首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orobanche crenata (crenate broomrape) produces serious damage to many legume crops and particularly becomes a limiting factor for pea production in the Mediterranean basin. Nodulation effects on pea–broomrape relationships were studied using the commercial pea cultivar Douce de Provence and different Rhizobium strains using pot and Petri dish experiments. First, the benefit of bacterial inoculation on plant growth and efficiency of N incorporation were demonstrated for two isolates, P.SOM and P.1236. These isolates did not influence parasite germination induced by the artificial stimulant, GR24. In contrast, pea root inoculation with P.SOM and P.1236 isolates led to a reduced root infection by O. crenata , resulting from a lower Orobanche germination rate close to pea roots and a limited capacity of the parasitic seedlings to develop tubercles. Broomrape necrosis was observed both before and after parasite attachment to inoculated pea roots. Concomitantly, reduction in infection was accompanied by enhanced peroxidase activity and constantly high phenylalanine ammonia lyase activity in pea roots. These data suggest the involvement of these enzymes in pea resistance to crenate broomrape induced by the compatible rhizobia. Management of Orobanche via crop selection based on these enzyme systems is a viable option.  相似文献   

2.
Orobanche crenata (broomrape) is an important constraint to pea (Pisum sativum) cultivation in the Mediterranean area, because little resistance is available in commercial crop varieties. Field experiments have demonstrated that some resistance is present in a number of P. sativum and P. fulvum accessions. The goal of this work was to characterize such resistance. The PisumO. crenata interaction and the resistance symptoms were studied under controlled conditions by using Petri dish and polyethylene bag assays. The content of phenolics and peroxidase activity in host tissue from infected and non-infected plants were also measured. Resistance and avoidance mechanisms, acting at different developmental stages of the parasite, have been identified, including low stimulation of O. crenata seed germination, unsuccessful penetration of host roots, delay in post-attachment tubercle development and necrosis of the attached tubercles. Infection caused an increase in the content of total soluble phenolics in some Pisum genotypes. Peroxidase activity was higher in resistant than in susceptible accessions. Results obtained with different Pisum genotypes showed that resistance is the result of several mechanisms acting at different stages of the infection process. Resistance is also related to increased levels of peroxidase activity in host roots.  相似文献   

3.
The effect of host plant cultivar and sowing density on Orobanche crenata Forsk. L. infestation in Vicia faba was studied in a field experiment in north–west Syria. Two faba bean genotypes. ILB 1814 (Syrian Local Large) and 402/29/84 (new breeding line from Egypt), were planted at four sowing densities. Whereas ILB 1814 was severely affected by O. crenata , 402/29/84 proved to be highly resistant. Sowing density did not have a significant effect on O. crenata dry weight in either genotype. However, the number of O. crenata attachments in ILB 1814 was positively correlated with plant density. The resistance of faba bean genotype 402/29/84 to O. crenata is due to: (a) less plant vigour and root–length density; (b) necrosis of host cells preventing O. crenata attack either before or just after penetration into the host root, or developing a barrier in the host root after the formation of a small tubercle: (c) early flowering and pod setting.  相似文献   

4.
Legumes are unique in interacting with Rhizobium , arbuscular mycorrhizal (AM) fungi, and parasitic plants. To dissect common parts of these three plant–organism interactions, infection by Orobanche crenata was studied in mutants with altered symbiotic phenotypes of Medicago truncatula and Pisum sativum . Orobanche crenata inoculation of mutant lines carrying defective mutation in the genes dmi2 / sym19 and dmi3 resulted in an increase in O. crenata establishment. Similarly, inoculation of mutants carrying mutation in the gene sunn / sym29 that controls the autoregulation mechanism of the symbiosis, also lead to a significant increase in haustoria formation. Altogether, our results suggest that parasitic plant infection is partly controlled by both the conserved symbiotic pathway that mediates symbiont recognition and establishment and the autoregulation mechanism that regulates the extent of colonisation by Rhizobium and AM fungi.  相似文献   

