首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ongoing research in recirculation aquaculture focuses on evaluating and improving the purification potential of different types of filters. Algal Turf Scrubber (ATS) are special as they combine sedimentation and biofiltration. An ATS was subjected to high nutrient loads of catfish effluent to examine the effect of total suspended solids (TSS), sludge accumulation and nutrient loading rate on total ammonia nitrogen (TAN), nitrite and nitrate removal. Nutrient removal rates were not affected at TSS concentration of up to 0.08 g L?1 (P > 0.05). TAN removal rate was higher (0.656 ± 0.088 g m?² day?1 TAN) in young biofilm than (0.302 ± 0.098 g m?² day?1 TAN) in mature biofilm at loading rates of 3.81 and 3.76 g m?² day?1 TAN (P < 0.05), respectively, which were considered close to maximum loading. TAN removal increased with TAN loading, which increased with hydraulic loading rate. There was no significant difference in removal rate for both nitrite and nitrate between young and mature biofilms (P > 0.05). The ATS ably removed nitrogen at high rates from catfish effluent at high loading rates. ATS‐based nitrogen removal exhibits high potential for use with high feed loads in intensive aquaculture.  相似文献   

2.
Two experimental modules with different stocking densities (M1 = 70 and M2 = 120 shrimp /m2) were examined weekly over a culture cycle in tanks with low‐salinity water (1.9 g/L) and zero water exchange. Results showed survival rates of 87.7 and 11.9% in M1 and M2, respectively. Water temperature, pH, dissolved oxygen, electrical conductivity and chlorophyll a were not significantly (p > .05) different between modules. In contrast, the concentrations of nitrogen compounds were significantly (p < .05) different between modules, except nitrite‐N (M2 were 2.31 ± 1.38 mg/L N‐TAN, 0.18 ± 0.49 mg/L N‐NO2? and 6.83 ± 6.52 mg/L N‐NO3?; in M1: 0.97 ± 0.73 mg/L N‐TAN, 0.05 ± 0.21 mg/L N‐NO2? and 0.63 ± 0.70 mg/L N‐NO3?). When waters of both modules reached higher levels of ammonia and nitrite, histological alterations were observed in gills. The histological alterations index (HAI) was higher in M2 (5‐112) than in M1 (2‐22).  相似文献   

3.
Data on operation and performance of cost-effective solutions for end-of-pipe removal of nitrate from land-based saltwater recirculating aquaculture systems (RAS) are scarce but increasingly requested by the aquaculture industry. This study investigated the performance of a (semi)commercial-scale fixed-bed denitrification unit using single sludge for treating effluent from a commercial, saltwater RAS used for production of Atlantic salmon (Salmo salar). A fixed-bed denitrification reactor was fed continuously with 3-days hydrolyzed sludge from the commercial RAS, and was operated at different hydraulic retention times (HRTs; 1.82, 3.64, 5.46, or 7.28 h) or influent C/N ratios (3, 5, 7, or 10). Twenty-four h pooled samples were collected from the inflowing RAS water and the hydrolyzed sludge as well as from the denitrification reactor outlet, and samples were analyzed for nutrients and organic matter content.Nitrate removal rates increased consistently with decreasing HRT (from 64.3 ± 5.2–162.7 ± 22.0 g NO3-N/m3/d within the HRTs tested) at non-limiting C/N ratios, while nitrate removal efficiencies decreased (from 99.6 ± 0.3–58.2 ± 8.9 %). With increasing influent C/N ratios at constant HRT (3.64 h), nitrate removal rates increased until the removal efficiency was close to 100 % and nitrate concentration in the denitrification reactor became rate-limiting. A maximum nitrate removal rate of 162.7 ± 2.0 g NO3-N/m3/d was achieved at a HRT of 1.82 h and an influent C/N of 6.6 ± 0.5, while the most efficient use of hydrolyzed sludge (0.19 ± 0.02 g NO3-N removed/g sCOD supplied) was obtained with a HRT of 3.64 h and a C/N ratio of 2.9. Removal rates of organic matter significantly and consistently increased with decreasing HRT and increasing C/N ratio. In addition, reducing HRT and increasing C/N ratios significantly improved removal of total phosphorus (TP) and PO4-P.In conclusion, optimal management of the operating parameters (HRT and C/N ratio) in a single-sludge denitrification process can significantly reduce the discharge of nitrogen, organic matter, and phosphorous from land-based saltwater RAS and thus contribute to increased sustainability.  相似文献   

