首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
沙柳木粉在液化剂和催化剂的作用下制成的液化产物可生产制作聚氨酯、环氧树脂、胶黏剂等。研究沙柳液化产物的流变性能,可探索宏观流变性质与液体微观内部反应机理之间的关系,优化设备结构和加工工艺条件,对其高效利用有着重大意义。本试验将沙柳木粉在浓硫酸催化条件下进行多元醇液化,通过改变液化处理条件(反应时间、反应温度和催化剂用量)制备具有不同流变性能的沙柳液化产物。利用旋转型流变仪对所制备的沙柳液化产物进行流变性能测试和分析。沙柳木粉液化条件的单因素试验和正交试验分析结果表明:影响沙柳液化产物黏度的主要因素是反应时间,其次是反应温度和催化剂用量,最佳工艺条件为反应时间70 min、反应温度170℃、催化剂用量5%。在最佳工艺条件下,剪切速率为78.87 s-1时,黏度为0.26 Pa·s。红外光谱(FT-IR)分析得出,液化物中纤维素被大量降解,半纤维素和木质素部分降解,羟基增加,生成更多的反应活性官能团,此条件下液化反应更加充分,流体黏度较大。流变性能测试结果显示:稳态扫描测试时,黏度随剪切速率的增加逐渐减小,表现出剪切变稀的现象;剪切应力随着剪切速率的增加逐渐升高,表现出假塑性流体的性质。通过动态频率扫描曲线变化规律分析,储能模量和损耗模量随着角频率的升高而逐渐增加,复数黏度却随之减小。  相似文献   

2.
随着石油资源的不断匮乏,速生杨木这种可再生生物质资源逐渐被人们所重视,为制备可以替代传统树脂的新型树脂材料,解决当今能源危机问题,许多国家都在生物质资源利用方面做了研究。以杨木屑为原料,通过液化试验制备液化产物,再通过液化产物制备树脂,研究催化剂和液化剂用量、反应时间以及反应温度对液化产物所制树脂的影响,寻找较优制备条件。结果表明:液化反应在液固比为1.5的70%苯酚用量、聚乙二醇400的复合液化剂,4%浓硫酸催化剂用量,135℃的液化反应温度,120 min的液化反应时间条件下,可制备出效果较好的液化产物,其残渣率为7%,羟值为370 mg/g。通过液化产物制备树脂的较佳条件是:甲醛与液化产物摩尔比1.2,Na OH与液化产物摩尔比0.5,反应温度85℃反应时间120 min。在此条件下制得优质树脂,黏度为4 500~6 500 m Pa·s,固含量70%~80%。  相似文献   

3.
以玉米秸秆制备燃料乙醇所得到的发酵残渣(简称"发酵残渣")为原料,在聚乙二醇等多羟基醇中,以浓硫酸为催化剂,进行液化反应,得到植物纤维基多元醇,并以该种液化产物代替部分聚醚多元醇,用于聚氨酯硬泡的制备。通过对液化产物及残渣进行分析,研究了影响液化反应的因素。结果表明:发酵残渣在液化剂PEG200/甘油(质量比7∶3)中,当液化温度为160℃,时间为2 h,液固质量比4∶1,催化剂浓硫酸用量为液化剂质量的4%时液化效果最佳,液化率达64.54%。此时,液化产物羟值为349 mg/g,黏度为979 mPa·s。发酵残渣苯醇抽提物在上述液化条件下液化率可达96.59%,其液化产物的羟值及黏度分别为474 mg/g和791 mPa·s,也可用于聚氨酯硬泡的制备。  相似文献   

4.
以聚乙二醇400与丙三醇为混合液化剂,浓硫酸为催化剂,对水稻秸秆进行液化,并对水稻秸秆液化产物制备的聚氨酯泡沫进一步分析,讨论了异氰酸根指数、发泡剂水的用量、催化剂比例及硅油用量对聚氨酯泡沫性能的影响。实验结果表明:以水稻秸秆液化产物10 g和异氰酸酯(PAPI)为原料,水作发泡剂最佳用量为稻杆液化物质量的2%,三乙烯二胺和辛酸亚锡为复合催化剂,最佳用量比为0.1∶0.3(g∶g),水溶性硅油为泡沫稳定剂,最佳用量为液化物质量的4%,异氰酸根指数为1.2,此条件下制备的聚氨酯(PU)泡沫材料,其性能良好,泡沫的密度为35.78 kg/m3,拉伸强度为222.60 kP a,压缩强度为110.90 kP a,TGA分析结果也表明水稻秸秆基聚氨酯泡沫具有良好的耐热性,其初始分解温度为241℃,最快分解温度为420℃。  相似文献   

