首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The inheritance of resistance to white-backed planthopper, Sogatella furcifera Horvath, was investigated in a rice, Oryza sativa L., cultivar N22. Resistance to the white-backed planthopper in the cross IR30×N22 appears to be governed by a single dominant gene-designated Wbph. The classification for various characteristics of 397 F3 families of the IR30×N22 cross confirmed earlier results about the monogenic dominant control of resistance to brown planthopper, green leafhopper, and bacterial leaf blight, and about the monogenic recessive control of short stature. Additionally, the genes governing plant height and resistance to white-backed planthopper, brown planthopper, green leafhopper, and bacterial leaf blight were found to segregate independently of each other in these 397 F3 families.  相似文献   

2.
G. S. Sidhu  G. S. Khush 《Euphytica》1979,28(2):233-237
Summary Two-way classification of 400 F3 families from the rice cross IR2153-159-1 x Babawee for plant stature and for resistance to brown planthopper, green leafhopper, and bacterial blight indicated that Glh 3 (dominant gene for resistance to green leafhopper) and bph 4 (recessive gene for resistance to brown planthopper) are linked with a map distance of 34 units. The bph 4 gene also appears to be linked with sd 1 (recessive gene for semidwarf stature) although the linkage is less strong. However, bph 4 and Xa 4 (dominant gene for bacterial blight resistance) are inherited independently of each other. No segregation for susceptibility was observed among F3 families of crosses between varieties having Bph 3 and bph 4 genes for resistance to brown planthopper. Apparently, Bph 3 and bph 4 are either allelic or closely linked.  相似文献   

3.
结合分子标记辅助轮回选择和田间鉴定的方法, 将三黄占2号的抗稻瘟病基因Pi-GD-1(t)和Pi-GD-2(t)(分别简称G1和G2)、CBB23中的抗白叶枯病基因Xa23 (简称X)和IR65482-7-216-1-2-B(简称IR65482)的抗褐飞虱基因Bph18(t) (简称B)导入温恢845、温恢117和温恢143等3个中籼恢复系,获得了8个兼抗稻瘟病和褐飞虱聚合系,温恢845-G1-G2-B-4、温恢845-G1-G2-B-5、温恢117-G1-G2-X-B-3、温恢143-G1-G2-B-3、温恢143-G2-X-B-9、温恢143-G2-X-B-10、温恢143-G1-G2-B-11和温恢143-G1-G2-B-37。这些聚合系及其与不育系五丰A的测交种,对稻瘟病和褐飞虱的抗性水平接近或略低于稻瘟病抗性亲本三黄占2号和稻飞虱抗性亲本IR65482。部分改良恢复系如温恢117-G1-G2-X-B-3、温恢143-G2-X-B-9和温恢143-G2-X-B-10及其测交种对白叶枯病表现为抗病或中抗。改良恢复系及其测交种在正常条件下的农艺性状与原始恢复系及其测交种相仿或更优,具有生产应用价值。研究结果表明,Xa23在不同恢复系背景下抗性表达完全,而Pi-GD-1(t)、Pi-GD-2(t)和Bph18(t)对稻瘟病和褐飞虱抗性的改良效果与恢复系的遗传背景有关。  相似文献   