4.
Meagre, Argyrosomus regius, is a candidate marine fish species for aquaculture diversification, presenting a high economic value in the Mediterranean. Tolerance of juvenile meagre to nitrite (NO2‐N) was determined relating to temperature. Fish (3.2 ± 0.6 g and 5.4 ± 0.9 cm) were exposed to different NO2‐N concentrations in a series of acute toxicity tests by the static renewal method at three temperatures (18, 22, and 26 C) at a pH of 8.0. Low temperature clearly increased tolerance to NO2‐N (P < 0.05). The 96‐h median lethal concentration (LC50) values of NO2‐N were 177.63, 139.55, and 49.61 mg/L, at 18, 22, and 26 C, respectively. The safe levels of NO2‐N for juvenile meagre were estimated to be 17.7, 13.9, and 4.9 mg/L at 18, 22, and 26 C, respectively (P < 0.05). This study indicates A. regius is more sensitive to nitrite than other marine fish species cultured in the Mediterranean.  相似文献   

5.
Stringent environmental legislation in Europe, especially in the Baltic Sea area, limits the discharge of nutrients to natural water bodies, limiting the aquaculture production in the region. Therefore, cost-efficient end-of-pipe treatment technologies to reduce nitrogen (N) discharge are required for the sustainable growth of marine land-based RAS. The following study examined the potential of fed batch reactors (FBR) in treating saline RAS effluents, aiming to define optimal operational conditions and evaluate the activated sludge denitrification capacity using external (acetate, propionate and ethanol) and internal carbon sources (RAS fish organic waste (FOW) and RAS fermented fish organic waste (FFOW)). The results show that between the evaluated operation cycle times (2, 4, and 6 h), the highest nitrate/nitrite removal rate was achieved at an operation cycle time of 2 h (corresponding to a hydraulic retention time of 2.5 h) when acetate was used as a carbon source. The specific denitrification rates were 98.7 ± 3.4 mg NO3-N/(h g biomass) and 93.2 ± 13.6 mg NOx-N/(h g biomass), with a resulting volumetric denitrification capacity of 1.20 kg NO3-N/(m3 reactor d). The usage of external and internal carbon sources at an operation cycle time of 4 h demonstrated that acetate had the highest nitrate removal rate (57.6 ± 6.6 mg N/(h g biomass)), followed by propionate (37.5 ± 6.3 mg NO3-N/(h g biomass)), ethanol (25.5 ± 6.0 mg NO3-N/(h g biomass)) and internal carbon sources (7.7 ± 1.6–14.1 ± 2.2 mg NO3-N/(h g biomass)). No TAN (Total Ammonia Nitrogen) or PO43- accumulation was observed in the effluent when using the external carbon sources, while 0.9 ± 0.5 mg TAN/L and 3.9 ± 1.5 mg PO43--P/L was found in the effluent when using the FOW, and 8.1±0.7 mg TAN/L and 7.3 ± 0.9 mg PO43--P/L when using FFOW. Average sulfide concentrations varied between 0.002 and 0.008 mg S2-/L when using the acetate, propionate and FOW, while using ethanol resulted in the accumulation of sulfide (0.26 ± 0.17 mg S2-/L). Altogether, it was demonstrated that FBR has a great potential for end-of-pipe denitrification in marine land-based RAS, with a reliable operation and a reduced reactor volume as compared to the other available technologies. Using acetate, the required reactor volume is less than half of what is needed for other evaluated carbon sources, due to the higher denitrification rate achieved. Additionally, combined use of both internal and external carbon sources would further reduce the operational carbon cost.  相似文献   

6.
We evaluated the acute and chronic toxicity of nitrate to juvenile fat greenling Hexagrammos otakii. The 24‐, 48‐, 72‐, and 96‐hr LC50s of nitrate to 1.91 ± 0.7 g greenlings were 2,741, 2,413.5, 2,357.6, or 2,339.2 mg/L nitrate‐N, respectively. Greenlings (6.55 ± 1.83 g) were exposed to 5 mg/L (control) and 157 mg/L for 4 weeks in a recirculating aquaculture system. After 4 weeks, length, weight, feed conversion ratio, and specific growth rate were significantly (p < 0.05) lower for nitrate‐exposed fish than for control fish. Elevated nitrate exposure was associated with decreased plasma hemoglobin concentration and red blood cell count. Our results demonstrate that nitrate poses a threat to greenlings and provide information that is useful for establishing water quality criteria for early life stages of this cultured fish. The sensitivity of greenlings to elevated NO3? should be evaluated at other life stages to determine how chronic exposure might impact survival, growth, health, reproductive success, and harvest quality.  相似文献   

