首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用热重-微商热重(TG-DTG)分析漆树提取物(RWE)在氮气氛围中的热分解曲线,运用Kissinger、Flynn-Wall-Ozawa(FWO)、Friedman、Coats-Redfern和Achar法对第一步热分解过程进行动力学分析,计算热分解的表观活化能(E_a)和指前因子(A),并根据E_a和A计算热力学参数和推算漆树提取物的贮存期。研究结果表明:随着升温速率的增大,漆树提取物的热分解温度逐渐升高;漆树提取物的失重分为2个阶段(10 K/min):第一阶段189.09~266.59℃,第二阶段266.59~377.79℃,这两步热分解对应DTG曲线有2个主要的失重峰,最大热失重速率对应的温度分别为248.3和306.2℃,总失重率为57.94%。漆树提取物第一阶段热分解的机制函数为Avrami-Erofeev方程(随机成核和随后生长,n=3/4),积分形式g(α)=[-ln(1-α)]~(3/4),微分形式f(α)=4/3(1-α)[-ln(1-α)]~(1/4)。计算得到E_a=101.353 kJ/mol,lnA=25.092 8,A=7.9×10~(10) min~(-1);ΔG=77.799 kJ/mol,ΔH=96.978 kJ/mol,ΔS=36.446 J/mol;可以推断漆树提取物在室温(25℃)氮气氛围下贮存的话,贮存期为1.5~2年。  相似文献   

2.
木材热解及金属盐催化热解动力学特性研究   总被引:1,自引:0,他引:1  
通过不同升温速率下杉木的热重实验,对比分析钾盐催化杉木热裂解动力学特性.借助于DTG重叠峰的分离以及分布活化能模型计算不同转化率条件下的反应活化能,得到钾盐对生物质中半纤维素的低温段分解、纤维素的整个热裂解过程存在催化效果,使失重曲线(200~270℃)肩状峰衰退乃至消失,并促进脱水和交联反应,导致焦炭产率的提高和残碳的有序化,体现为焦炭产量从16.3%提高到25.3%(质量分数),而且80%转化率后残碳分解活化能的急剧提高.基于三组分平行反应机理,采用非线性回归法拟合计算杉木热解动力学参数,得到纤维素的热裂解基本上属于一阶反应,而且钾盐对纤维素和半纤维素的热裂解具有较大程度促进,活化能分别从148.12和235.43kJ/mol下降到108.84和171.41kJ/mol,但对木质素的催化影响并不显著.  相似文献   

3.
为综合利用茶梗废弃物,采用同步热重-差热分析法(TG-DTA)研究了茶梗的热解过程及动力学。结果表明:在氮气气氛下不同升温速率茶梗样品的TG-DTG-DTA曲线中,茶梗的热失重过程可分为5个阶段,主分解反应发生在第三、四阶段,在4种不同的升温速率(10、15、20和25 K/min)下,这两个阶段的平均失重率分别为55.12%和28.48%,且均表现为放热过程;随着升温速率的增大,第四阶段分解反应向高温区域移动。采用Kissinger法、FWO峰值转化率近似相等法、FWO等转化率法分别计算了茶梗的热解动力学参数。结果显示:Kissinger法和FWO峰值转化率近似相等法更适用于动力学参数的求解,两种方法得到的表观活化能分别为666.53和642.80 kJ/mol;Kissinger法计算得到的指前因子对数值lnA=145.83。  相似文献   

4.
以玉米秸秆为原料制备水热焦,分析了不同反应强度下水热焦碳质量分数的变化规律,并采用Friedman法、Flynn-Wall-Ozawa(FWO)法和Kissenger-Akahira-Sunose(KAS)法,研究了玉米秸秆原料及水热焦(250℃、480 min)的热解过程,计算了其反应活化能。结果表明:在210~290℃,30~480 min反应区间内,玉米秸秆水热焦碳质量分数随水热反应强度增加而增加;水热焦的固体焦产率和热解最大反应速率随水热反应强度增加均呈降低趋势,最大反应速率对应的热解温度区间由280~380℃变为400~450℃,当反应强度超过7.11(250℃、480 min)时,最大反应速率变化相对平稳;玉米秸秆原料及水热焦的热解均可分为脱水、主热解、炭化3个阶段;FWO和KAS模型计算得到的活化能值较为接近,在高转化率阶段(转化率大于20%),水热焦(250℃、480 min)活化能远高于玉米秸秆活化能,当转化率为75%时,通过FWO和KAS法计算得到的水热焦活化能分别为260.87和261.84 kJ/mol,而玉米秸秆的活化能仅为145.55和142.74 kJ/mol。  相似文献   

