针叶树种的木材细胞断裂韧性数值与其相应的细胞壁抗拉强度实验结果相比较,得出以此理论计算木材细胞断裂韧性值较为合理,表明利用J积分计算木材细胞壁断裂韧性这一方法是可行的。  相似文献   

7.
Summary Specimens of spruce (Picea abies) were taken to compression failure in the SEM while the backscattered electron imaging was used. Control specimens were taken to failure with no beam exposure. Failure morphology was studied using the secondary electron imaging. Wood exposed to the electron beam during testing showed a glassy fracture, while wood exposed to high vacuum but not to the electron beam showed a ductile fracture. There was found no evidence of any significant brittleness for unexposed wood at different moisture content levels. Although electron beam damage may be reduced, it can never be avoided. Caution is therefore to be exercised in the interpretation of results of compression tests in the SEM.  相似文献   

8.
The anatomical characteristics and density of wood were examined in 23-year-old Acacia mangium trees that had been planted in Yogyakarta, Indonesia. The seeds had been collected from trees of five different provenances. The distance from the pith of the boundary between juvenile and mature wood was also examined to clarify the maturity of the wood. Lengths of wood fibers near the pith and the distance from the pith of the boundary between juvenile and mature wood differed significantly among provenances. By contrast, other anatomical characteristics of the wood such as fiber wall area, fiber wall thickness, fiber diameter, vessel lumen area, vessel diameter, vessel frequency and wood density did not differ significantly among provenances. Wood density was strongly correlated with the area of fiber walls. Our observations suggest that Sidei and Daintree might be more appropriate provenances among those examined for the Acacia mangium tree-breeding programs in Indonesia that are aimed at improving wood quality, because these provenances are associated with longer initial wood fibers and narrower juvenile areas than the other provenances studied.  相似文献   

9.
Sandwich compression of wood that can control the density and position of compressed layer(s) in the compressed wood provides a promising pathway for full valorization of low-density plantation wood. This study aims at investigating the effects of preheating temperatures (60–210 °C) on sandwich compression of wood, with respect to density distribution, position and thickness of the compressed layer(s). Poplar (Populus tomentosa) lumbers with moisture content below 10.0% were first soaked in water for 2 h and stored in a sealed plastic bag for 18 h, the surface-wetted lumbers were preheated on hot plates at 60–210 °C and further compressed from 25 to 20 cm under 6.0 MPa at the same temperature on the radial direction. The compressed lumbers were characterized in terms of density distribution, position and thickness of compressed layer(s). It was found that depending on preheating temperatures, sandwich compressed wood with three structural modes, namely, surface compressed wood, internal compressed wood and central compressed wood can be formed. Density of the compressed layer(s) in wood increased gradually as a result of the elevated preheating temperatures. Higher preheating temperatures gave rise to bigger distance between compressed layer(s) and the surface, and preheating temperature elevation from 90 to 120 °C contributed to a maximal distance increase of 2.71 mm. In addition, higher preheating temperatures resulted in bigger thickness of compressed layer(s) over 60–150 °C and temperature elevation from 120 to 150 °C lead to the layers integration from two into one. Further temperature elevation over 150 °C reduced the thickness of the compressed layer in wood. SEM scanning suggested that cell wall bucking rather than cell wall crack occurred in compressed layer(s) and transition layer(s).  相似文献   

10.
Steam explosion is a process used to enhance enzyme penetration and digestibility of wood. Wood chips are processed with high-pressure steam for a limited time, and the bonding between polysaccharides and lignin is weakened. After this processing, the pressure is rapidly reduced to induce steam explosion where the vapor inside a fiber expands and exerts pressure on the fiber walls. This pressure causes fiber deformation and breakage. In this study, fiber deformation caused by vapor expansion was simulated by single wood fibers using finite element modeling. When pressure is applied inside a fiber, it is likely to break from the corner and midway between two adjacent corners. The fiber is modeled with four layers (P, S1, S2, and S3). Although the P, S1, and S3 layers are very thin, they significantly prevent fiber deformation. The fibers with a thin wall and a low micro-fibril angle (MFA) deform more than the fibers with a thick wall and a higher MFA. It was found that the shape of the fiber plays an important role in its deformation. The areas of localized strain are the most likely places for fiber splitting. Essentially, fiber wall damage is more likely to occur in (1) thin-walled fibers, i.e., earlywood, (2) fibers with damaged P and S1 layers, (3) fibers with low MFAs, and (4) fibers with irregular cross-sections. Different chemical pretreatments, fractionation procedures, and selections of raw materials can accordingly be considered to produce easily steam-exploded materials.  相似文献   