7.
The marine centric diatom Chaetoceros muelleri has been widely used as live feed in fish and shellfish aquaculture due to its excellent nutritional properties. The growth of microalgae is affected by various nutritional and environmental parameters, and species specific optimization of these parameters is essential for the development of cost‐effective biomass production process. In this study, the growth of C. muelleri, was optimized using response surface methodology (RSM). The variables nitrate, phosphate, silicate, temperature, pH, salinity and agitation speed were initially screened for biomass production in C. muelleri using Plackett–Burman experimental design, and it was found that nitrate, phosphate, silicate, temperature and pH significantly influenced the biomass production. These variables were further optimized by central composite design of RSM for biomass production and nutrient composition, and the medium was re‐constituted accordingly to have 180 mg L?1 nitrate, 7.5 mg L?1 phosphate, 30 mg L?1 silicate, with optimum growth conditions of temperature at 31°C and pH 6.46. At the end of 10 days culture period under the above conditions, biomass, protein, lipid and carbohydrate significantly increased from 0.360 ± 0.01 mg L?1, 9.41 ± 0.02%, 18.11 ± 0.01%, 0.6 ± 0.02% to 1.16 ± 0.01 mg L?1, 11.02 ± 0.01%, 19.58 ± 0.01% and 0.77 ± 0.01% respectively. The biomass production of C. muelleri could be increased 3.2‐fold with an improved nutrient profile by modifying the growth factors, the study thus offering an optimized process for biomass production of C. muelleri.  相似文献   

8.
In the current study, we set up a denitrification process to remove the nitrogen pollutants, especially nitrate (NO3-N), from the wastewater after a nitrification-based biofloc technology (BFT) aquaculture cycle. Five different treatments (CN0, CN1, CN2, CN4 and CN6, respectively) were used, which involved addition of extra carbohydrate with variable ratios of elementary organic carbon to NO3-N by weight (C/NO3-N ratio equal to 0, 1, 2, 4, and 6, respectively). With CN2, CN4, and CN6 treatments, NO3-N was decreased (with increasing alkalinity) to ≤ 6.42 ± 0.30 mg·L−1 and low amounts (close to zero) of nitrite (NO2-N) were achieved. However, there were high concentrations of residual NO3-N and/or NO2-N in CN0 and CN1. CN2 achieved the best denitrification, wherein 81.00 ± 0.95% of the initial input nitrogen was removed. By fitting the equations, the highest nitrogen recycling rate (23.08 mg-N·g-C−1) was achieved with a C/NO3-N ratio of 4.16. Denitrifying bacteria were the dominant bacteria in all extra carbohydrate added treatment groups. Although denitrifying polyphosphate accumulating organisms contributed to the removal of phosphorus, high concentrations of residual soluble reactive phosphate (SRP) were observed in all treatment groups. Overall, extra addition of carbohydrate with C/NO3-N ratio ≥ 2 is advisable for nitrogen removal, while the highest nitrogen recycling rate will be achieved with a ratio of 4.16.  相似文献   

9.
The growth patterns and water treatment capacity of Nitzschia sp. benthic diatoms in different concentrations of sea cucumber aquaculture wastewater (0%, 10%, 30%, 50%, 80% and 100%) and f/2 medium were studied. Nitzschia sp. grew in different concentrations of aquaculture wastewater and showed remarkable differences in their rate of growth among the treatment groups. Nitzschia sp. grew most quickly (0.83 ind/day) and showed the greatest total chlorophyll‐a content in 30% wastewater. The total chlorophyll‐a content and growth rate of Nitzschia sp. were strongly correlated (R2 > 0.98). The total lipid (TL), total protein, exopolysaccharide (EPS) and intracellular polysaccharide (IPS) contents of the diatoms were highest in 100% wastewater and showed significant differences among the experimental groups (< 0.05). Total nitrogen (TN), ammonium‐nitrogen (NH4‐N) (AN), nitrate nitrogen (NO3‐N) (NN), nitrite nitrogen (NO2‐N) (NIN) and total phosphate (TP) contents were significantly reduced after cultivation. TN uptake peaked at 54.58% in 30% wastewater. AN uptake exceeded 95% in 30% wastewater and 100% wastewater. NN uptake peaked at 56.42% in 80% wastewater, whereas TP uptake ranged from 16.80% to 27.69%. These results suggest that Nitzschia sp. biomass can be enhanced via cultivation in low‐concentration (30%) wastewater, after which their cultivation may be continued in high‐concentration (100%) wastewater, increasing their nutritional value and aiding in the removal of surplus nitrogen and phosphorus in sea cucumber aquaculture wastewater. Application of Nitzschia sp. using the recirculating wastewater‐treatment methods described has the potential to reduce environmental harm caused by sea cucumber cultivation and thus achieve sustainable aquaculture.  相似文献   

