首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reductions in flesh contaminant concentrations were evaluated in a 36‐week feeding trial examining several dietary techniques. Atlantic salmon were fed one of seven dietary treatments for 24 weeks. These diets included a fishmeal, fish oil control diet, an industry control diet, three diets that examined a 75% replacement level of anchovy oil (AO) with flaxseed oil, canola oil and poultry fat, and two diets formulated to be low in contaminants formulated with canola oil, activated carbon‐treated anchovy oil and canola protein concentrate or soy protein concentrate. Following this initial 24‐week feeding interval, a 12‐week finishing diet was utilized to restore the levels of omega‐3 highly unsaturated fatty acids (n‐3 HUFAs). The salmon had marked reductions in their flesh concentrations of total polychlorinated biphenyls (PCBs), dioxin‐like PCBs and total toxic equivalents by the end of the grow‐out phase, but also exhibited significant depressions in their flesh concentrations of n‐3 HUFAs relative to 100AO‐fed fish. The 12‐week finishing diet period was effective in partially re‐instating omega‐3 levels to those present in the flesh lipids of fish fed 100AO while concurrently maintaining lower flesh contaminant concentrations.  相似文献   

2.
Fish such as Atlantic salmon (Salmo salar L.) are a natural source of n‐3 highly unsaturated fatty acids (HUFA) eicosapentaenate (EPA; 20:5n‐3) and docosahexaenoate (DHA; 22:6n‐3), which are essential for protecting humans against cardiovascular diseases. Thus, flesh n‐3 HUFA level is a trait of considerable importance in farmed fish, particularly now that the fishmeal and fish oil (FO) components of traditional aquaculture diets have to be replaced by more sustainable alternatives including plant meals and vegetable oils (VO). The present study aimed to characterize the inter‐individual variation in this trait in a single strain of Atlantic salmon. Fish were grown for 12 weeks on either an FO diet, or a diet with 100% of the FO replaced by a VO blend containing rapeseed, linseed and palm oils, flesh n‐3 HUFA content and composition determined, and the variation between individuals characterized. The results showed that, irrespective of diet, variation exists in the content of n‐3 HUFA in the flesh of individual salmon, showing that individual animals can display an enhanced ability to maintain high levels of n‐3 HUFA in their flesh. The pros and cons of defining the trait on a qualitative or quantitative basis are discussed.  相似文献   

3.
H. Xu  J. Du  S. Li  K. Mai  W. Xu  Q. Ai 《Aquaculture Nutrition》2017,23(6):1449-1457
Studies were conducted to investigate the effects of dietary n‐3 long‐chain polyunsaturated fatty acid (n‐3 LC‐PUFA) on growth performance, lipid deposition, hepatic fatty acid composition and serum enzyme activities of juvenile Japanese seabass Lateolabrax japonicus (initial mean weight 29.2 ± 1.34 g). Triplicate groups of 30 Japanese seabass were fed with six diets containing grade levels of n‐3 LC‐PUFA (1.30, 2.98, 5.64, 10.31, 14.51, 24.13 g kg–1 of dry weight) to apparent satiation twice daily for 9 weeks. The specific growth rate (SGR) was the highest in 10.31 g kg–1 dietary n‐3 LC‐PUFA group. Crude lipid content of the fish decreased significantly with increasing dietary n‐3 LC‐PUFA. Meanwhile, the hepatic lipid content increased significantly in the 24.13 g kg–1 group. Hepatic n‐3 LC‐PUFA content of total fatty acids was closely correlated with that in diet. No significant difference was observed in serum alanine transaminase (ALT) and aspartate aminotransferase (AST) activities. Moderate n‐3 LC‐PUFA level (10.31 g kg–1 of dry weight) in the diet was beneficial to enhance the activity of lysozyme in serum. Based on SGR, the optimum dietary n‐3 LC‐PUFA content was estimated to be around 10.94 g kg–1 of dry weight by second‐order polynomial regression method.  相似文献   