5.
以毛竹材为原料,浓硫酸为催化剂,加入PEG400/丙三醇制备液化物,研究了液固比(液化剂/竹材)、浓硫酸催化剂用量、液化温度、液化时间等对竹材废料多元醇液化物得率的影响。结果表明:随着液固比和液化时间的增加,竹材液化物的得率逐渐增加;随着浓硫酸催化剂用量和液化温度的增加,竹材液化物的得率呈现先增加后减小的趋势。当液固质量比3∶1、催化剂用量4%、液化温度130℃、液化时间70min时,竹材液化物的得率最高,为99.92%。  相似文献   

6.
沙柳木粉接枝改性制备高吸水性树脂的研究   总被引:1,自引:0,他引:1  
贺勤  万娇娇  王喜明 《林产工业》2012,39(4):54-55,59
以沙柳木粉为原料,接枝丙烯酸和丙烯酰胺,N,N’-亚甲基双丙烯酰胺为交联剂,采用溶液聚合法制备高吸水性树脂.通过单因素试验法研究单体用量、丙烯酸中和度、引发剂用量、交联剂用量、反应温度对于高吸水性树脂吸水量的影响,最终确定优化的合成条件.在优化工艺条件下吸水性树脂的吸水量达到573.8g/g.  相似文献   

7.
借鉴木质材料界面液化自胶合的工艺,以杨木单板为原料,碳酸乙烯酯为液化剂,硫酸或甲烷磺酸为催化剂进行胶合板制造工艺的研究.采用正交试验法,探讨催化剂、液化剂以及热压工艺对胶合板胶合强度的影响.试验结果表明:以稀释硫酸作为催化剂,催化剂用量占液化剂的3.5%,液化剂的涂布量(单面)为250 g/m2,热压温度145℃,热压时间2.4 min/mm,热压压力1.2 MPa为较优工艺,胶合强度均值可达到1.46 MPa.  相似文献   

8.
桉树木粉的有机磺酸催化热化学液化研究   总被引:3,自引:2,他引:1  
研究了对甲苯磺酸催化桉树木粉在多元醇体系的液化反应,利用在线红外光谱技术,研究了桉树木粉的醇解液化反应过程,探索了不同反应条件对液化反应的影响。通过对液化产物的分析,揭示了液化产物的性质随反应时间变化的规律。实验结果表明:桉树木粉在聚乙二醇-丙三醇(质量比4∶1)的液化溶剂中,当对甲苯磺酸用量为3%、反应温度160℃、液固质量比4∶1、液化反应时间180 min时,其液化产率高达89.97%。液化产物的羟值随反应时间的增加在460~340 mg/g区间逐渐降低、酸值在13~20 mg/g区间逐渐增加。  相似文献   

9.
常压一锅法合成聚乙二醇400葡糖苷松香酸酯   总被引:1,自引:1,他引:0  
常压下,以聚乙二醇400(PEG 400)、松香、淀粉为原料,对甲苯磺酸为催化剂一锅法合成了聚乙二醇400葡糖苷松香酸酯。最佳反应条件为:n(PEG 400)∶n(淀粉)∶n(松香)4.5∶1.5∶1,催化剂用量10%(以松香质量计),反应温度200℃,反应时间7 h。粗产品酸值低于5 mg/g,利用CaO精制后的产物酸值小于1 mg/g。红外光谱和元素分析表明得到的产物为目标产物。所合成的产物具有较好的乳化性能。  相似文献   