11.
During refining of mechanical pulp, a process occurring at high speed at temperatures of 140–160°C, the flexibility and bonding ability of wood fibres are increased. To understand the mechanical behaviour of the fibres in this operation, deformations at low speed of wet wood specimens at 50°C were studied under two different combinations of shear and compression loadings. The results were compared with the behaviour of wet wood in pure compression. Some features of the deformation that occurred in earlywood were analysed using an image analysis procedure. During pure compression the cell walls bend independently of the shape of the fibre cells and their cell wall thickness. Under combined shear and compression, however, mainly the corners of the fibre cells get deformed. In a second deformation performed in compression, the fibre cells follow the same deformation pattern as given by the first deformation type whether in compression or in combined shear and compression. The interpretation was that permanent defects in the cells themselves were introduced already in the first load cycle of the wood samples. The load combination with lower shear gave the same permanent strain as the case of pure compression but using less energy.  相似文献   

12.
The structural changes of the cell wall and crystalline cellulose of Quercus variabilis wood in a pyrolysis system at several temperatures ranging from 250 to 500°C were investigated to examine the wood carbonization characteristics. The volume of the wood sample was decreased and the weight loss was increased by increasing the carbonization temperature. Vessels collapsed severely in tangential direction during the charring process above 350°C. SEM observation indicated that the layering structure of the walls in wood fibers and parenchyma cells were retained below 300°C. However, the cell walls above 350°C changed to an amorphous-like structure without cell wall layering. X-ray diffraction confirmed that the cellulose crystalline substance was still remained at the carbonization temperature of 300°C but was not detected above 350°C. It can be concluded that the transition from Q. variabilis wood to charcoal might occur at approximately 350°C.  相似文献   

13.
This article presents an experimental study into thermal softening and thermal recovery of the compression strength properties of structural balsa wood (Ochroma pyramidale). Balsa is a core material used in sandwich composite structures for applications where fire is an ever-present risk, such as ships and buildings. This article investigates the thermal softening response of balsa with increasing temperature, and the thermal recovery behavior when softened balsa is cooled following heating. Exposure to elevated temperatures was limited to a short time (15 min), representative of a fire or postfire scenario. The compression strength of balsa decreased progressively with increasing temperature from 20° to 250°C. The degradation rates in the strength properties over this temperature range were similar in the axial and radial directions of the balsa grains. Thermogravimetric analysis revealed only small mass losses (<2%) in this temperature range. Environmental scanning electron microscopy showed minor physical changes to the wood grain structure from 190° to 250°C, with holes beginning to form in the cell wall at 250°C. The reduction in compression properties is attributed mostly to thermal viscous softening of the hemicellulose and lignin in the cell walls. Post-heating tests revealed that thermal softening up to 250°C is fully reversible when balsa is cooled to room temperature. When balsa is heated to 250°C or higher, the post-heating strength properties are reduced significantly by decomposition processes of all wood constituents, which irreversibly degrade the wood microstructure. This study revealed that the balsa core in sandwich composite structures must remain below 200°–250°C when exposed to fire to avoid permanent heat damage.  相似文献   