4.
Many studies have evaluated the adequacy of alternate ingredient diets for Atlantic salmon, Salmo salar, mainly with focus on fish performance and health; however, comprehensive analysis of fillet quality is lacking, particularly for salmon fed these diets in recirculation aquaculture systems (RAS). To this end, a study was conducted comparing fillet quality and processing attributes of postsmolt Atlantic salmon fed a fishmeal‐free diet (FMF) versus a standard fishmeal‐based diet, in replicate RAS. Mean weight of Atlantic salmon fed both diets was 1.72 kg following the 6‐mo trial and survival was >99%. Diet did not affect (P > 0.05) processing and fillet yields, whole‐body proximate composition(fat, moisture, protein), fillet proximate composition, cook yield, fillet texture, color, or omega‐3 fatty acid fillet content, including eicosapentaenoic acid and docosahexaenoic acid levels. Whole‐body ash content was greater in salmon fed the FMF diet. The FMF diet resulted in a wild fish‐in to farmed fish‐out ratio of 0:1 per Monterey Bay Aquarium's Seafood Watch criteria due to its fishmeal‐free status and use of lipids from fishery byproduct. Overall, fillet quality and processing attributes were generally unaffected when feeding a diet devoid of fishmeal to postsmolt Atlantic salmon cultured in RAS. [Correction added on 7 September 2017, after first online publication: the P value in Abstract has been changed from “P < 0.05” to “P > 0.05”.].  相似文献   

5.
Golden pompano Trachinotus ovatus is an important farmed carnivorous marine teleost. Although some enzymes for long‐chain polyunsaturated fatty acid (LC‐PUFA) biosynthesis have been identified, the ability of T. ovatus for endogenous biosynthesis is unknown. Here, we evaluated in vivo LC‐PUFA synthesis in a 56‐day culture experiment using six diets (D1–D6) formulated with linseed and soybean oils to produce dietary linolenic/linoleic acid (ALA/LA) ratios ranging from 0.14 to 2.20. The control diet (D0) used fish oil as lipid source. The results showed that, compared with the corresponding indices of fish fed D0, the weight gain rate and specific growth rate as well as the contents of eicosapentaenoic (EPA) and docosahexaenoic acids in tissues (liver, muscle, brain and eye) of D1–D6 groups were significantly lower (p < .05). These data suggested that T. ovatus could not synthesize LC‐PUFA from C18 PUFA or such ability was very low. However, tissue levels of 20:4n‐3 in fish fed diets D1–D6 were higher than that of D0 fish (p < .05), and positively correlated with dietary ALA/LA ratio, while levels of EPA showed no difference among the D1–D6 groups. These results indicated that Δ5 desaturation, required for the conversion of 20:4n‐3 to EPA, may be lacking or very low, suggesting incomplete LC‐PUFA biosynthesis ability in T. ovatus.  相似文献   

6.
The effects of stearidonic acid (SDA; 18:4n‐3) derived from SDA‐enhanced, genetically modified soybeans (Monsanto Company, St Louis, MO, USA) on growth performance and fatty acid (FA) composition of large Atlantic salmon (Salmo salar; 2.1 kg initial weight) were evaluated. There was a stepwise decrease in feed intake and subsequent weight gain of immature Atlantic salmon with increased replacement of fish oil by SDA soy oil from 0%, 50% to 100% added oil. SDA increased and n‐3 highly unsaturated FA (n‐3 HUFA; eicosapentaenoic acid + docosahexaenoic acid) decreased in the diet and corresponding fillet with increased SDA oil inclusion. Salmon with the same weight gain fed SDA oil compared with rapeseed oil at 50% fish oil replacement had similar n‐3 HUFA fillet levels indicating little or no increased synthesis of n‐3 HUFA from SDA for deposition in the fillet. However, elongation of dietary SDA to 20:4n‐3 for deposition in the fillet of SDA oil fed fish was indicated. The increased SDA and 20:4n‐3 in the fillet of Atlantic salmon fed SDA oil compared with rapeseed oil at 50% fish oil replacement may be more effective as precursors for EPA in humans than 18:3n‐3 which was in the fillet at similar levels.  相似文献   

7.
A Jaundice Syndrome occurs sporadically among sea‐pen‐farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT‐rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely <48 h; renal tubular epithelial cell necrosis is the most consistent lesion. In an infectivity trial, Chinook Salmon, Sockeye Salmon and Atlantic Salmon, intraperitoneally inoculated with a PRV‐positive organ homogenate from jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5‐month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.  相似文献   