10.
杉木粉液化与液化产物树脂化的研究   总被引:2,自引:0,他引:2  
以硫酸为催化剂、苯酚为液化剂采用溶剂热法对杉木粉进行液化,用杉木粉液化产物制备出酚醛树脂;考察了反应温度、反应时间、液比(苯酚-木粉的质量比)和催化剂用量对杉木粉液化效率的影响,并初步探讨了液化产物残渣率对所制酚醛树脂性能的影响。实验结果表明,杉木粉液化的最佳工艺条件是:反应温度160℃,液化时间12 h,液比值3,催化剂用量3%,在此条件下残渣率约为10%。液化产物残渣率的测定表明,升高反应温度、延长反应时间、增加液比和催化剂用量可以降低残渣率,提高液化效率;液比值为0.5~1.5时残渣率随液比增加而显著降低,催化剂用量为0.5%~2%时液化效率的变化明显。红外光谱结果表明,由液化产物所合成的酚醛树脂中羟甲基含量较高。液化产物残渣率低时制备的酚醛树脂残碳率较高。  相似文献   

11.
木材液化及其在聚氨酯胶黏剂上的应用研究   总被引:6,自引:0,他引:6  
通过考察木粉在催化剂存在下的加溶剂液化,确定了木粉液化的最佳工艺条件,即:温度160℃,m(苯酚)∶m(木粉)为5∶1,催化剂用量1.2 mmol/g,反应时间60min,残渣率降至3.5%.并发现随着反应时间的延长,液化物出现再凝聚的残渣.利用液化产物制备了聚氨酯胶黏剂,拉伸剪切强度达5 MPa,达到应用要求,为今后的工业化生产提供了依据.  相似文献   

12.
该研究通过将木质素与聚乙二醇按照不同比例混合液化,经过分析计算,选取较优液化产物制备聚氨酯泡沫。然后,通过控制变量法在不同系列下制备木质素聚氨酯泡沫,放置48~72 h固化后再切割成规格为5 cm×5 cm×5 t2m的正方体试件,放置于烘干箱中将其烘干至恒重,检测其相关性能。研究得出:木质素用液化试剂聚乙二醇400按照固液比80:220、催化剂浓H_2SO_41.8%、在液化温度和时间分别为170℃、2 h的条件下液化,得到液化产物的羟值为290 mgKOH/g、黏度为780.2 mPa.s。木质素液化产物与异氰酸酯原料比为1:1.1,发泡剂H_2O、催化剂三乙胺和二月桂酸二丁基锡(质量比1:1)、表面活性剂二甲基硅油分别占总量的4.5%、3%和13%条件下制备出的木质素聚氨酯泡沫效果较优。  相似文献   

13.
竹材苯酚液化及胶黏剂制备工艺   总被引:6,自引:5,他引:6  
采用单因素试验和正交试验研究了竹材加工剩余物的苯酚液化工艺,并进一步研究了竹材苯酚液化产物-甲醛树脂胶黏剂(BPF)的制备工艺和性能。试验结果表明:竹材苯酚液化过程中,液化温度对液化效果的影响最为显著,其次是液比和液化反应时间,催化剂用量2%~4%范围内对液化效果影响不大。竹材加工剩余物苯酚液化的优选工艺为:液固比值3.5、催化剂用量4%、液化温度145℃、液化时间60 min;在此工艺下竹材液化率为99.1%。胶黏剂制备过程中,竹材苯酚液化物与甲醛溶液(甲醛质量分数为37%)的合理质量比为100∶164.8~199.5,其中以100∶182.1较佳。BPF的固化温度低于普通酚醛树脂胶黏剂(PF),因而可在较低温度下固化良好,在130℃或140℃热压温度条件下,用其制备的胶合板的胶合强度均比较理想,热压温度为140℃时的试验结果更佳。  相似文献   

14.
为了将工厂锯屑变废为宝,本文对工厂锯屑的苯酚液化工艺进行了研究与优化。通过正交试验的方法对:液比[n(苯酚)∶n(木粉)]、酸催化剂(浓度为30%的H2SO4)用量、液化时间以及液化温度这4个液化工艺的影响因素进行了分析研究。结果表明:液比对液化效果的影响最大,其次依次为液化时间、催化剂用量和液化温度。得到的工厂锯屑苯酚液化的优化工艺为:液比[n(苯酚)∶n(木粉)]为5、液化时间为2.5h、催化剂用量为8%、反应温度为160℃,在此工艺条件下,液化效率可达到92%。  相似文献   