5.
通过对南方7种典型乔木叶片在空气气氛条件下,升温速度为10℃·min~(-1)的热重分析,研究了其热解特性和热解动力学特征,并基于热解参数对其燃烧性进行了四维评价。结果表明:(1)综纤维素开始分解的温度为140.54~158.67℃,结束温度为372.01~389.91℃。木素开始分解温度为372.01~389.91℃,结束温度为538.63~581.32℃。(2)综纤维素热解的活化能为34.059~48.531 k J·mol~(-1),指前因子为72.012~1 966.463 min~(-1)。木素热解的活化能为31.264~54.091 k J·mol~(-1),指前因子为31.755~1 909.015 min~(-1)。除麻栗和毛竹外,木素热解的活化能和指前因子都高于综纤维素的活化能和指前因子。(3)7种可燃物的四维燃烧性不完全一致。华山松四维燃烧性都高,麻栗都差。其他5个树种的四维燃烧性不一致。  相似文献   

6.
研究不同升温速率(β=5、10、20、40 K/min)下羟基酪醇的热稳定性、分解动力学和贮存期。利用热重分析得到羟基酪醇在氮气氛围中不同升温速率(β)下的热分解曲线,运用3种多升温速率法Kissinger法、Friedman法和Flynn-Wall-Ozawa法以及2种单升温速率方法 Coats-Redfern法和Achar法进行动力学分析,计算热分解的表观活化能(Ea)和指前因子(A),且根据Ea和A推算羟基酪醇的贮存期。结果显示:羟基酪醇的热分解过程一步完成,在升温速率为10 K/min时,从260~409℃为羟基酪醇的主要失重阶段;TG曲线随着温度的升高而迅速出现陡峭明显的失重台阶,DTG曲线亦出现负值,且随着温度的升高而急剧下降,在305.2℃达到了DTG的峰值,此时达到最大热失重速率为-12.91%/min;升温速率的变化对羟基酪醇的分解有影响,随着速率的升高,羟基酪醇的热分解温度逐渐升高,热分解曲线略微向高温移动,呈现了分解滞后现象。羟基酪醇的热分解机制符合一维扩散(D1)模型。测得平均Ea为122.40 k J/mol,A为3.37×1010min-1。根据Ea和A可推断,在室温25℃下,羟基酪醇在氮气氛围下的理论贮存期为4~5年。  相似文献   

7.
研究加热条件下冬凌草甲素的热稳定性、分解动力学和贮存期。利用热重-微商热重(TG-DTG)和差热-微商差热(DTA-DDTA)分析技术,测得冬凌草甲素在氮气气氛中不同升温速率(β)下的热分解曲线,结合使用Kissinger法、Ozawa法、Coats-Redfern法和Achar法进行动力学分析,根据热分解的表观活化能(Ea)和指前因子(A)计算推断冬凌草甲素的贮存期。结果显示:随着升温速率的提高,冬凌草甲素的热分解温度逐渐升高,冬凌草甲素失重分两阶段:1)206.4~493.0℃,失重率为84.8%;2)493.0~669.6℃,失重率为15.2%。DTA和DDTA曲线249℃出现一个主要吸热峰,675℃出现一个主要放热峰。冬凌草甲素的第一阶段热分解机制是三维扩散控制,对应的函数名称是Zhuralev-Lesokin-Tempelman方程。测得平均Ea为145.95 kJ/mol,A为4.87×1010min-1;根据第一步热分解的Ea和A推断,在室温25℃下,冬凌草甲素的理论贮存期为4~5年。  相似文献   

