首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
为了解鸭肠炎病毒(DEV)人工感染雏鸭引发的临床症状及解剖病变,以DEV GZ株人工感染90只15日龄健康雏鸭,分别在感染后3、6、10、18、30、48、72、96、108 h剖杀,通过观察其临床症状和解剖病变初步研究其致病机理.结果显示,感染的雏鸭48h后开始出现临床症状,72 h出现死亡,均在108 h内死亡,且随感染时间表现出精神沉郁、呼吸急促、排白色或绿色稀粪、眼部、鼻腔及口腔周围有分泌物附着等临床症状;剖杀雏鸭后发现各组织器官均18h后出现病变,且随着感染时间延长病变越发严重,主要以出血和坏死为特征.说明已成功复制了 DVE动物感染模型,明确了DEV致雏鸭临床症状及各器官解剖病变特点,为该病的诊断初步奠定了理论基础.  相似文献   

2.
为建立鸭NF-κB1(nuclear factor-kappa B, NF-κB)基因的荧光定量PCR检测方法,并以建立的方法检测鸭胚成纤维细胞(duck embryo fibroblasts , DEF)在感染鸭肠炎病毒(DEV)后NF-κB1基因随时间变化转录表达量的变化情况。根据GenBank 上NF-κB1基因保守序列设计特异性引物,以鸭胚成纤维细胞 mRNA提取样本反转录为cDNA,进行NF-κB1基因克隆质粒构建,以此为模板建立鸭NF-κB1基因荧光定量PCR检测方法并进行特异性、重复性和敏感性试验,并利用建立的方法DEF感染DEV后NF-κB1基因随时间变化的转录变化进行检测。结果显示:建立的鸭NF-κB1基因荧光定量PCR方法标准曲线呈现典型的S型,方程为y=-3.12x+44.086(R2=1),扩增效率为109.2%;其熔解温度Tm值为(83.5±0)℃,曲线呈特异性单峰,批内变异系数小于0.3%,批间变异系数小于0.2%;检测灵敏度可达到1.79个拷贝。DEF细胞在感染DEV后NF-κB1基因随时间改变转录水平变化无规律,但整体表达水平高于正常细胞,差异显著(P<0.05),36~84 h NF-κB1基因的转录水平与正常细胞中差异极显著(P<0.01)。本研究成功建立了鸭NF-κB1基因荧光定量PCR检测方法,并对DEF细胞感染DEV后NF-κB1基因的转录水平进行了研究,为后续实验研究提供了技术和数据支撑。  相似文献   

3.
为给鸭肠炎病毒(DEV)核衣壳蛋白(NP)基因选择良好的宿主表达系统提供参考依据,本研究运用EM-BOSS软件包CHIPS和CUSP程序对DEVNP基因进行了密码子偏爱性分析。结果显示,DEV NP基因的ENC值为51.180,编码NP蛋白的A、I等氨基酸不同密码子的使用频率存在一定的差异;从与DEV NP基因密码子使用频率比值上看,大肠杆菌22个、酵母18个、鸭12个和人20个密码子存在较大的偏爱性。由此可见,编码DEVNP蛋白密码子出现频率较均一,且酵母等真核生物与其密码子偏爱性较为接近,可作为该基因体外表达宿主的首选。  相似文献   

4.
本研究旨在建立一种快速、敏感和高特异性检测鸭坦布苏病毒(DTMUV)、鸭肠炎病毒(DEV)和番鸭细小病毒(MDPV)的TaqMan三重实时荧光定量PCR(q-PCR)的诊断方法并应用于临床疑似样品检测。根据DTMUV的E基因、DEV的UL2基因和MDPV的VP3基因保守区域,分别设计合成了3对特异性引物和探针,在建立单重q-PCR方法的基础上建立了三重q-PCR方法。运用三重q-PCR方法对198份来自江苏和安徽的鸭组织疑似病料进行检测,结果表明,建立的TaqMan三重q-PCR可同时检测这3种病毒,检测灵敏度至少达100个拷贝,相关系数(R~2)均在0.99以上,扩增效率为90%~110%。同时,该方法对H9亚型禽流感病毒(H9N2 AIV)、鸭甲肝病毒Ⅰ型(DHAV-1)、番鸭呼肠孤病毒(MDRV)、鸭呼肠孤病毒(DRV)、新城疫病毒(NDV)、鹅细小病毒(GPV)的检测均为阴性,表明该方法具备特异性强、灵敏度高、重复性好和快速等优点。与常规PCR检测方法相比,三重q-PCR方法灵敏度大约高100倍。临床疑似样品检测结果表明DTMUV的检出率最高,3种病毒混合感染亦常见。建立的TaqMan三重q-PCR检测方法为DTMUV、DEV和MDPV的临床样品检测提供了快速、有效、特异和灵敏的工具,也为临床分子流行病学调查及定量分析奠定了基础。  相似文献   