14.
Both of straight and inclining poplar clone 107 tree were selected for studying materials in this paper.The optimal pulping conditions was established by orthogonal experimental design both for normal wood and tension wood,and the quality of pulping and paper-making between normal wood and tension wood was compared with each other. Finally,potential application for improving paper quality of tension wood through increasing beating revolutions was discussed.The result showed that the optimal cooking condition for normal wood was alkali concentration 15%,the highest temperature 164℃,time at highest temperature 75 min,and for tension wood it was alkali concentration 13%,the highest temperature 160℃,time at highest temperature 40 min.Path coefficient of effect of alkali concentration both on pulp yield and kappa value was significant at different levels.By comparison between average result of normal wood and tension wood in quality of pulping and paper-making,it was found that tension wood had higher pulping yield and lower kappa value than normal wood. Furthermore,for all mechanical properties of paper, normal wood hold higher value than tension wood, and even near two times than tension wood,such as burst index and tensile index.However,difference of tear index was quite narrow.Result of one way ANOVA showed that difference of burst index and tear index between normal wood and tension wood was significant at the 0.001 level,of tear index was significant at the 0.05 level.Based on observation of cross surface of paper,it was assumed that contribution of gelatinous layer to rigidity of single fiber had hampered collapse and compression of fiber during paper formation,which is essential for exerting combination between fibers in paper.So, mechanical properties of tension wood paper were decreased accordingly.However,owing to high cellulose content of gelatinous layer,tension wood was easier to pulping than normal wood.Mechanical properties of tension wood paper could be improved by increasing beating revolutions,  相似文献   

15.
The effects of thermomechanical refining pressures, varying from 2 to 18 bars, on the cell-wall properties of refined wood fibers of a 54-year-old loblolly pine (Pinus taeda L.) with reference to both juvenile (JW) and mature wood (MW) were investigated using nanoindentation and atomic force microscopy. The results of this study indicate that refining pressure plays a significant role in the physical damage sustained by refined wood fibers. No obvious damage was observed in the cell walls of MW fibers refined at 2 and 4 bar. Nanocracks (<500 nm in width) were found in fibers refined at pressures in the range of 2–12 bar for JW and 6–12 bar for MW, and micro cracks (>3,000 nm in width) were found in both MW and JW fibers subjected to a refining pressure of 14 and 18 bar. The micro damage to the fibers refined at higher pressures was more severe inside the lumen than on the surface of the fibers, and the lumen or S3 layer was significantly damaged. The elastic modulus, hardness, and creep resistance of MW fibers were higher than those of the JW fibers subjected to the same refining-pressure conditions. The elastic modulus and hardness decreased, whereas nanoindentation creep increased, with increasing refining pressure. This study also suggests that lower refining pressures (<4 bar) and higher pressures (>14 bar for MW and >12 bar for JW) should be avoided in the manufacture of fiberboards and wood fiber–polymer composites, because of the lower aspect ratio of the fiber bundles, shorter length of the fibers and fines, and severe damages to the fiber cell walls.  相似文献   

16.
In vitro laboratory decay tests on Ailanthus excelsa Roxb. wood revealed that I. hispidus exhibits a combination of both white-rot and soft-rot patterns of wood decay. Early stages of wood decay showed dissolution of the middle lamella as well as defibration and localized delignification of fiber walls; vessels, axial, and ray parenchyma remained unaltered. Delignification commenced from the middle lamellae at the cell corners without any marked effect on the primary and secondary wall layers. In later stages of growth, the species produces typical soft-rot decay pattern by forming erosion channels through the S2 layers of fiber walls, transverse bore holes in the cell walls, and erosion channels alongside/following the orientation of cellulose microfibrils. The rays showed signs of cell wall alterations only after the extensive damage to the fiber walls. After 120 days of incubation, the vessels also showed localized delignification, the erosion of pits, and separation from associated xylem elements. The extensive weight losses under natural and in vitro decayed wood as well as the very soft nature of severely degraded wood indicate that I. hispidus alters wood strength and stiffness.  相似文献   

17.
Summary The effect of various forms of treatment — chemical, thermal and pressure — on the tensile properties of wood was investigated. Spruce was impregnated in water, sodium sulfite and/or sodium bicarbonate, and heated at temperatures ranging from 20 to 190 °C. At the end of cooking (190 °C), decompression was applied both slowly and suddenly.A rise in temperature, an increase in heating time, from 4 to 10 min. at 190 °C, as well as fast pressure release influenced the tensile strength. The chemical treatment resulted in lignin sulfonation while carboxylation produced fiber swelling and, consequently, tensile strength decreased.The authors wish to thank the FCAR (Québec), NSERC (Canada) and Stake Tech. Co. for their financial support  相似文献   