8.
9.
Adult Atlantic salmon (Salmo salar; approximately 800 g start weight) were fed diets with a high replacement of fish meal (FM) with plant proteins (70% replacement), and either fish oil (FO) or 80% of the FO replaced by olive oil (OO), rapeseed oil (RO) or soybean oil (SO) during 28 weeks in triplicate. Varying the lipid source only gave non‐significant effects on growth and final weight. However, a significantly reduced feed intake was observed in the SO fed fish, and both feed utilization and lipid digestibility were significantly reduced in the FO fed fish. Limited levels of dietary 18:3n‐3, precursor to EPA and DHA, resulted in no net production of EPA and DHA despite increased mRNA expression of delta‐5‐desaturase and delta‐6‐desaturase in all vegetable oil fed fish. Net production of marine protein, but not of marine omega‐3 fatty acids, is thus possible in Atlantic salmon fed 80% dietary vegetable oil and 70% plant proteins resulting in an estimated net production of 1.3 kg Atlantic salmon protein from 1 kg of FM protein. Production of one 1 kg of Atlantic salmon on this diet required only 800 g of wild fish resources (Fish in ‐ Fish out < 1).  相似文献   

10.
Salmon farming began in British Columbia (BC) in the 1970s and in 2006, aquaculture represented BC's largest agricultural export. Along with this growth in production has been a growth in controversy, including the concern that sea lice originating from Atlantic salmon farms negatively impact wild juvenile pink salmon in the Broughton Archipelago. To understand the dynamic interaction between wild and farmed fish, data for on‐farm abundance of sea lice are required. In this study, 33 000 Atlantic salmon from 20 active farms were examined over 3 years. Two species of lice were found: Lepeophtheirus salmonis and Caligus clemensi. Inter‐annual and seasonal variations in abundance levels occurred with lower levels of L. salmonis in 2003 compared with 2004 and 2005, while C. clemensi levels were highest in 2003. The abundance of L. salmonis was greater on older farmed fish. The findings are compared with European and eastern Canadian sea lice reports, and possible sources of sea lice on farmed salmon are discussed.  相似文献   

11.
During the past 20 years, plant ingredients have taken over as the main constituents in feed for Atlantic salmon. This has changed the nutrient composition of the feeds, the bioavailability of nutrients and perhaps nutrient metabolism. Plant‐based diets also contain more anti‐nutrients. The EU‐funded project ARRAINA re‐evaluated recommendations for micronutrient supplementation to Atlantic salmon feeds, and the present study compared a diet supplemented with micronutrients according to NRC (2011) (control diet, 100% NP (nutrient package)) with a diet supplemented according to the new recommendations (New NP). Tissue concentrations of pyridoxine, pantothenic acid, niacin, vitamin C, Zn and Se were significantly higher; and Cu was lower in Atlantic salmon fed the diet with the New NP compared to the control fish. The New NP also gave a near significant effect on growth, decreased muscle firmness and increased muscle cell size, and it affected metabolism of nitrogen‐containing metabolites in the muscle. While we cannot be certain which micronutrient(s) gave these effects, the B vitamins are probable candidates, since they are mediators of intermediary metabolism and have been shown to influence some of the affected metabolites.  相似文献   

12.
We studied the effects of dietary n‐3 LC‐PUFAs on the activities and mRNA expression levels of tissue lipoprotein lipase (LPL) and fatty acid synthase (FAS) during vitellogenesis and ovarian fatty acid composition in female silver pomfret broodstock. Broodstock were fed one of four experimental diets for 185 days: FO (100% fish oil), FSO (70% fish oil + 30% soybean oil), SFO (30% fish oil + 70% soybean oil) or SO (100% soybean oil). The results revealed that hepatic LPL and FAS and ovarian FAS activities and mRNA expression levels significantly increased at vitellogenesis and postvitellogenesis relative to previtellogenesis, with no significant differences between these two stages, except for hepatic LPL mRNA expression. Dietary n‐3 LC‐PUFAs decreased tissue FAS and increased LPL activities and mRNA expression levels. The ovarian concentrations of 20:4n‐6 (ARA), 20:5n‐3 (EPA), 22:6n‐3 (DHA) and n‐3 LC‐PUFAs were directly influenced by n‐3 LC‐PUFA levels. Total n‐3 LC‐PUFA concentrations in SO were 57% lower than those in FO, while 18:2n‐6 concentrations in SO were 4.7 ×  higher than those in FO. These results revealed that high dietary n‐3 LC‐PUFAs levels significantly affected tissue lipid metabolism in female silver pomfret broodstock during vitellogenesis by upregulating LPL and downregulating FAS.  相似文献   