10.
The current ecological situation of aquaculture water quality in Wushe (Songjiang district, Shanghai city) district is not up to mark. In the present study, characteristic of ecological agriculture park was first investigated and then water spinach floating bed was used to improve the aquaculture wastewater quality. The results showed significant improvement in the aquaculture water quality at the experimental site with removal rates of TN, NH4+-N, NO2-N and TP were 11.2%, 60.0%, 60.2% and 27.3%, respectively. Moreover, we found that the removal mechanism of ammonia nitrogen and nitrate nitrogen by water spinach was mostly by microorganism, whereas the removal mechanism of phosphorus was mainly by plant absorption. In addition, water spinach could be harvested at regular time intervals, which could achieve good economic benefits. This research could provide a good case study for sustainable development in ecological agricultural park for other cities around the world.  相似文献   

11.
By introducing recirculation aquaculture systems (RAS) in the nursery phase of the blue mussel (Mytilus edulis) (17–18 mm), we aimed at a similar growth and survival and a similar water quality compared to the commonly used flow‐through systems (FTS). To calculate water flow and size of the biofilter, a series of experiments were done to determine clearance rate (9.26 mL min?1), pseudo faeces threshold (60 000 cells Pavlova lutheri mL?1), nitrogen production (0.00065 mg TAN h?1 ind?1 and 1.6 × 10?5 mg NO2–N h?1 ind?1) and oxygen consumption (0.03 ± 0.01 mg O2 h?1 ind?1). RAS showed no significant differences in water quality (0.06 mg TAN L?1; 7.7 mg O2 L?1) and growth performance of mussel seed specific growth rate (SGR = 5% day?1) after the experimental period of 4 weeks compared with FTS. The low water refreshment, 10% per day, as well as the constant chlorophyll concentrations (9.76 ± 1.06 μg L?1), suggests the potential of RAS as culture system for mussel seed.  相似文献   

12.
The aim of the study was to evaluate the performance of Litopenaeus vannamei in an intensive photo‐heterotrophic hypersaline system with minimal seawater replacement, and establish relationships between parameters of a stochastic production model and relevant water quality variables. Six experimental 1000 m2 lined ponds were stocked at a density of 120 shrimp m?2 for a 105‐day trial. Salinity increased from 37 to 45 ± 2 g/L, and the water level was maintained with the weekly addition of filtered seawater, equivalent to 1.6% per day. The stochastic model predicted that, at harvest, there is 95% confidence that the system produces between 12.1 and 14.7 t/ha with a mean final individual weight of 13.1 g and a mean survival of 84.2%. Sensitivity analyses showed that dissolved oxygen and individual final weight of shrimp were the main variables influencing yield variance. Nitrogenous compounds were maintained between optimal cultivation levels (NH3–NH4+ = 0.73 ± 0.43 mg/L, N–NO2? = 0.09 ± 0.05 mg/L, N–NO3? = 3.22 ± 0.11 mg/L). Heterotrophic bacteria (6.6 ± 3.4 × 105 CFU/ml) and chlorophyll‐α concentration (108.5 ± 80.2 μg/L) showed a similar development pattern, indicating a strong relationship between bacteria and microalgae during cultivation. Vibrio spp. concentrations were low (1.24 ± 1.42 × 103 CFU/ml). It was shown that the photo‐heterotrophic system could be used in hypersaline conditions, typical of semi‐arid regions, to consistently produce between 12.1 and 14.7 t/ha in 15 weeks.  相似文献   