5.
根据GenBank中的序列,合成针对鸭圆环病毒(DuCV) REP基因、鹅细小病毒(GPV) NS1基因、鸭肠炎病毒(DEV) UL6基因的3对特异性引物,以病毒的克隆质粒作为模板,进行退火温度、引物终浓度的优化,建立一种能同时鉴别DuCV、GPV、DEV的三重PCR检测方法,并检验该方法的特异性、敏感性和重复性。结果显示:试验所建立的三重PCR检测方法的最适退火温度为58.5 ℃,引物DuCV REP、GPV NS1、DEV UL6的最适终浓度分别为0.9、0.6、0.7 μmol/L;该方法能够同时扩增出DuCV、GPV和DEV的特异性片段,而不能扩增出NDV、RA、AIV、DHV和TUMV,表明该方法特异性强;该方法对质粒DuCV、GPV和DEV模板的最低检测量分别为1、100、10 fg,表明该方法敏感性好;运用该方法对DuCV+GPV+DEV、DuCV+GPV、GPV+DEV、DuCV+DEV、DuCV、GPV、DEV进行检测,均能扩增出与预期一致的特异性片段,表明该方法重复性好;运用该方法对42份临床样本进行检测,其检出率分别为26.19%、30.95%和19.05%,与单一PCR的检出结果一致,表明该方法能适用于临床样本的检测。试验建立的方法具有快速、简便、特异性强、敏感性好、重复性好等特点,可用于DuCV、GPV和DEV临床样本混合感染的快速诊断及鉴别诊断。  相似文献   

6.
应用免疫组织化学方法,对人工感染新型鸭肝炎病毒雏鸭体内的病毒分布进行了动态观察。结果表明:接种后不同时间,在肝脏、脾脏、胰脏、胸腺和法氏囊组织中均可检测到新型鸭肝炎病毒抗原,而肾脏、心脏、脑组织中均未检测到病毒抗原。病毒抗原均位于阳性细胞的细胞质中。研究结果提示,感染雏鸭的肝脏和胰脏的组织病理变化与病毒的分布有关。  相似文献   

7.
为进一步阐明鸭肠炎病毒(DEV)的致病机理,本试验建立检测鸭肠炎病毒核衣壳蛋白质(NP)的互作蛋白质(PKCI)基因荧光定量PCR方法。针对PKCI基因设计特异性引物,经PCR扩增目的基因构建重组质粒p MD18-T-PKCI,将其作为阳性标准品构建荧光定量PCR标准曲线,并对建立的荧光定量PCR方法进行重复性、特异性和敏感性试验。结果显示:标准曲线的线性关系为Y=-3.31x+42.00,相关系数为-1.00,扩增效率为100%,熔解曲线仅出现单特异峰,对H5亚型、H7亚型和H9亚型禽流感病毒及新城疫病毒、鸭肝炎病毒均未检测到荧光信号。表明本试验建立的方法具有良好的稳定性、特异性和灵敏性。  相似文献   