4.
‘大粒香’是著名的香稻品种之一,但对稻瘟病敏感的缺点限制了其推广。本研究利用分子标记YY5-YY8、Bph14P/Bph14N、MS5、Pibdom、Pi-ta、pTA248、Sub1-1,从课题组选育的129株‘大粒香’改良系F4代中筛选同时聚合香味基因badh2,抗褐飞虱基因Bph14和Bph15,抗稻瘟病基因Pita和Pib,抗白叶枯病基因Xa21及耐涝基因Sub1的单株,并从中选择农艺性状较好的单株进行对应基因的表型鉴定,以期获得具有多种抗性的香稻育种新材料。通过PCR技术对改良系F4代的badh2、Bph14、Bph15、Pita、Pib、Xa21和Sub1基因进行分子标记检测,从129个单株中筛选出同时聚合以上7个基因的植株30株,从中选择农艺性状较好的单株17C1389-4-4W进行表型鉴定。咀嚼实验和KOH浸泡-嗅闻实验结果表明17C1389-4-4W具有香味,褐飞虱接种实验结果表明17C1389-4-4W抗褐飞虱级别为3级,稻瘟病菌株Gally接种实验结果表明17C1389-4-4W抗稻瘟病级别为1级,白叶枯菌株PXO86接种试验结果表明17C1389-4-4W抗白叶枯病级别为1级,苗期淹涝实验结果显示17C1389-4-4W耐涝性显著强于亲本。大粒香改良系17C1389-4-4W聚合了多达6个抗性基因,将在多抗香稻育种中发挥重要作用。  相似文献   

5.
河北省地方水(陆)稻品种抗病虫性研究   总被引:1,自引:1,他引:0  
对河北省地方水、陆品种抗两病两虫性进行了鉴定,并在此基础上分析了抗稻瘟病、抗白叶枯、抗褐稻虱、抗白背飞虱品种的分布情况。对抗性频度较高的抗稻瘟病性、抗白叶枯病性从水、陆稻,熟期,不同稻作区等方面作了详细研究。结果表明:抗稻瘟病、白叶枯病品种频度高,分别为45.86%和50.34%,高抗率仅为0.75%和2.05%,抗率分别为24.81%和15.75%;抗褐稻虱、白背飞虱品种频度很低,分别为4.51%和3.34%,高抗褐稻虱品种2个,无抗至高抗白背飞虱品种。抗稻瘟病、白叶枯种质频度和强度均是陆稻高于水稻。纬度、海拔高,气候寒冷的张家口、承德两市稻瘟病抗性强度低;唐山、秦皇岛两市抗性强度高;冀南零星种植亚区抗性强度最高。抗白叶枯病种质分布规律是随着纬度的增加,温热条件的降低呈递减趋势。  相似文献   

6.
P. Wu  G. Zhang  N. Huang 《Euphytica》1996,89(3):349-354
Summary Segregation of plant height (PH), tiller number (TN), panicle number (PN), average panicle length per plant (PL), average primary branch number per panicle per plant (PBN) and 1000 grain weight (1000G) were specific in an F2 population derived from a cross of Palawan, a tall Javanica variety, and IR42, an Indica semidwarf variety. One hundred and four informative RFLP markers covering all 12 chromosomes were used for detecting putative QTLs controlling the traits. Orthogonal contrasts and interval mapping analysis were used for the analysis. QTL detected for PH on the region of chromosome 1, where semidwarfing gene sd-1 locus is located, seems to be a multiple allelic locus. An additional QTL for PH was identified on chromosome 2. Two QTLs for TN were detected on chromosomes 4 and 12. The QTL on chromosome 4 seemed also to govern the variation in PN. Four QTLs were found for the other traits, two of them for PL were located on chromosomes 6 and 2, one for PBN on chromosome 6 and the other for 1000G on chromosome 1. Additive gene actions were found to be predominant, except one QTL for PH and one QTL for PL, but partial or incomplete dominance also existed for the QTLs detected.  相似文献   