13.
Nile tilapia juveniles (8.35 ± 0.80 g) were fed on four levels (0.0%; 0.5%; 1.0%; 2.0%, 4.0%) of Aurantiochytrium sp. meal (ALL‐G‐RICH?), a source of docosahexaenoic acid (DHA). The 1% Aurantiochytrium sp. meal diet was compared to a control diet, which contained the same amount of DHA as cod liver oil (CLO) at 1.7% diet. Groups of 25 fish were stocked in 100 L tanks and fed twice daily until apparent satiation, for 57 days, at 28°C. Increasing dietary Aurantiochytrium sp. meal reduced the body retention of DHA and n‐3 polyunsaturated fatty acids (n‐3 PUFA) but increased the body retention of alpha‐linolenic (α‐LNA), linoleic (LOA) and n‐6 polyunsaturated fatty acids (n‐6 PUFA). Fatty acid profile in tilapia muscle was affected by increasing dietary inclusions of Aurantiochytrium sp. meal, with an increase in DHA, α‐LNA, n‐3 PUFA and n‐3 long chain‐polyunsaturated fatty acids (n‐3 LC‐PUFA) but a decrease in monounsaturated fatty acids (MUFA), n‐6 PUFA and n‐6 long‐chain polyunsaturated fatty acids (n‐6 LC‐PUFA). There was a larger body retention of DHA, α‐LNA, LOA, n‐3 PUFA and n‐6 PUFA fatty acids and a higher percentage of DHA, n‐3 PUFA and n‐3 LC‐PUFA in muscle fatty acid profile in fish fed on CLO diets than in those fed on 1% Aurantiochytrium sp. Therefore, Aurantiochytrium sp. meal is an alternative source of DHA for Nile tilapia diets.  相似文献   

14.
The aim of this work was to study the fatty acid (FA) bioconversion ability in Eurasian perch fed with diets differing in their polyunsaturated fatty acids (PUFA) from n‐3 and n‐6 series content at two development stages: adults in exogenous vitellogenesis, and juveniles during the on‐growing phase. Duplicate groups of adults and juveniles were fed for 12 weeks with four diets: D1 and D2, two diets prepared with fish oil partially or totally as the lipid source, and so containing long‐chain PUFA (LC‐PUFA). Those two diets differed by their n‐3/n‐6 FA dietary ratio (0.2 and 7.0, respectively), D1 being characterized by a high n‐6 LC‐PUFA level, while D2 had a high level of n‐3 LC‐PUFA. D3 and D4 were constituted only with vegetable oils, and were therefore devoid of LC‐PUFA. D3 was characterized by a high level of 18:2 n‐6 (n‐6/n‐3 ratio of 0.3), while D4 was characterized by a high level of 18:3 n‐3 (n‐3/n‐6 ratio of 1.9). Both groups of fish were able to elongate and desaturate the 18:3 n‐3 precursor into eicosapentaenoic acid and docosahexaenoic acid, regarding the FA profile of livers. Furthermore, total elongation/desaturation from [1‐14C]18:3 n‐3 of LC‐PUFA was higher in fish fed with the high dietary 18:3 n‐3 level compared to the diet rich in n‐3 LC‐PUFA. By opposition, the bioconversion of 18:2 n‐6 into LC‐PUFA was limited, regarding the elongation/desaturation activity of LC‐PUFA from [1‐14C]18:2 n‐6. In view of the great ability for bioconversion of n‐3 FA, linseed oil is a promising alternative to fish oil in formulating feed for juveniles perch as there were no differences in terms of specific growth rate between the treatments, but adults undergoing maturation should have at least partially LC‐PUFA in their diet, particularly arachidonic acid (ARA) which is important during maturation, as breeders are not able to bioconvert 18:2 n‐6 into ARA.  相似文献   