8.
表达绿色荧光蛋白重组鸭肠炎病毒构建   总被引:2,自引:2,他引:0  
【目的】鸭肠炎病毒(duck enteritis virus, DEV)不同毒株间存在明显差异,DEV疫苗株的UL2基因在195bp后连续缺失528bp,导致第65位氨基酸后连续缺失176aa[1]。将绿色荧光蛋白(GFP)基因插入DEV UL2基因中,获得表达绿色荧光蛋白的重组病毒,以研究UL2基因对DEV生物特性的影响和探讨DEV作为载体表达外源基因的可行性。【方法】以实验室保存的DEV细胞适应株DNA为模板,利用PCR技术扩增出病毒UL2基因上下游序列并克隆入pMD-18T载体;以UL2基因作为外源基因插入靶点及同源重组臂,将CMV启动子控制的含有GFP-gpt基因表达盒克隆入DEV UL2基因中,构建含GFP基因的转移质粒载体pT-UL2-GFP-gpt;用脂质体将其与DEV细胞适应株共转染CEF细胞,待80%细胞出现病变后,冻融3次,接种到新鲜CEF细胞单层的6孔培养板中,用含5%血清、1%双抗、1%琼脂的M199培养液覆盖,在荧光显微镜下挑取单个有绿色荧光的蚀斑,再接到新的细胞上,重复蚀斑筛选、纯化表达绿色荧光蛋白的重组病毒;利用PCR、基因测序技术鉴定重组病毒;重组病毒接种CEF(moi=0.01),每12h取出1瓶接毒细胞,分别收集上清和细胞,测量其病毒含量,绘制一步生长曲线;重组病毒在CEF中连续传代20次,在荧光显微镜下观察绿色荧光蛋白表达情况,并用PCR检测GFP的传代稳定性;重组病毒免疫4周龄SPF鸭后14d,肌肉注射接种DEV强毒(CVCC AV1221),观察免疫保护情况。【结果】经双酶切鉴定,成功构建了含绿色荧光蛋白报告基因的转移质粒载体pT-UL2-GFP-gpt,将其与DEV共转染CEF细胞后8h,即可见转染细胞中有带有绿色荧光的梭形细胞,经过8轮蚀斑筛选,获得纯化的重组病毒rDEV-△UL2-GFP-gpt;PCR鉴定及基因测序结果显示,GFP标记基因成功地插入到DEV基因组中,替换了DEV UL2基因的196-723位核苷酸;一步生长曲线结果显示,重组病毒在细胞和上清中的病毒含量分别在36h和72h达到峰值,为106.2TCID50/0.1mL、105.5TCID50/0.1mL,与亲本毒无明显差异;重组病毒在CEF中连续传代,1-5代可以稳定表达GFP基因,第6代起,开始出现少量没有荧光的细胞病变,15-20代中绝大部分细胞病变无绿色荧光,GFP在细胞连续传代过程中容易出现突变;重组病毒以103.0TCID50/只免疫麻鸭,免疫后14d能完全抵抗DEV强毒株的攻击,与亲本毒免疫原性一致。【结论】成功构建了表达绿色荧光蛋白的DEV,首次证实UL2基因缺失不影响其在细胞中的复制,也不影响其免疫原性,为DEV UL2基因功能、活载体疫苗研究奠定了基础。  相似文献   

9.
坦布苏病毒感染诱导雏鸭体内未折叠蛋白反应   总被引:1,自引:0,他引:1  
【目的】检测坦布苏病毒在雏鸭体内诱导未折叠蛋白反应的信号通路(PERK、IRE1和ATF6),为揭示坦布苏病毒致病机制提供理论基础。【方法】取1日龄SPF雏鸭,腹腔接种坦布苏病毒(JS804株),于接种后12、24、36和48 h从对照组和攻毒组各取5只剖杀,分别取肝脏、心脏和脑组织,利用组织总RNA提取试剂盒提取各个组织样品总RNA,反转录获得cDNA。根据未折叠蛋白反应的3条信号通路,选取不同通路中的标志性分子,设计合成特异性引物,利用荧光定量PCR方法检测靶基因。以GAPDH为内参基因,采用相对定量法(2-ΔΔCt),分析靶基因的表达水平。【结果】雏鸭肝脏中坦布苏病毒含量最高,心脏次之,脑最低。对未折叠蛋白反应标志性分子GRP78的检测结果显示,脑和肝脏中GRP78表达量持续升高,并在攻毒后36 h达到顶峰(4.21倍和10.14倍),心脏中GRP78表达量仅在攻毒后36 h短暂升高(1.32倍)。PERK信号通路标志性分子ATF4表达水平在肝脏和脑中分别从攻毒后24 h和36 h持续升高至攻毒后48 h,并在攻毒后36 h达到顶峰(2.71倍和6.02倍),心脏中ATF4的表达量则仅在攻毒后36 h时升高(1.57倍)。IRE1信号通路标志性分子XBP1s在肝脏中的表达量升高最为显著(9倍),而脑中EDEM的表达量升高最为显著(3.87倍)且持续时间最长(从攻毒后12 h至攻毒后48 h)。与对照组相比,ATF6信号通路标志性分子GRP94和XBP1u均出现升高现象,虽然两种蛋白在不同组织中表达量变化的时间点和趋势不同,但均在攻毒后36 h出现峰值。【结论】首次报道了坦布苏病毒感染可在雏鸭体内激活未折叠蛋白反应的3条信号通路,本研究将有助于深入研究坦布苏病毒与宿主之间的相互作用机制。  相似文献   