5.
6.
The mechanism by which some plant species develop resistance to the root parasite, broomrape ( Orobanche aegyptiaca ), is still not clear. Resistance to other pathogens can be induced by methyl jasmonate and systemic acquired resistance can be induced by treatment with salicylic acid, while cis -jasmone can act as a signaling molecule in plant–insect interactions. The three compounds studied, methyl jasmonate, cis -jasmone, and methyl salicylate, were applied to Arabidopsis thaliana seedlings that were then transferred to Nunc cell culture plates and exposed to the germinating seeds of O. aegyptiaca . The number of infections of the roots of single seedlings of A. thaliana was then quantified. Exposure for 24 h to very low concentrations of methyl jasmonate or methyl salicylate, which were then removed, effectively induced resistance to infection of A. thaliana by O. aegyptiaca , reducing attachment and tubercle formation by 90%. cis -Jasmone was far less effective in inducing a similar resistance to infection. These results support the view that methyl jasmonate can induce almost full resistance to infection by broomrape. The fact that such resistance is not observed under normal conditions of infection supports the idea that the root parasite does not evoke the full defensive response in the host plant.  相似文献   

7.
Resistance to the dicotyledenous parasite Orobanche cumana in sunflower is characterized by a low number of parasitic attachments and a confinement of the parasite in host tissues leading to its necrosis. To help understand what determines such resistance mechanisms, molecular, biochemical and histological approaches were employed before (early response) and after (late response) attachment of the broomrape parasite to susceptible (2603) and resistant (LR1) sunflower genotypes. The expression patterns of 11 defence-related genes known to be involved in different metabolic pathways (phenylpropanoids, jasmonate, ethylene) and/or in resistance mechanisms against microorganisms were investigated. RT-PCR and cDNA blot experiments revealed that the resistant genotype exhibited a stronger overall defence response against O. cumana than the susceptible one, involving marker genes of the jasmonate (JA) and salicylic acid (SA) pathways. Among them, the SA-responsive gene, def. (defensin), appeared to be characteristic of LR1 sunflower resistance. However, no JA accumulation and similar SA contents (250–300 ng g−1 FW) were measured by GC/MS in both genotypes, parasitized or not. In addition, three cDNAs, isolated by a suppression-subtractive hybridization, were shown to be strongly induced only in the resistant genotype 8 days post-inoculation, when the first O. cumana attachments occurred. These genes, putatively encoding a methionine synthase, a glutathione S-transferase and a quinone oxidoreductase, might be involved in detoxification of reactive oxygen species, suggesting the occurrence of an oxidative burst during the incompatible interaction. Finally, host cell-wall modifications leading to parasite-confinement were correlated with more intense callose depositions in the resistant genotype, concomitant with over-expression of the callose synthase cDNA HaGSL1 .  相似文献   

8.
Pretreatment of tobacco leaves with low concentrations (5 to 10 mM) of H?O? suppressed hypersensitive-type necrosis associated with resistance to Tobacco mosaic virus (TMV) or Pseudomonas syringae pv. phaseolicola. The same pretreatment resulted in suppression of normosensitive necrosis associated with susceptibility to Botrytis cinerea. This type of H?O?-mediated, induced disease symptom resistance correlated with enhanced host antioxidant capacity, i.e., elevated enzymatic activities of catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (POX) after viral and bacterial infections. Induction of genes that encode the antioxidants superoxide dismutase (SOD), CAT, and APX was also enhanced early after TMV infection. Artificial application of SOD and CAT suppressed necroses caused by viral, bacterial, or fungal pathogens similarly as H?O? pretreatment, implying that H?O?-mediated symptom resistance operates through enhancement of plant antioxidant capacity. Pathogen multiplication was not significantly affected in H?O?-pretreated plants. Salicylic acid (SA), a central component of plant defense, does not seem to function in this type of H?O?-mediated symptom resistance, indicated by unchanged levels of free and bound SA and a lack of early up-regulation of an SA glucosyltransferase gene in TMV-infected H?O?-pretreated tobacco. Taken together, H?O?-mediated, induced resistance to necrotic symptoms in tobacco seems to depend on enhanced antioxidant capacity.  相似文献   