15.
It is assumed that Florida pompano have dietary EPA (20:5n‐3) and DHA (22:6n‐3) requirements. However, it is unclear whether both are equally important in meeting demand for n‐3 long‐chain polyunsaturated fatty acids (LC‐PUFAs) or whether the requirement(s) can be influenced by other fatty acids. Accordingly, we assessed production performance and tissue composition of juvenile Florida pompano (41.0 ± 0.5 g) fed diets containing fish oil; beef tallow; or beef tallow partially or fully supplemented with EPA, DHA or both. After 8 weeks, no signs of fatty acid deficiency were observed. Although fish performance did not vary significantly among the dietary treatments, fish fed the DHA‐supplemented feeds exhibited numerically superior growth than those fed the other diets. Fillets of fish fed the beef tallow‐based diets contained reduced levels of n‐3 fatty acids and LC‐PUFAs and elevated levels of MUFAs and n‐6 fatty acids, although dietary supplementation with EPA and/or DHA attenuated these effects somewhat. Our results suggest that beef tallow is suitable as a primary lipid source in Florida pompano feeds and n‐3 LC‐PUFA requirements may be met by as little as 4 g/kg EPA and 4 g/kg DHA. However, there may be value in supplementing tallow‐based diets with DHA to enhance tissue levels and possibly growth.  相似文献   

16.
The characteristic pink colour of salmonid flesh is a result of deposition of naturally occurring carotenoid pigments. Achieving successful pigmentation in farmed salmonids is a vital aspect of fish farming and commercial feed production. Currently commercial diets for farmed salmonids contain either or both of the synthetic pigments commercially available, astaxanthin and canthaxanthin. Atlantic salmon, Salmo salar L. ( = 220 g initial weight) were given feeds where the pigment source was astaxanthin only, canthaxanthin only or a astaxanthin/canthaxanthin mix. The rearing environment was 12 × 3 m tanks supplied with sea water at the EWOS research farm Lønningdal, near Bergen, Norway. As the proportion of dietary canthaxanthin increased, flesh pigment levels also showed an increase; the pigment content in the muscle of canthaxanthin‐only fed fish was 0.4 mg kg?1 (or 14%) higher than that of the astaxanthin‐only fed fish, with the mixed pigment fed fish being intermediate between the two extremes. Results of cross‐section assessment for Minolta colorimeter redness (a*) values and Roche SalmofanTM scores also showed an increase in colour with increasing proportions of canthaxanthin in the feed. The data reported clearly indicates that S. salar ( = 810 g final weight) of this size deposit canthaxanthin more efficiently than they do astaxanthin. These results contrast with those obtained by other authors with rainbow trout, Oncorynchus mykiss (Walbaum), and imply that the absorption or utilization of the pigments differs between species.  相似文献   

17.
Wild and farmed Atlantic salmon ( Salmo salar L.) and Atlantic cod ( Gadus morhua L.) were collected to assess changes in mercury with size in wild vs. farmed fish. Mercury concentrations were compared with Health Canada and United States Environmental Protection Agency consumption guidelines. Lipid dilution of mercury was examined by comparing lipid-extracted (LE) and non-lipid-extracted (NLE) flesh samples in both farmed and wild fish. Mercury concentrations in the flesh and liver of farmed salmon were significantly lower than concentrations in wild salmon of similar fork length ( P <0.001), possibly due to growth dilution in rapidly growing farmed fish. Mercury concentrations were higher in LE tissue compared with NLE ( P <0.05), suggesting lipid dilution of mercury in farmed fish with a high lipid content. Farmed cod, which do not grow more rapidly than wild cod, did not have significantly different flesh and liver concentrations compared with wild cod of similar fork length ( P >0.05). Between species of farmed fish, cod had significantly higher mercury concentrations than salmon ( P <0.05), but neither farmed nor wild salmon mercury concentrations exceeded federal consumption guidelines. These results suggest that rapid growth rates and a high lipid content may play important roles in regulating concentrations of contaminants such as mercury.  相似文献   