10.
【目的】克隆鸭血清白蛋白(duck serum albumin,DSA)基因,并对其进行生物信息学分析和mRNA表达规律研究。【方法】以前期抑制性消减杂交技术筛选的白蛋白(albumin,ALB)基因为候选基因,通过构建雏鸭肝炎病毒和聚肌苷酸胞苷酸(polyinosinic polycytidylic acid,Poly(I:C))感染模型,利用RT-PCR、RACE技术和基因组步移技术分别克隆ALB基因cDNA序列和5′侧翼序列,并对其进行生物信息学分析;同时利用RT-qPCR检测ALB基因各组织时空表达量。【结果】①ALB cDNA全序列长为2 107 bp,包括47 bp的 5′UTR、212 bp的 3′UTR和1 848 bp的开放阅读框(open reading frame,ORF);其5′侧翼序列具有典型的TAAT box、CAAT box以及HSF、HNF、C/EBP等多个肝脏富含的潜在转录因子结合位点;②RT-qPCR显示,ALB mRNA 呈肝脏组织特异性表达,且在雏鸭肝炎病毒和Poly(I:C)等抗原刺激后,肝脏组织ALB mRNA表达量总体表现水平为先上升后下降,24 h后保持在稳定水平。【结论】成功克隆了鸭ALB基因cDNA和5′侧翼序列,该基因在不同禽类(鸡、鸭、火鸡)中表现为相当保守,主要在肝脏组织中表达,且在雏鸭肝炎病毒和Poly(I:C)感染下,ALB mRNA表现水平为先上升后下降。  相似文献   

11.
【目的】(1)建立单抗介导的、能够对黄曲霉毒素AFB1进行亚细胞定位的免疫组化方法;(2)探明AFB1侵染和分布于雏鸭靶器官(细胞)规律,为阐明AFB1对雏鸭的致病机理提供基础实验数据,为AFB1感染人类提供研究模型。【方法】(1)利用AFB1单抗、免疫组化理论和方法,结合石蜡切片技术,建立检测感染雏鸭组织器官和细胞中AFB1方法;(2)7日龄樱桃谷鸭饲喂黄曲霉毒素(AFB1)含量为150 µg&#8226;kg-1的全价饲料,分别于6、12、24、48、72、96、120、144、168和192 h各剖杀2只,取心、肝、脾、肺、肾、脑、十二指肠、法氏囊、胸腺和胰腺等组织器官多聚甲醛固定、石蜡包埋,应用建立的单抗介导免疫组化对AFB1在感染雏鸭体内侵染的组织器官和细胞进行定位检测。【结果】(1)建立的单抗介导的免疫组化能够特异性检测到感染雏鸭组织中的AFB1,而对鸭病毒性肝炎病毒、鸭疫里默氏杆菌、鸭多杀性巴氏杆菌、鸭沙门氏菌和鸭大肠杆菌感染鸭组织呈现阴性反应;(2)雏鸭采食含AFB1饲料后,24 h可在肝脏和肾脏中检测到AFB1,随后在脾脏(48 h)、胰腺(96 h)、十二指肠(120 h)、心肌(144 h)及法氏囊(168 h)检测到AFB1,其中肝脏和肾脏的阳性结果最强;AFB1分布于肝脏肝窦及汇管区周围炎性反应带的肝细胞,肾脏肾小管、集合管上皮细胞以及肾小球毛细血管,脾脏白髓及炎性细胞,胰腺腺上皮细胞,十二指肠脱落的黏膜上皮细胞,心脏血管周围和心脏发生空泡变性的心肌纤维中;AFB1主要集中分布于细胞核内,而细胞膜和细胞浆内也有少量的分布。【结论】(1)单抗介导免疫组化能够特异检测AFB1感染雏鸭组织石蜡切片中的AFB1和亚细胞定位, 还可用于AFB1感染雏鸭的实验室诊断和甲醛固定组织的回顾性诊断;(2)AFB1可广泛侵害感染雏鸭各个组织器官,以肝脏和肾脏最为严重。AFB1主要蓄积于被感染的细胞核。  相似文献   