9.
Nie X 《Phytopathology》2006,96(3):255-263
ABSTRACT The effects of salicylic acid (SA) and 1-aminocyclopropane-1-carboxylic acid (ACC) on the systemic development of symptoms induced by a severe isolate of Potato virus Y group N:O (PVY(N:O)) in tobacco were investigated. Upon inoculation, the systemic development of symptoms in tobacco plants could be divided into three stages: virus incubation stage, rapid symptom-progress stage, and partial recovery and symptom-shifting stage. Treatment of seedlings with SA delayed the virus-induced necrosis in stems by 1 to 2 days. SA, not ACC, also significantly suppressed the symptom severity in stems. However, neither SA nor ACC treatment affected the partial recovery phenotype exhibited in the latterly emerged upper parts of the plants. Further analysis indicated that the accumulation of PVY was retarded by SA at the early stage of infection, and the effects were more profound in stems than leaves. Peroxidase (POX) activity and pathogenesis-related (PR) genes PR-1a and PR-1b were enhanced by PVY infection. SA not only increased POX activity in stems and PR genes in stems and leaves of mock-inoculated plants, but also elevated the activity of POX in both leaves and stems and the expression of PR-1a in leaves of PVY-infected plants. Together, the results suggest that systemic acquired resistance plays a key role in suppressing PVY(N:O)-induced symptom development through SA-mediated and ethylene-independent pathways. The symptom suppression was correlated with reduced replication/ accumulation of virus at the early stage of infection. The results also suggest that neither SA nor ethylene plays a role in the recovery phenotype.  相似文献   

10.
The mechanism by which the flowering holoparasitic plant, Orobanche aegyptiaca , infects its host without evoking a defence mechanism is still poorly understood. In this work, we studied several mechanisms used by phytopathogenic fungi. We focussed on the possible role of peroxidases during O. aegyptiaca penetration into the roots of Arabidopsis thaliana . A convenient experimental system for studying the interaction under sterile conditions was developed. The formation of extracellular reactive oxygen species (ROS) was detected at the interaction site before, during, and after the parasite penetrated into the host. These extracellular ROS probably originated from the parasite. However, no intracellular ROS could be detected at the site of the interaction. Peroxidase activity was observed mainly at the apex of the root of the parasite and in the adventitious roots of the tubercle. Benzhydroxamic acid, a peroxidase inhibitor, was used to probe the possible role of peroxidase in the infection process. Peroxidase activity was observed in the root apex and adventitious roots of O. aegyptiaca, but no evidence was found for its participation in the actual infection process. Peroxidase activity was also found in the later stages of the interaction between the host and the parasite. We propose that peroxidases could have a role in generating extracellular ROS for loosening the cell wall of the host in order to facilitate penetration. Alternatively, the ROS could act in facilitating the root elongation of the parasite.  相似文献   

11.
The interactions between the root parasitic weed Orobanche crenata Forsk. and its host plant faba bean ( Vicia faba L.) were quantified under controlled and field conditions at ICARDA's Tel Hadya research station. In the field experiments conducted in 1993–94 and 1994–95 faba beans were sown on two dates, in plots with 0, 50, 200 and 600 O. crenata seeds kg–1 soil, under both limited and sufficient moisture supply. The effects of temperature on the duration of the early developmental stages of O. crenata were investigated in a growth chamber. The extent of O. crenata infestation was closely related to the number of parasite seeds in the soil. The seed-density treatment with 600 seeds kg–1 soil resulted in complete crop failure. Furthermore, O. crenata infestation was higher under sufficient than under limiting water supply conditions, irrespective of sowing date. Only in the moderately infested plots, did shifting of the planting time of faba bean result in a significant decrease in parasite dry weight and an increase in crop seed yield. The timing of germination, attachment and further developmental stages of O. crenata was not related to faba bean growth stage and was affected primarily by soil temperature. The duration of O. crenata developmental stages was estimated using the thermal time concept. The relationship between total number of parasite attachments at the harvest of the faba bean crop and O. crenata seed density was dependent on maximum faba bean root-length density measured by the start of pod-filling in each treatment combination of sowing date and moisture supply. The results are discussed with reference to implications for the development of a dynamic simulation model for the prediction of faba bean yield losses caused by O. crenata .  相似文献   

12.
Crenate broomrape (Orobanche crenata) is a major constraint for legume cultivation in Mediterranean agriculture. Field trials, pot and in vitro experiments demonstrated that resistance to O. crenata is present in chickpea and wild species of Cicer. The resistance is the result of the combination of several mechanisms, including low induction of parasite seed germination and in some accessions, either a darkening at the infection site on the host root that prevents establishment, or a reduced development of established parasite tubercles.  相似文献   