7.
The genetic base of cultivars within market classes of common bean (Phaseolus vulgaris L.) is narrow. Moreover, small- and medium-seeded Middle American cultivars often possess higher yield and resistance to abiotic and biotic stresses than their large-seeded Andean counterparts. Thus, for broadening the genetic base and breeding for higher yielding multiple stress resistant Andean cultivars use of inter-gene pool populations is essential. Our objective was to determine the feasibility of introgressing resistance to Been common mosaic virus (BCMV, a potyvirus), and the common [caused by Xanthomonas campestris pv. phaseoli (Xcp) and X. campestris pv. phaseoli var. fuscans (Xcpf)] and halo [caused by Pseudomonas syringae pv. phaseolicola (Psp)] bacterial blights from the Middle American to Andean bean, using gamete selection. Also, we investigated the relative importance of the use of a landrace cultivar versus elite breeding line as the last parent making maximum genetic contribution in multiple-parent inter-gene pool crosses for breeding for resistance to diseases. Two multiple-parent crosses, namely ZARA I = Wilkinson 2 /// ‘ICA Tundama’ / ‘Edmund’ // VAX 3 / PVA 773 and ZARA II = ‘Moradillo’ /// ICA Tundama / Edmund // VAX 3 / PVA 773 were made. From the F1 to F5 single plant selection was practiced for resistance to the common and halo bacterial blights in both populations at Valladolid, Spain. The parents and F5-derived F6 breeding lines were evaluated separately for BCMV, and common and halo bacterial blights in the greenhouse at Filer and Kimberly, Idaho in 2001. They were also evaluated for the two bacterial blights, growth habit, seed color and 100-seed weight at Valladolid in 2002. All 20 F1 plants of ZARA I were resistant or intermediate to common and halo bacterial blights in the greenhouse, but their F2 and subsequent families segregated for both bacterial blights. Segregation for resistant, intermediate, and susceptible plants for common bacterial blight occurred in the F1 of ZARA II. Simple correlation coefficient for common bacterial blight between the F1 and F1-derived F2 families was positive (r = 0.54 P < 0.05) for ZARA II. From the F2 to F5 the number of families resistant to both bacterial blights decreased in both populations. Only four of 20 F1 plants in ZARA I resulted in seven F6 breeding lines, and only one of 32 F1 plants in ZARA II resulted in one F6 breeding line resistant to the three diseases. None of the selected breeding lines had seed size as large as the largest Andean parent. The use of elite breeding line or cultivar as the last parent making maximum genetic contribution to the multiple-parent inter-gene pool crosses, relatively large population size in the F1, and simultaneous selection for plant type, seed traits as well as resistance to diseases would be crucial for introgression and pyramiding of favorable alleles and quantitative trait loci (QTL) of interest between the Andean and Middle American beans.  相似文献   

8.
Summary Pea blight caused by Assochyta pinodella does considerable damage to the pea crop every year. To ascertain the inheritance of resistance to pea blight and incorporate resistance in the commercial cultivars, crosses were made between Kinnauri resistant to pea blight and four highly susceptible commercial pea cultivars — Bonneville, Lincoln, GC 141 and Sel. 18. Studies of the F1's, F2's, back crosses and F3's indicated that Kinnauri carries a dominant gene imparting resistance to pea blight.  相似文献   

9.
Summary The genetics of resistance to whitebacked planthopper, Sogatella furcifera (Horvath) in ten resistant cultivars was studied. The reactions of the F1, F2 and F3 populations of resistant varieties with Taichung Native 1, a suspectible check, showed that WBPH resistance is monogenic in nature and governed by dominant gene(s) in Ptb 19 and IET 6288 and recessive gene in eight cultivars viz. ARC 5838, ARC 6579, ARC 6624, ARC 10464, ACR 11321, ARC 11320, Balamawee and IR 2415-90-4-3. Allelic relationship of resistance gene(s) in the test cultivars revealed recessive gene in IR 2415-90-4-3, ARC 5838 and ARC 11324 to be allelic but it was non allelic to the resistance gene in ARC 6624. Cultivars ARC 6579, ARC 11321 and Balamawee have identical gene among themselves but their relationship with IR 2415-90-4-3, ARC 5838, ARC 11324 and ARC 6624 is unknown. The recessive gene in ARC 10464 is non-identical to all other cultivars having the recessive gene except ARC 6624 with which its relationship needs further investigation.  相似文献   