18.
This study aimed at developing a thermo-hydro-mechanical (THM) processing to compress poplar wood and investigating the effects of high temperature, moisture, and pressure during the THM processing on the changes in microstructure, porosity, mechanical properties, and dimensional stability of compressed poplar wood. The variations in these properties were correlated and their mathematical relations were determined. Poplar woods with high moisture content were compressed using different pressures at a temperature of 160 °C for different periods. The compression level was characterized by the volume compression ratio (CR), which is defined as the ratio of the compression volume and the original volume of sample before and after THM processing. The obtained results indicated that the high pressure of THM process caused the collapsing of wood cell lumens and the developing of a certain amount of fractures in the cell wall. The damage level of wood cells increased with increasing pressure and time. Moreover, the pressure narrowed the cell lumens, which decreased significantly the pore volume in wood substrate. The pore size distribution shifted from the level of macropores to those of mesopores and micropores after THM process. The THM process created superior mechanical property, especially for those with higher CR. Besides, it was revealed that the process decreased dramatically the set recovery of treated woods and improved their dimensional stability. A significant improvement was achieved in terms of the mechanical and physical properties of compressed poplar wood via the structural reformation during the THM process.  相似文献   

19.
欧美杨107杨正常木与应拉木制浆造纸性能比较   总被引:1,自引:0,他引:1  
周亮  高慧  张利萍  刘盛全 《林业科学》2012,48(5):101-107
选取直立和倾斜欧美杨107杨为研究材料,根据正交试验确定正常木和应拉木最佳制浆条件,比较正常木和应拉木的制浆造纸性能,通过提高打浆转数对应拉木纸张性能的提高进行探讨。结果表明:正常木的最佳制浆条件为用碱量15%、最高温度164℃、最高温度保温时间75min;而应拉木最佳制浆条件为用碱量13%、最高温度160℃、最高温度保温时间40min。用碱量对正常木和应拉木制浆得率和卡伯值影响的通径系数在不同水平上显著。通过对正常木和应拉木制浆造纸性能比较发现,应拉木比正常木制浆得率高、卡伯值低、纸张力学性能均低,且抗张指数和耐破指数差距较大(约2倍),而撕裂指数差距较小。正常木和应拉木之间卡伯值、制浆得率、抗张指数、耐破指数均在0.001水平上差异显著,撕裂指数在0.05水平上差异显著。结合纸张断口形貌分析认为,胶质层的存在使得应拉木纤维成纸时不容易扁平坍陷,极大地阻碍了成纸时纤维之间的结合,因此降低了纸张力学性能;但是,由于其胶质层纤维素含量很高,因此其制浆性能优于正常木。随着打浆转数的提高,应拉木纸张力学性能增强,且接近正常木纸张水平,但过高会降低纸张力学性能。  相似文献   

20.
Fracture toughness of wood and wood composites has traditionally been characterized by a stress intensity factor, an initiation strain energy release rate (G init) or a total energy to fracture (G f). These parameters provide incomplete fracture characterization for these materials because the toughness changes as the crack propagates. Thus, for materials such as wood, oriented strand board (OSB), plywood and laminated veneer lumber (LVL), it is essential to characterize the fracture properties during crack propagation by measuring a full crack resistant or R curve. This study used energy methods during crack propagation to measure full R curves and then compared the fracture properties of wood and various wood-based composites such as, OSB, LVL and plywood. The effect of exposure to elevated temperature on fracture properties of these materials was also studied. The steady-state energy release rate (G SS) of wood was lower than that of wood composites such as LVL, plywood and OSB. The resin in wood composites provides them with a higher fracture toughness compared to solid lumber. Depending upon the internal structure of the material, the mode of failure also varied. With exposure to elevated temperatures, G SS for all materials decreased while the failure mode remained the same. The scatter associated with conventional bond strength tests, such as internal bond and bond classification tests, renders any statistical comparison using those tests difficult. In contrast, fracture tests with R curve analysis may provide an improved tool for characterization of bond quality in wood composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号