13.
Pre-inoculation of asparagus ( Asparagus officinalis ) roots with selected nonpathogenic isolates of Fusarium oxysporum (np Fo ) has previously been shown to induce systemic resistance against infection by F. oxysporum f.sp. asparagi ( Foa ) through activation of plant-defence mechanisms. To elucidate the putative np Fo -mediated defence pathways, the effect of salicylic acid (SA) was examined in a split-root system of asparagus where one half of the seedling root system was drenched with SA and the activation of defence responses was measured subsequently on the remaining roots. SA-treated plants exhibited enhanced systemic resistance, with a significant reduction in disease severity of the roots inoculated with Foa , compared with untreated plants. SA activated peroxidase and phenylalanine ammonia-lyase, as well as lignification, upon Foa attack, in a manner similar to that observed with np Fo pretreatment. In addition, application of diphenyleneiodonium, an SA biosynthesis inhibitor, led to failure of np Fo to induce lignin deposition and systemic resistance. Treatment of fungal spores with SA did not affect germination and growth of either np Fo or Foa in in vitro antifungal assays. Production of SA at the site of np Fo infection may be involved in the induction of Foa resistance in asparagus roots.  相似文献   

14.
There is an increasing interest in the legume species Medicago truncatula as a model plant for structural and functional genomic studies that can be used to identify agronomically important genes in legumes. Field screening has shown very high levels of resistance to Orobanche crenata in M. truncatula. However, in vitro studies with O. crenata, Orobanche foetida, Orobanche ramosa and Orobanche minor showed useful variation among accessions at early stages of the parasite–host interaction. Significant differences were observed in the levels of germination of O. crenata and O. foetida seeds induced by different accessions of M. truncatula. Only limited germination was observed on accession SA‐4327. All accessions induced little O. ramosa and O. minor germination. Accessions also varied in the number of O. crenata and O. foetida attachments supported, with few developing on accession SA‐27774. The variation observed for induction of germination and of subsequent attachment will be useful to isolating and characterizing genes involved in the early stages of Orobanche–host plant interaction and for the study of the biosynthetic pathways of production for germination stimulants.  相似文献   

15.
In order to study the defense response to turnip mosaic virus (TuMV) infection in non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino), we cloned the LRR II subfamily genes which comprises six members. They were high homologous to the function-known LRR II genes of Arabidopsis. We investigated their expression through quantitative real-time PCR analysis. TuMV infection induced the expression of these genes locally and systematically, and regulated the endogenous accumulation of salicylic acid (SA). Exogenous SA spraying was able to induce resistance to the susceptibility of the TuMV-infected plants, which might function via inhibiting the viral duplication. Though TuMV-induced SA accumulation was not the determinant in regulating gene expression, it mediated the reaction oxygen species (ROS) burst as a channel of defense.  相似文献   

16.
Orobanche species (broomrapes) are parasitic weeds which dramatically decrease the yields of many economically important dicotyledonous crops, including pea (Pisum sativum), in Mediterranean areas. Previously, we identified some Rhizobium leguminosarum strains, including P.SOM, which could both promote pea development and significantly reduce infection by Orobanche crenata, notably through induction of necrosis of attached parasites. In the present study, induced resistance against broomrape in the nodulated pea was shown to be associated with significant changes in rates of oxidative lipoxygenase (Lox) and phenylpropanoid/isoflavonoid pathways and in accumulation of derived toxins, including phenolics and pisatin (pea phytoalexin). Changes were followed for 5 weeks after inoculation and attack by Orobanche. In contrast to non‐inoculated plants or Orobanche only infected plants, polyphenoloxidase (PPO) activity and hydrogen peroxide content increased in response to bacteria inoculation indicating the involvement of oxidative processes. In parallel, the nodulated roots displayed high Lox activity related to the overexpression of the lox1 gene. Similarly, the expression of phenylalanine ammonia lyase (PAL) and 6a‐hydroxymaackiain 3‐O‐methyltransferase (Hmm6a) genes were induced early during nodule development, suggesting the central role of the phenylpropanoid/isoflavonoid pathways in the elicited defence. As a consequence, the derived products, phenolics and pisatin, accumulated in response to rhizobacteria and conferred mechanical and chemical barriers to the invading parasite. These results highlight the likely role of signalling pathways in induced resistance and suggest these mechanisms should be enhanced through integrated Orobanche management practices.  相似文献   