12.
为了解鸭瘟病毒(DPV)人工感染雏鸭后的组织器官病变规律、感染后病毒分布情况及细胞超微结构变化,试验以DPV GZ强毒株人工感染90羽15日龄健康雏鸭,分别在感染后3、6、10、18、30、48、72、96、108 h剖杀,采用PCR技术进行病原鉴定,并通过光学显微镜和透射电镜进行病理组织显微和超微结构观察。结果显示,人工感染3 h后即可通过PCR技术检测出DPV核酸;透射电镜观察表明感染后10 h可在脾脏中首先观察到少量的病毒,30 h后胸腺开始发现病毒,病毒的数量随感染时间增加逐渐增加;感染18 h后,中枢免疫器官胸腺表现为淋巴细胞数量降低,组织间隙增大;脾脏组织病变严重,其余器官组织结构均出现程度较轻的组织损伤;感染后30 h,中枢免疫器官的淋巴细胞极度减少,器官组织结构模糊不清,出血较为严重;一些器官则出现细胞肿胀,肠道等器官组织也有细胞变性、出血等病理变化;在死亡鸭的肝脏、脾脏、十二指肠、胸腺发现数量极多的病毒。对照组鸭组织中未发现病理变化。这些研究结果可以为鸭瘟病毒的致病机制研究和鸭瘟的病理学诊断提供试验依据。  相似文献   

13.
检测石蜡切片中鸭病毒性肠炎病毒间接原位PCR方法的建立   总被引:3,自引:0,他引:3  
 【目的】建立能对石蜡切片中鸭病毒性肠炎病毒(DEV)核酸进行定位的原位PCR方法,为鸭病毒性肠炎(DVE)存档蜡块的回顾性诊断、致病机理研究等提供有效的实验手段。【方法】据DEV的UL30-UL31基因序列设计PCR引物和寡核苷酸探针,以DEV感染死亡鸭肝脏组织石蜡标本制作切片,经蛋白酶K消化、原位PCR扩增和生物素标记的寡核苷酸探针原位杂交,建立了检测石蜡标本中DEV的间接原位PCR方法并应用于人工感染DEV不同时间的鸭肝脏、DVE发病鸭的存档蜡块和临床病料检测。【结果】间接原位PCR对DVE死亡鸭肝脏的石蜡标本检测结果为阳性,而鸭病毒性肝炎、鸭疫里默氏杆菌病、鸭多杀性巴氏杆菌病、鸭沙门氏菌病和鸭大肠杆菌病死亡鸭肝脏的石蜡标本检测结果为阴性;间接原位PCR对人工感染DEV后2、4、6、12、24、48和72 h不同时间的鸭肝脏检测结果均为阳性,阳性细胞有肝细胞、窦皮细胞和枯否氏细胞,阳性信号多出现于坏死细胞的碎片中或细胞坏死后形成的空泡内及空泡边缘;对存档蜡块、临床病料的检测与病毒分离鉴定吻合率为100%。【结论】本研究建立的间接原位PCR方法具有直观、敏感、特异性强的优点,在显示核酸阳性信号的同时,还能判别含有靶序列的细胞类型以及组织细胞的形态结构特征与病理变化。可用于DVE的诊断、分子流行病学调查、存档蜡块的回顾性诊断和致病机理的研究。  相似文献   