10.
Deployment of resistant varieties is one major approach to controlling cassava bacterial blight (CBB), caused by Xanthomonas axonopodis pv. manihotis (Xam). To understand the genetic determinism of resistance to CBB, the use of reliable parameters measuring resistance is necessary. In order to test a relevant method for evaluation of quantitative resistance for mapping QTL (quantitative trait loci), the response of 150 F1 individuals, inoculated with four different Xam strains (CIO-84, CIO-1, CIO-136 and CIO-295), was assessed under controlled conditions. We used two types of evaluations at different intervals after inoculation, one based on a scale of 0 to 5 and the second based on the determination of the bacterial population in the vascular system. Both evaluation types revealed interaction between strains and F1 genotypes. Population values at 3 and 6 cm from the point of inoculation showed a high level of correlation. By performing an association analysis, at 7 and 15 days after inoculation, a significant positive correlation between both evaluation types was obtained. However, the disease rating at 30 days did not correlate with bacterial populations at either 7 or 15 days after inoculation, except for one strain, CIO-84. Evaluation of the bacterial population in stem tissues is time and labour consuming, consequently, for a rapid and reliable assessment of CBB resistance for QTL analysis, we strongly recommend evaluation based on the use of a symptom scale.  相似文献   

11.
Summary Breeding of Phaseolus vulgaris L. for resistance to common bacterial blight (CBB) can be done with visual evaluations of symptoms to distinguish broad resistance classes, but a more quantitative measure was needed for genetic studies of resistance. A novel method of evaluation was developed by quantifying Xanthomonas campestris pv. phaseoli (XCP) in bean leaf tissue infected with CBB using a 32P-labeled probe and densitometric analysis of hybridization signals. Quantification of bacterial populations using the probe was highly correlated (r=0.98) with the number of colony forming units (CFU) from plate counts of the same leaf samples. The probe was used to follow XCP population dynamics on susceptible (BAT 41) and resistant (OAC 88-1) bean genotypes. OAC 88-1 supported a maximum XCP population which was approximately tenfold less than BAT 41. The probe was also used to study an F2/F3 population segregating for resistance. Narrow sense heritability estimates were less for resistance measured on the basis of bacterial populations (0.18–0.26) than on visual scores of symptoms (0.29–0.38). The anticipated response to selection for CBB resistance would be less based on bacterial numbers than based on symptom expression in this population. In breeding for resistance to CBB, selection based on visual symptoms combined with measurements of XCP populations using a DNA probe can be used to develop bean genotypes that are both resistant to symptom development and bacterial multiplication.Abbreviations CBB common bacterial blight - CFU colony forming units - XCP Xanthomonas campestris pv. phaseoli  相似文献   

12.
Choosing rice germplasm for evaluation   总被引:2,自引:0,他引:2  
Summary Using the evaluation database on the world collection of rice, Oryza sativa, conserved at the International Rice Research Institute, different sampling strategies for choosing germplasm were compared. Random, stratified, sequential and analysed sets of germplasm were chosen and the frequency of finding resistance to different rice pests, the brown planthopper, green leafhopper and whitebacked planthopper, and diseases, bacterial blight and blast were compared. The frequency of the geographically restricted javanica race of rice was also compared in the different germplasm sets. The results indicate that where no prior information is available to choose germplasm for evaluation, for the same sample number, germplasm representing broad genetic diversity are preferable to other sampling strategies.  相似文献   

13.
Hybridization between pascal celery and parsley   总被引:1,自引:0,他引:1  
S. Honma  M. L. Lacy 《Euphytica》1980,29(3):801-805
Summary Pascal celery cv. Golden Spartan was hybridized with parsley which is immune to celery blight (Septoria apiicola). Three F1 hybrids were obtained from over a thousand seedlings grown from the pascal celery parent. The F1 plants were intermediate for most characters. Segregation for petiole color in the F2 generation demonstrated that a hybrid actually occurred. Segregation for late blight resistance occurred independently from petiole color.Received for publication 6 December 1979. Michigan Agricultural Experiment Station Journal Article No. 9222.Department of Botany and Plant Pathology, Michigan State University.  相似文献   