17.
A collection of 648 accessions of Vicia faba was screened for resistance to faba bean rust ( Uromyces viciae-fabae ). Two distinct types of resistance were identified, both resulting in reduced disease severity (DS) and area under the disease progress curve (AUDPC), but differing in the expression of hypersensitivity. One should be regarded as incomplete nonhypersensitive resistance and the other as incomplete resistance with late hypersensitivity. The hypersensitive resistance, which has not been reported before, was not dependent on temperature or plant age. These two types of resistance were characterized by three macroscopic components of resistance: increased latent period (LP), decreased colony size (CS) and a relatively reduced infection frequency (IF), both on seedlings and on adult plants. LP and CS were the components of nonhypersensitive resistance most highly correlated with DS and AUDPC measured under field conditions. The presence of necrosis was an additional component in the hypersensitive resistant response.  相似文献   

18.
The legume species Medicago truncatula is gaining interests as a plant for structural and functional genomics that can be used to identify agronomically important genes in crop legumes. Resistance to the alfalfa rust (Uromyces striatus) was studied in a germplasm collection of M. truncatula. Accessions varied in resistance, as expressed by disease severity, but none showed macroscopically visible necrosis. Histological investigations, in selected lines covering the whole range of resistance reactions, revealed little difference in spore germination and none in orientation of germtubes on the leaf surface. However, appressorium formation on the stoma was significantly reduced in some accessions. Differences in resistance among accessions were more evident once the stoma were penetrated by the infection structures. Resistance was mainly due to a restriction of haustorium formation with varying levels of early abortion of the colonies, a reduction in the number of haustoria per colony, and hampered colony growth. In addition, necrosis of the host cells associated with infection hyphae was detectable in some accessions from the beginning of colony development. This information will be useful for eventual mapping and cloning analyses of resistance genes in M. truncatula that will in turn be useful for understanding other legume/rust interactions.  相似文献   

19.
The broomrape (Orobanche crenata Forsk) susceptibility to glyphosate applied on faba-bean (Vicia faba L.) as affected by the parasite growth stages at the time of application was studied under field conditions. Glyphosate treatments delayed O. crenata emergence. Single glyphosate application to faba-bean infected with O. crenata predominantly at the stage (a) (small nodule) and (b) (nodules with initial vestigial roots) resulted in a moderate to low control. When the stages (c) (shoot bud already visible) or (d) (shoot and vestigial roots well developed) were the predominant stages, an excellent control was achieved with a single glyphosate application at 60 g ha?1. Increased development stages, with the shoot emerged from the shoot bud, decreased its susceptibility to glyphosate. La lutte contre Orobanche crenata en culture de férerole avec le glyphosate; influence des doses d'herbicide et du stade de développement du parasite  相似文献   

20.
Huanglongbing (HLB), caused by ‘Candidatus Liberibacter asiaticus’ (Las), is a devastating disease of citrus trees in Florida. Previous work showed that the rootstock cultivar Cleopatra mandarin (Citrus reticulata) has a higher population of Las in roots than Swingle citrumelo (C. paradisi × Poncirus trifoliata). Las reduced fibrous root biomass and sucrose content in Cleopatra mandarin more than in Swingle citrumelo. To understand the mechanisms for susceptibility to Las infection, sucrose and hormone metabolism status were evaluated in Cleopatra mandarin and Swingle citrumelo. In fibrous roots of Cleopatra mandarin, higher expression of genes related to sucrose cleavage was consistent with lower sucrose content compared to noninoculated seedlings at 5 weeks post‐root trimming (wpt). In fibrous roots of Swingle citrumelo, both sucrose content and gene expression related to sucrose cleavage were less disrupted by Las infection compared to Cleopatra mandarin at 5 wpt. Genes associated with salicylic acid (SA), ethylene (ET) and abscisic acid (ABA) synthesis, and ABA signalling, phospholipases D (PLD), and phospholipase A2 (PLA2) were activated by Las infection at 5 wpt in Cleopatra mandarin. Expression of downstream effectors of SA, i.e. NPR1, WRKY70 and PR1, did not change in Cleopatra mandarin, suggesting inhibition of the response to SA by the elevation of ABA, ET and PLD. In contrast, the up‐regulation of PR1, lower response of sucrose metabolism genes and down‐regulation of biosynthesis of phytohormones indicates that Swingle citrumelo activates a more effective defence against this biotrophic pathogen than Cleopatra mandarin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号