14.
采用荧光定量PCR方法检测miR-92b-3p在感染与非感染H5N1亚型禽流感病毒状态下SPF鸭不同组织中的相对表达情况。以筛选到在SPF鸭非感染和感染H5N1亚型禽流感病毒状态下差异microRNA的miR-92b-3p。结果表明:miR-92b-3p在感染与非感染鸭的不同组织中均能检测到表达。在非感染鸭的脾脏中相对表达量最高,感染禽流感病毒后在肺脏中的相对表达量最高;感染禽流感病毒后的SPF鸭与对照组SPF鸭相同组织间的相对比较分析显示,miR-92b-3p在感染病毒鸭的肾脏、气管、肺脏、肝脏和心脏中的表达量均高于SPF鸭的相同组织中的表达量。探明在病毒感染状态下miR-92b-3p对水禽的作用机制,为进一步研究miR-92b-3p预防禽流感病毒感染宿主中的作用提供参考。  相似文献   

15.
将本实验室构建的鸭α-干扰素基因疫苗(pcDNA-SDIFN-α)分别按每只50、100、200μg3个剂量肌肉注射免疫樱桃谷鸭,以PBS、空载体质粒pcDNA3.1(+)和鸭瘟弱毒疫苗为对照,免疫15d后攻击感染鸭瘟强毒,于攻毒后2h、6h、12h、24h、3d、6d、9d、14d、22d、26d、33d和40d采全血,同时取死亡鸭的各组织器官,采用实时荧光定量PCR对鸭瘟病毒在鸭外周血中的动态变化和在各组织器官中的分布及含量进行检测。结果表明:①3个剂量pcDNA-SDIFN-α和鸭瘟弱毒疫苗都对鸭产生良好保护作用,免疫鸭未发生死亡;而PBS和空载体对照组3只鸭中有1只鸭死亡,死亡鸭心、肝、脾、肾、胰和各段肠管中均检测到鸭瘟病毒DNA且其含量大于pcDNA-SDIFN-α免疫鸭外周血病毒DNA含量;②3个剂量pcDNA-SDIFN-α免疫鸭外周血鸭瘟病毒DNA含量比PBS和空载体对照组低,差异显著(P<0.05),特别是在2h差异极显著(P<0.01);攻毒后24h内,3个剂量pcDNA-SDIFN-α免疫鸭外周血鸭瘟病毒DNA含量均低于鸭瘟弱毒疫苗免疫鸭,差异显著(P<0.05);3个不同剂量pcDNA-SDIFN-α免疫组之间外周血鸭瘟病毒DNA含量差异不显著(P>0.05),攻毒初期,200μg免疫鸭外周血鸭瘟病毒DNA含量最低,100μg次之,50μg最高。研究表明,pcDNA-SDIFN-α肌肉注射免疫鸭后能产生一定的抗鸭瘟强毒感染的作用,并在攻毒初期表现出一定的量效关系。  相似文献   

16.
采集疑似鸭瘟病毒自然感染的病死番鸭的肝脾等组织,应用番鸭胚成纤维细胞(MDEF)进行病毒分离,通过对分离毒的血凝特性(HA)测定、间接免疫荧光试验(IFA)荧光定量PCR、PCR产物测序和动物回归试验等初步鉴定。结果显示:通过MDEF从疑似病料中分离到4株病毒(DPVfj1、DPVfj2、DPVfj3、DPVfj4),均不能凝集鸽红细胞;IFA结果排除了分离毒为鹅细小病毒、番鸭细小病毒、鸭呼肠孤病毒、鸭副粘病毒和禽坦布苏病毒;鸭瘟病毒荧光PCR试剂盒检测分离毒核酸均为鸭瘟阳性;鸭瘟病毒(JQ673560)gJ蛋白基因序列特异引物进行PCR扩增均为阳性,且PCR产物序列与鸭瘟病毒参考株gJ蛋白基因序列相似度均大于99%;动物回归试验显示,分离毒人工感染30日龄番鸭和同居感染5日龄雏番鸭均可复制出与自然感染一致的临床表现及病理变化,并能回收到病毒。上述结果表明4株分离毒均为鸭瘟病毒强毒株。  相似文献   