18.
Lipid content of a diet is very susceptible to oxidation, which has many negative effects on farmed animals. Therefore, this study studied the protective effect of L‐carnitine (LC) on fish body stimulated by oxidized fish oil (OFO) from lipid metabolism. Lipid content of the diet was replaced by OFO in 0, 100 and 400 meq/kg. L‐carnitine was added to the diet in two levels, 500 and 1,000 mg/kg, giving a total of seven experimental diets. A total of 735 healthy Rhynchocypris lagowski Dybowski with an initial weight of 4.48 ± 0.14 g after 2‐week adaptation randomly divided into 15 glass aquariums. Fish were fed satiated three times daily. After 8 weeks, biometry was done to evaluate growth performance, and hepatopancreas and muscle samples were taken for biochemical analysis. The result showed that feeding with OFO had negative growth. However, in fish received both OFO and LC, growth indices improved slightly (p > .05). Feeding with OFO and LC, the content of EPA, DHA and PUFA in the muscle of R. lagowski was significantly higher than that in the control group (p < .05), which reached the maximum value in the OFO100 + LC500 group. The content of SFA, MUFA, ∑n‐6 and PUFA in hepatopancreas increased significantly (p < .05), and the content of SFA reached the maximum in OFO100 + LC500 group. Feeding with OFO increased hepatopancreas total cholesterol, triacylglycerol, HDL/LDL ratio, FAS and ACCα that involved in lipid synthesis enzymes, while reduced HL and HSLα enzyme activity and gene expression that associated with lipid decomposition. Dietary LC moderated the effects of OFO on lipid metabolism. According to the result of the present study, it can be argued that feeding of R. lagowski with OFO has negative effects on growth performance and lipid metabolism, whereas LC dosages used in this study have increased the oxidation rate of fatty acids in the hepatopancreas of R. lagowski and improved the accumulation of fat in hepatopancreas cells induced by oxidized fish oil.  相似文献   

19.
One hundred farmed Atlantic salmon, Salmo salar L., were examined for the presence of nematodes by digestion of tissue in HCl–pepsin solution. All fish were sampled from one cage in a fish farm on the Norwegian south‐west coast. Fifty harvest quality salmon, that is, salmon for human consumption (mean 5.4 kg, variation 3.0–7.6 kg), were sampled at the processing line while 50 salmon runts (mean 1.1 kg, variation 0.4–1.8 kg), discarded due to poor performance, were sampled from the discard bin after the grading station. Runts are individual fish with clear signs of poor performance over time and abnormal appearance and are thus not processed for human consumption. No nematodes were found in the musculature or viscera of the 50 harvest quality salmon. In total, 75 nematodes were found in 10 (20%) of the runts; 53 nematodes in the viscera and 22 in the musculature. Nematodes in the musculature were identified as Anisakis simplex (Rudolphi, 1809 det. Krabbe, 1878), while nematodes in the viscera were identified as A. simplex and Hysterothylacium aduncum (Rudolphi, 1802).  相似文献   

20.
The oilseed Camelina sativa has been studied as a lipid source for farmed salmonids, but recommended inclusion as a protein source has not been determined. This study evaluated low inclusion of camelina high‐oil residue meal (HORM) at 20, 40 and 60 g/kg of the diet, to determine an adequate level for Atlantic salmon parr (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Salmon and trout were fed experimental diets containing up to 60 g/kg HORM for 16 weeks. At 40 g/kg HORM, trout and salmon growth performance were similar to those fed a control diet. However, at 60 g/kg HORM, trout showed lower final weight, weight gain and feed intake than those fed the control diet. Rainbow trout fed 40 and 60 g/kg HORM showed significantly lower whole body ash (p = .005), slightly lower whole body protein levels and higher fat than the control. In salmon fed 60 g/kg HORM diets, whole body ash (p = .024), and the submucosal layer of the intestine was thicker than the control (p = .007). Current results indicate that up to 40 g/kg HORM can be included in diets for rainbow trout and salmon juveniles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号