8.
为实现生物质原料的能量回收,研究以杨木、水杉、椿木木屑为原料,在30~900℃的惰性气氛下,以10、20、30、40℃/min不同的升温速率进行热重试验,计算不同木屑类生物质热解过程中的动力学和热力学参数。动力学参数采用Flynn-Wall-Ozawa(FWO)、Kissinger-Akahira-Sunose(KAS)和Distributed-Activation-Energy-Mode(l DAEM)模型进行计算,并用主函数图法确定反应机理。结果表明:热稳定性从高到低依次为:椿木、水杉、杨木。3种方法计算杨木的热解活化能变化范围为139~157 kJ/mol,水杉为106~163 kJ/mol,椿木为147~200 kJ/mol;木屑类生物质主要反应机理为低转化率范围内三维扩散模型(D3)、高转化率范围内的R1和Avrami-Erofeev模型(A1,A2,A3,A4);3种木屑中,杨木的吉布斯自由能(ΔG)均值为149.57 kJ/mol,水杉为150.40 kJ/mol,椿木为162.84 kJ/mol。热解过程中的焓变(ΔH)均为正,熵变(ΔS)最小负值为71.07 J(/mol·K),最大正值为47.17 J(/mol·K)。研究为生物质热化学转化技术和开发提供了重要的基础数据。  相似文献   

9.
在高温固定床反应器中,对木屑半焦进行高温水蒸气气化制备富氢燃气。在温度700~900℃、水蒸气流量0.11~0.32 g/(min·g)(以焦炭计,下同)条件下,研究了气化温度和水蒸气流量对水蒸气气化制备燃气中的氢气含量、产气率、热值以及燃气中各组分体积分数的影响。研究表明:水蒸气通入过量会造成燃气热值的降低;在气化温度900℃、水蒸气流量0.32 g/(min·g)时,燃气中氢气达到62.53%,燃气热值为8.99 MJ/Nm~3,燃气产率为2.75 L/g。利用容积反应模型和未反应收缩核模型拟合试验数据得到了相应的动力学参数,发现未反应收缩核模型比容积反应模型可以更好的描述木屑半焦的水蒸气气化行为,容积反应模型所得到活化能为88.67 kJ/(mol·K),指前因子为2 976.55 min~(-1),未反应收缩核模型所得活化能为91.78 kJ/(mol·K),指前因子为2 872.82 min~(-1)。  相似文献   

10.
基于等转化率法的芒草和玉米秸秆热解特性及动力学研究   总被引:1,自引:0,他引:1  
利用热重分析仪对芒草和玉米秸秆在不同升温速率(5、10、20和40℃/min)下的热解特性进行了研究,并采用Kissinger-Akahira-Sunose(KAS)、Starink和Ozawa等转化率法研究了其热解动力学特性。结果表明:芒草和玉米秸秆热解过程可分为干燥失水、过渡、主热解和炭化4个阶段;随着升温速率增加,热解各阶段均向高温侧移动,失重率增加,表明升温速率增加可促进热解反应的进行。动力学计算结果表明:3种方法拟合的相关系数均大于0.9,且芒草的相关系数大于玉米秸秆;芒草的活化能,KAS和Starink法计算得到的结果很接近,Ozawa法较低;而玉米秸秆的活化能,Ozawa法得到的最高,Starink法居中,KAS法最低。在整个热解过程中,3种方法求得的芒草的活化能随转化率升高波动明显,表明芒草热解过程发生了一系列复杂的化学反应;转化率为0.1~0.3、0.3~0.7及0.7~0.8时,分别对应半纤维素、纤维素及木质素的主热解阶段,这表明芒草三组分热解难易程度为木质素纤维素半纤维素。而玉米秸秆则不太一样,转化率为0.1~0.4时,玉米秸秆活化能急剧增加;转化率为0.4~0.8时,玉米秸秆活化能缓慢下降直至平稳。  相似文献   

11.
利用差示扫描量热技术测得青蒿素在氮气气氛中不同升温速率下的热分析曲线,采用Van’t Hoff方程建立回归曲线求得青蒿素的纯度和熔点,使用Kissinger法、Flynn-Wall-Ozawa法和Phadnis法等3种方法同时进行动力学分析。根据热分解的表观活化能(Ea)和指前因子(A)计算推断青蒿素在室温下的贮存期。研究表明,随着升温速率的提高,青蒿素的热分解温度逐渐升高;青蒿素热分解的机理是二维扩散控制,对应的函数名称是Jander方程;经Gaussian模拟青蒿素的分子键级和原子电荷数,能够对190℃时分解产生3个化合物的机理进行验证吻合;根据青蒿素热分解的Ea和A推断,在室温25℃下,青蒿素的贮存期为3年。  相似文献   