14.
An introgression line derived from an interspecific cross between Oryzasativa and Oryza officinalis, IR54741-3-21-22 was found to beresistant to an Indian biotype of brown planthopper (BPH). Genetic analysisof 95 F3 progeny rows of a cross between the resistant lineIR54741-3-21-22 and a BPH susceptible line revealed that resistance wascontrolled by a single dominant gene. A comprehensive RAPD analysisusing 275 decamer primers revealed a low level of (7.1%) polymorphismbetween the parents.RAPD polymorphisms were either co-dominant (6.9%), dominant forresistant parental fragments (9.1%) or dominant for susceptible parentalfragments (11.6%). Of the 19 co-dominant markers, one primer,OPA16, amplified a resistant parental band in the resistant bulk and asusceptible parental band in the susceptible bulk by bulked segregantanalysis. RAPD analysis of individual F2 plants with the primerOPA16 showed marker-phenotype co-segregation for all, with only onerecombinant being identified. The linkage between the RAPD markerOPA16938 and the BPH resistance gene was 0.52 cM in couplingphase. The 938 bp RAPD amplicon was cloned and used as a probe on122 Cla I digested doubled haploid (DH) plants from aIR64xAzucena mapping population for RFLP inheritance analysis and wasmapped onto rice chromosome 11. The OPA16938 RAPD markercould be used in a cost effective way for marker-assisted selection of BPHresistant rice genotypes in rice breeding programs.  相似文献   

15.
Summary Inheritance of resistance to the Punjab isolate of Xanthomonas campestris pv. oryzae of bacterial blight disease of rice was studied in seven breeding lines resistant to the disease. The results revealed that resistance in breeding lines PAU 122-73-1-4-1, PAU 164-102-1-2-1-1-1, KJT 24, IR 5657-33-2-1-2 and IR 22082-41-2-2 was controlled by single dominant genes allelic to the dominant gene which confers resistance to the Punjab isolate in Patong 32. Resistance to the Punjab isolate in breeding lines IET 7172 and RP 2151-40-1 was found to be controlled by single recessive resistance genes allelic to one of the recessive resistance genes present in BJ 1. The two genes are independently inherited and are being used to develop bacterial blight resistant varieties.  相似文献   