17.
为了解新型鸭呼肠孤病毒(Novel duck reovirus,NDRV)弱毒株感染雏番鸭后在体内的分布和排毒规律,本研究采用传代致弱的NDRV JDm10-150毒株接种1 d龄雏番鸭,对接毒后6 h~35 d雏番鸭的血液、脑、胸腺、心、肝、脾、肺、肾、胰腺、法氏囊、盲肠扁桃体、咽拭子和泄殖腔拭子采用qRT-PCR方法检测病毒分布情况。结果显示:接6 h后,在各组织脏器及血清中可检到NDRV核酸,且肝和脾病毒含量最高。随后,各组织脏器及血清中NDRV核酸含量逐渐减少。接毒后9 d,各组织器官及血液均检测不到NDRV核酸或NDRV核酸检测为阴性(Ct>35)。接毒后第13~35 d,除脑和血清外,大部分的组织脏器中均又检测到NDRV核酸,且NDRV核酸含量基本稳定,其中脾脏和法氏囊组织中NDRV核酸含量始终保持较高水平。对不同时间采集的咽拭子和泄殖腔拭子进行检测,发现雏番鸭在接毒后6 h开始向外界排毒,之后通过泄殖腔排毒,直至攻毒后28 d停止排毒。以上检测结果表明,NDRV JDm10弱毒株感染雏番鸭后快速侵入各组织脏器和血液,脾脏和法氏囊为主要侵染和定殖场所,主要通过泄殖腔分泌物向外界排毒。  相似文献   

18.
新型鸭肝炎病毒人工感染1周龄雏鸭,分别对感染后12h、24h、48h、72h、96h、168h、336h的雏鸭血液、肝、脑组织中超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性含量进行检测。结果表明,血清中SOD活性在24h极显著高于对照组,96h极显著低于对照组;肝组织SOD活性于感染后24h显著低于对照组,48h极显著低于对照组;脑组织中SOD活性无显著变化。肝组织中CAT活性48h开始下降.96h极显著低于对照组。试验结果说明自由基参与了雏鸭感染新型鸭肝炎病毒后疾病的发生、发展过程。  相似文献   

19.
[目的]为鸭疫里默氏杆菌病的临床诊断和防治提供依据。[方法]对人工感染Ⅰ型鸭疫里默氏杆菌的20日龄天府肉雏鸭的葡萄糖(GLU)、胆固醇(TC)、乳酸脱氢酶(LDH)、谷丙转氨酶(ALT)、碱性磷酸酶(AKP)、淀粉酶(AMS)6个血清生化指标的动态变化进行测定。[结果]感染Ⅰ型鸭疫里默氏杆菌1 d后,少数雏鸭开始出现明显症状,感染3 d后大部分感染雏鸭开始发病。感染后3 d为发病死亡的高峰期,而感染7 d后未见新的发病鸭只,耐过鸭开始进食,与病情发展相一致。感染鸭疫里默氏杆菌后雏鸭6个血清生化指标均有变化,GLU、TC、LDH和ALT在感染后第3天均明显升高,在感染后期逐渐回落接近正常值。[结论]鸭疫里默氏杆菌感染属急性感染。  相似文献   

20.
DHV对雏鸭肝组织中SOD活性和MDA含量的影响   总被引:3,自引:0,他引:3  
用不同毒力株鸭肝炎病毒人工感染雏鸭 ,分别于 1 ,3 ,5 ,7天测定雏鸭肝组织中丙二醛(MDA)的含量和超氧化物歧化酶 (SOD)的活性 ,并研究MDA和SOD在鸭病毒性肝炎 (DVH)发病过程中的作用。结果表明 :雏鸭感染不同毒力株鸭肝炎病毒后 ,强毒株组雏鸭肝组织MDA含量均显著或极显著高于对照组 ,而弱毒株组和中毒株组的肝组织MDA含量只在感染的中后期即分别在 5天和 3天以后才显著高于对照组 ;中毒株组和强毒株组的肝组织SOD活性均显著或极显著低于对照组 ,弱毒株组肝组织SOD活性在 3天以后才显著低于对照组。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号