15.
以兴安落叶松锯屑、苯酚为主要原料,以硫酸为主要催化剂,采用均匀设计试验方法和单因子试验法,研究液化温度、液化时间以及硫酸等催化剂的用量对落叶松锯屑液化率的影响。结果表明,酚木比为2.8∶1的前提下,硫酸用量为4%,TSA用量为硫酸的5%,液化温度为135℃,液化时间为120 min时,兴安落叶松锯屑的液化率为95.60%,且液化物中游离酚含量为39.88%,可被溴化物含量为49.33%。  相似文献   

16.
以部分析因设计考察了不同因素对双酶法水解橡子淀粉的影响。通过分析,得出主要影响因素为淀粉酶用量、液化时间、糖化时间、糖化酶用量。并对其4个主要因素进行正交试验优化,得出最佳的工艺条件为:淀粉酶用量50 U/g,液化时间2 h,糖化时间2 h,糖化酶用量600 U/g。此条件下的橡子淀粉水解度(DE)值为58.15%。  相似文献   

17.
木薯秆液化树脂化工艺试验   总被引:1,自引:0,他引:1  
为实现木薯秆的有效利用,以苯酚为液化剂,硫酸为催化剂,对木薯秆进行液化和树脂化工艺研究。结果表明,木薯秆适宜的液化工艺为:液固比3.5∶1,液化温度160℃,硫酸用量7%,液化时间1.5 h;适宜的树脂化工艺为:甲醛与木薯秆液化产物摩尔比1.8,NaOH与木薯秆液化产物摩尔比0.3,缩聚温度90℃。  相似文献   

18.
玉米秸秆的催化热化学液化研究   总被引:3,自引:2,他引:1  
研究了玉米秸秆在多元醇中的液化反应,讨论了不同反应条件的影响,并分析探讨了液化产物的性质及其组成成分随反应时间的变化.实验结果表明:玉米秸秆在聚乙二醇-丙三醇 (质量比80∶ 20) 的液化溶剂中,当催化剂H2 SO4质量分数为3%、液固质量比为10∶ 2,反应温度150℃时液化效率较高,液化反应180min后其残渣率仅为8.1%.在液化反应初期,玉米秸秆中的木质素已完全液化;随着液化反应时间的延长,其液化残渣率逐渐降低,液化产物的羟值在375 ~ 330mg/g间逐渐降低、酸值在13 ~ 27mg/g间逐渐增加;其重均相对分子质量(MW)为1200 ~ 1450.GC-MS分析表明,液化产物中主要含有多元醇的低聚合体,以及多元醇和玉米秸秆降解产物的氧化和酯化反应产生的羧酸及其酯.  相似文献   

19.
为了综合利用油茶饼粕,分析了油茶饼粕的基本组成,采用苯酚为液化剂,硫酸为催化剂,对油茶饼粕进行了液化实验。结果显示油茶饼粕中糖类、粗纤维和粗蛋白质的总质量分数约为75%,能够有效进行液化。研究了反应温度、苯酚与油茶饼粕的质量比(液比)、催化剂的用量及液化时间对液化反应的影响,实验得出较佳的液化工艺条件为:硫酸用量4%,液化时间1.5 h,液化温度140℃,液比值4,此时液化残渣率16.25%。利用傅里叶红外光谱(FT-IR)分析了油茶饼粕及其液化残渣和产物的结构特征,结果显示苯酚与油茶饼粕组分发生了明显酚化反应和醚化反应,形成了更多的活性官能团。油茶饼粕中蛋白质结构遭到破坏,蛋白质也发生了液化反应。  相似文献   

20.
研究了以辐射松木粉羧甲基衍生物作为原料,接枝丙烯酸制备高吸水性树脂的技术。对辐射松木粉化学成分与羧甲基化物取代度、水溶性及丙烯酸中和度、用量、引发剂用量等工艺条件进行优化,确定最佳合成条件:单体中和度60%,单体用量8mL/g羧甲基衍生物,引发剂用量0.04g/g羧甲基衍生物,并采用红外吸收光谱表征产物。在最佳工艺条件下合成的高吸水树脂吸水率高达635g/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号