16.
Yang Zhuping 《Euphytica》1997,94(1):93-99
The fertility segregations of F1, F2, BCF1 descended from crosses between PSGMR and japonica varieties, and F1's anther cultured homozygous diploid pollen plant populations (H2) were studied to reveal the genetic mechanism of photoperiod sensitive genic male sterility in PSGMR under natural daylight length at Shanghai. Rate of bagged seed-setting was used as an indicator of fertility. Fifteen F1 showed complete fertility similar to their parents. The ratio of completely sterile plants to fertile plants in fifteen F2 and four BCF1 was 1:15 and 1:3, respectively. The ratio of completely sterile to fertile diploid pollen plants in nine diploid populations (H2) was 1:3. These results demonstrated that the photoperiod sensitive genic male sterility in PSGMR was governed by two pairs of independent major recessive genes. There were no significant fertility segregations in hybrids F1 and selfed F2 between Nongken 58S and its derivatives 7001S, 5088S, 5047S and M105-9S, indicating that the photoperiod sensitive genic male-sterile genes in Nongken 58S were allelic to those in its derivatives. Several photoperiod sensitive genic male-sterile diploid pollen lines were bred from anther cultured homozygous diploid populations (H2) in about a three-year period. Most of these diploid lines showed significant fertility transformation and stable complete sterility from 5 August to 5 September, excellent agronomic traits and high resistance to blast and bacterial leaf blight. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
M.K. Emami  B. Sharma 《Euphytica》2000,115(1):43-47
The inheritance of testa (seed coat) colour and interaction of cotyledon and testa colours were studied in seven crosses of lentil (Lens culinaris Medik.) involving parents with black, brown, tan or green testa and with orange, yellow or dark green cotyledons. Analysis of F2 and F3 seed harvested from F1 and F2 plants, respectively, revealed that although black testa is dominant over nonblack testa, its penetrance is not complete since both F1 plants and heterozygous F2 plants produced varying proportions of seeds with either black or nonblack testa. The F2 populations of the crosses between parents with brown and tan, as well as brown and green, testa segregated in the ratio of 3 brown : 1 tan and 3 brown : 1 green, respectively, indicating monogenic dominance of brown testa colour over tan or green. The expression of testa colour was influenced by cotyledon colour when parents with brown or green testa are crossed with those having orange or green cotyledons. Thus F2 seeds from these crosses with a green testa always had green cotyledons and never orange cotyledons. F2 seeds from these crosses with a brown testa always had orange cotyledons and never green cotyledons. These results suggest diffusion of a soluble pigment from the cotyledons to the testa. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Exserohilum turcicum causes northern corn leaf blight (NCLB), an important disease occurring in maize producing areas throughout the world. Currently, the development of cultivars resistant to E. turcicum seems to be the most efficient method to control NCLB damage. Marker-assisted selection (MAS) enables breeders to improve selection efficiency. The objective of this work was to identify random amplified polymorphic DNA (RAPD) and sequence characterized amplified region (SCAR) markers associated with NCLB resistance. Bulked segregant analysis (BSA) was used to search for RAPD markers linked to NCLB resistance genes, using F2 segregating population obtained by crossing a susceptible inbred ‘209W’ line with a resistant inbred ‘241W’ line. Two hundred and twenty-two decamer primers were screened to identify four RAPD markers: OPA07521, OPA16457, OPB09520, and OPE20536 linked to NCLB resistance phenotype. These markers were converted into dominant SCAR markers: SCA07496, SCA16420, SCB09464, and SCE20429, respectively. The RAPD and SCAR markers were developed successfully to identify NCLB resistant genotypes in segregating progenies carrying NCLB resistant traits. Thus, the markers identified in this study should be applicable for MAS for the NCLB resistance in waxy corn breeding programs.  相似文献   

19.
With the objective of selecting superior recombinant lines of snap bean, four segregating F2 populations were selected by early generation testing and advanced by single seed descent. In a randomized complete block design with two replications within sets 120 F6:7 lines were obtained and evaluated for seven traits of agronomic interest. The mean pod yield of the F6:7 generation was 72% higher than in generation F2, confirming the efficiency of early selection. There was genetic variability in the F6:7 lines within the sets. The selection of superior genotypes was possible by the high estimates of narrow-sense heritability. Highest gains in simultaneous selection of traits were expressed by the indices proposed by Mulamba & Mock for the genetic standard deviation and by Williams, based on tentatively attributed arbitrary weights. Line 3 of the F6:7 generation, with a yield of 8,050.0000 kg ha−1 and pod fiber content of 0.3650% is highly promising to be release as new cultivar.  相似文献   

20.
The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence of the bacterial pathogen has been observed in strains isolated from Puerto Rico and Central America. A few common bean lines show a differential reaction when inoculated with different Xap strains, indicating the presence of pathogenic races. In order to study the inheritance of resistance to common bacterial blight in common bean, a breeding line that showed a differential foliar reaction to Xap strains was selected and was crossed with a susceptible parent. The inheritance of resistance to one of the selected Xap races was determined by analysis of segregation patterns in the F1, F2, F3 and F4 generations from the cross between the resistant parent PR0313-58 and the susceptible parent ‘Rosada Nativa’. The F1, F2 and F3 generations were tested under greenhouse conditions. Resistant and susceptible F3:4 sister lines were tested in the field. The statistical analysis of all generations followed the model for a dominant resistance gene. The resistant phenotype was found to co-segregate with the SCAR SAP6 marker, located on LG 10. These results fit the hypothesis that resistance is controlled by a single dominant gene. The symbol proposed for the resistance gene is Xap-1 and for the bacterial race, XapV1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号