12.
采用热重-傅里叶红外光谱联用技术(TG-FT-IR)对杜仲中的两种天然有机酸熊果酸和咖啡酸进行了非等温热分析。结合量子化学GAMESS软件分子模拟计算、热失重和热解逸出气体红外光谱分析,对两种有机酸化学键的断裂情况进行了推断和验证。使用积分Coats-Redfern法、微分Achar法以及Malek法等3种热分析动力学方法对热重实验数据进行了分析,推断了各步分解最概然机理函数,得到相应的动力学参数———表观活化能(Ea)和指前因子(A),并推断其贮存期。研究表明,各步失重、分子模拟推断和逸出气体红外光谱解析,这三者能够对热分解过程的化学键断裂情况进行判断;熊果酸的热分解自236.8℃至431.2℃,且一步完成,为二维扩散控制机制(圆柱形对称型),符合Valensi方程,Ea为228.26 kJ/mol,lnA为39.56;咖啡酸在153.0℃后发生了两步分解,第一步热分解为二维扩散控制机制,符合Jander方程,Ea1为111.28 kJ/mol,lnA1为25.78,而第二步热分解为三维扩散控制机制,符合Z.-L.-T.方程,Ea2为231.75 kJ/mol,lnA2为43.50;熊果酸和咖啡酸在室温(25℃)的贮存期分别为4~5年和3年。  相似文献   

13.
利用TG-DTG技术测得没食子酸在氮气气氛中不同升温速率下的热分解曲线,协同使用Achar法和Coats-Redfern法两种方法同时进行动力学处理,根据热分解的表观活化能(Ea)和指前因子(A)计算推断没食子酸的贮存期。随着升温速率的提高,没食子酸的热分解温度逐渐升高;没食子酸热分解三步的机理都是化学反应控制,对应的函数名称是反应级数方程;经Gaussian模拟和热重数据分析结合,没食子酸在第一步分解时,失去0.5个O原子;第二步分解时失去0.5个O原子和1个CO2;根据第一步热分解的Ea和A推断,在室温25℃下,没食子酸的贮存期为1.5~2年。  相似文献   

14.
通过热重分析对江西省南昌市茶园山林场8种乔木凋落物进行热解特性和动力学研究,计算了热解参数和动力学方程中的活化能E和指前因子A,分别根据综纤维素的活化能和热解参数主成分得分两种方法对其燃烧性进行了排序。结果表明:8种森林可燃物的综纤维素分解阶段的活化能在11.71~47.78 k J/mol之间,木质素分解阶段活化能在18.02~92.38 k J/mol之间;不同可燃物之间、不同反应阶段之间的指前因子变化很大;应用主成分分析对这8种可燃物的燃烧性的从高到低的排序为阴香楠竹桂花雪松油茶香樟银杏鹅掌楸;而采用活化能进行的排序与此相反。  相似文献   

15.
采用热重分析仪对杨木刨花板进行热解,结合Coats- Redfern法分析热重曲线,探讨了反应机理.结果表明:杨木刨花板的热解过程分为失水干燥、快速热解和慢速热解3个阶段;升温速率的提高使热解最大失重速率增大,热解的各个阶段向高温方向横向偏移.快速热解阶段的反应机理满足D3模型,热解的活化能(E) 107.24 kJ/mol;5、10和20℃/min 3种速率下的指前因子(A)值分别为2.09×105、6.57×105和3.22×105 s-1.  相似文献   

16.
采用非等温热重分析法在不同升温速率下,利用Kissinger法和Flynn-Wall-Ozawa法对12-溴代脱氢枞酸甲酯的非等温热分解反应的动力学参数进行分析,同时利用atava-esták法结合34种动力学机理函数研究了12-溴代脱氢枞酸甲酯的热分解机理和动力学参数。结果表明:12-溴代脱氢枞酸甲酯的热分解机理为随机成核和随后生长,动力学函数积分形式为G(α)=[-ln(1-α)]~(3/4),反应级数为3/4级,表观活化能为85.71 kJ/mol,指前因子为1.12×10~7s~(-1),热分解动力学方程为dα/dt=1.12×10~7exp(-85.71×10~3/RT)×4/3(1-α)[-ln(1-α)]~(1/4)。方程拟合曲线的线性相关系数R_f=0.983 3,标准偏差SD=0.05。  相似文献   

17.
基于热分析动力学理论,采用热重(TG)法研究了室温固化型淀粉基木材胶黏剂在不同升温速率下的热分解行为,为室温固化型淀粉基胶黏剂在使用中的老化问题提供一定的参考。在X射线衍射分析的基础上,采用无模型Kissinger方程和F-W-O方程对原淀粉(NS)、酯化淀粉(ES)、原淀粉胶黏剂(NSA)、酯化淀粉胶黏剂(ESA)及多异氰酸酯预聚体/酯化淀粉胶黏剂(PESA)的热分解行为进行分析,求解其活化能,探究酯化和预聚体加入对淀粉及胶黏剂热分解行为的影响。结果表明,酯化没有改变淀粉的晶体结构类型,但降低了其结晶度,使得淀粉的热分解活化能减小,热稳定性下降;加入多异氰酸酯预聚体后,酯化淀粉胶黏剂的热分解活化能增大,热稳定性提高。与F-W-O法相比,无模型Kissinger法更易实现对热解活化能的求解,结果更为可靠。通过Kissinger法求得NS、ES、NSA、ESA及PESA的热分解活化能分别为175.75、174.79、174.35、172.00和174.82 k J/mol。  相似文献   

18.
利用热重-微分热重技术测得盐酸石蒜碱在氮气气氛中的热分解曲线,协同使用Achar 法和Coats- Redfern法两种方法同时进行动力学处理,根据热分解的表观活化能(Ea)和指前因子(A)计算推断石蒜碱的贮存期.盐酸石蒜碱晶体在154.9 ~233.9℃失去一分子H2O和一分子HCl转为石蒜碱,第二步分解(233.9~309.2℃)和第三步分解前半部分(α0.2-0.7,309.2~407.9℃)的机理都是化学反应控制,对应的函数名称是反应级数方程,反应级数n=2;第三步分解后半部分(α0.8-1.0,407.9~467.5℃)时为随机成核和随后生长控制机制,符合Avrami- Erofeev方程.经Gaussian模拟和热重数据结合分析,晶体在第二步分解时,失去1分子CO2;第三步分解分两个阶段完成,首先失去1分子CO2和1分子NH3,然后再释放出一分子的CH4;根据第二步热分解的表观活化能(Ea)和指前因子(A)推断,在室温25℃下,石蒜碱的贮存期为3a.  相似文献   

19.
【目的】热重分析是评价森林可燃物热解特性的重要方法。热重分析的结果能够用于计算热解动力学方程和其他热解参数,这是评价可燃物燃烧性的数据基础。根据热解动力学方程参数和其他热解参数的主成分分析结果对延边州地区7种常见乔木树种燃烧性进行排序,为延边州地区的防火树种选择提供理论支撑和指导。【方法】以延边州地区7种常见乔木树种的树皮、树叶为研究对象,利用热重分析仪器得到TG-DTG曲线并计算热解动力学方程求得7种乔木树种树皮及树叶的活化能(E)和指前因子(A),根据综纤维素热解阶段的活化能(E)以及主成分分析中的得分对7种乔木树种进行燃烧性排序。【结果】7种乔木树种的综纤维素热解阶段的活化能范围为:树皮:21.93~35.83 kJ·mol-1;树叶:25.76~46.10 kJ·mol-1,7种乔木树种树皮和树叶之间、不同热解阶段之间的指前因子变化很大;主成分分析法得到7种乔木树种的燃烧性排序:树皮:榆树皮椴树皮红松皮长白落叶松皮蒙古栎皮刺槐皮白桦皮。树叶:白桦叶红松叶榆树叶长白落叶松叶刺槐叶椴树叶蒙古栎叶。活化能排序与主成分分析法排序大致相反。【结论】根据热解参数的主成分分析结果对7种树种燃烧性排序,表明蒙古栎、刺槐和长白落叶松是延边州地区较好的抗火树种,可以作为较好的防火树种进行选择。  相似文献   

20.
以微晶纤维素为原料,在1 g/L的FeCl3存在下和2%的盐酸溶液体系中进行水解,根据水解属于串联反应的特点,研究了微晶纤维素在H+和Fe3+共同作用下的水解动力学规律。研究采用目标物产率与模型函数值残差(S)为最小确定模型函数,对实验数据进行了处理。结果表明:H+和Fe3+共同作用能显著降低纤维素水解和葡萄糖降解的活化能。其中,纤维素水解成为葡萄糖的活化能为81.70 kJ/mol,葡萄糖降解成为小分子的活化能为43.85 kJ/mol,在温度为130、140和150℃时,纤维素水解速率常数分别为0.041 4、0.073 2和0.115 3 h-1,相应温度下葡萄糖降解速率常数分别为0.205 3、0.242 4和0.356 5 h-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号