13.
The pink shrimp Farfantepenaeus brasiliensis is native in southern Brazil and is potentially suited for aquaculture. Under intensive culture, the accumulation of nitrogenous compounds results from excretion by the shrimp and from the processes of feed decomposition and nitrification. The objective of this study was to evaluate ammonia, nitrite, and nitrate toxicity effects on oxygen consumption of juvenile pink shrimp. Shrimps (initial weight 0.7 ± 0.15 g) were exposed over a period of 30 days to 50%, 100%, and 200% of the safe levels of total ammonia (TAN = 0.88 mg/L), nitrite (NO2? = 10.59 mg/L), and nitrate (NO3? = 91.20 mg/L) for the species. The specimens were individually collected and placed in respirometry chambers, where the oxygen consumption was measured over a period of two hours. Throughout the experiment there was no significant difference (p > 0.05) among treatments in terms of survival and growth. The pink shrimp juveniles exposed to nitrogen concentrations of 200% of the nitrite and nitrate safe level showed the highest oxygen consumption (p < 0.05).  相似文献   

14.
Nitrate reducing potency of 88 bacterial isolates segregated from marine and brackish water nitrifying bacterial consortia (NBC), generated for activation of nitrifying bioreactors, was confirmed by determining the nitrate reducing capability under aerobic conditions as maintained in nitrifying bioreactors. All the isolates had the potential to be used as bio‐augmentors for activating nitrate dissimilation in recirculating aquaculture system. The existence of nitrate reducers with nitrifiers in NBC and in the reactor configuration negates the requirement of integrating anoxic denitrifying system for effective removal of NO3?‐N. Phylogenetic analyses of representative isolates from each cluster of the dendrograms generated based on phenotypic characterization and amplified ribosomal DNA restriction analysis revealed profound diversity of nitrate reducing bacterial flora in the NBC. They were composed of Streptomyces enissocaesilis, Marinobacter sp., Pseudomonas sp., Microbacterium oxydans, Pelagibacterium halotolerans and Alcanivorax dieselolei from marine NBC and Streptomyces tendae, Nesterenkonia sp., Bacillus cereus, Microbacterium oxydans and Brevibacterium sp. from brackish water NBC. The diversity indices of the consortia were calculated using Mega 5.0, primer 7 and VITCOMIC softwares. Marine NBC exhibited higher Shannon wiener diversity and mean population diversity than brackish water NBC. The study delineated higher species richness and diversity in marine NBC than in its brackish water counterpart, a possible reflection of the higher biodiversity of marine systems, and hence, the former is more promising to be used as start‐up cultures for the activation of nitrifying bioreactors after appropriate acclimatization to the desired salinity.  相似文献   

15.
A fish meal supply shortage is limiting aquaculture development. Currently, plant‐based proteins, such as soya bean meal, are being used as an alternative protein source, despite that such a diet can adversely affect fish, such as by inducing an inflammatory response. A possible solution is to include dietary additives in farm diets to counteract negative effects. One such solution originates from pine bark extracts, which present bioactive properties. In this study, the antioxidant and anti‐inflammatory properties of Pinus radiata bark extracts were evaluated for the first time in a salmonid cell line. This extract chemically demonstrated antioxidant activity through 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH = 58.4 ± 1.1%) and ferric ion reducing antioxidant power (FRAP = 575 ± 17 mgEqFe(II)·g extract?1) assays. Additionally, the extract showed high flavonoid and phenolic compound contents. Up to 100 mg mL?1, the P. radiata extract showed no cytotoxicity in the CHSE‐214 salmonid embryo cell line. Moreover, the antioxidant activity of the extract (50 μg mL?1) was evaluated by a dichlorofluorescein (DCFH) assay in the SHK‐1 salmon cell line challenged with an oxidant stimulus (H2O2), showing 58.9% activity. The extract also protected DNA from oxidative damage, as observed through a comet assay. When assessing anti‐inflammatory properties in an in vitro inflammation model, the extract significantly reduced the relative expression of the pro‐inflammatory cytokines interleukin‐1β (IL‐1β), tumour necrosis factor‐α (TNF‐α) and interleukin‐8 (IL‐8) and of the inducible cyclooxygenase‐2 (COX‐2) enzyme. These results suggest a potential application of P. radiata bark extract in functional foods in aquaculture.  相似文献   

16.
In this study, we have tested the effect of seaweed stocking density in an experimental seaweed biofilter using the economically important red seaweed Hydropuntia cornea integrated with the cultivation of the pink shrimp Farfantepenaeus brasiliensis. Nutrient removal efficiency was evaluated in relation to seaweed stocking density (2.5, 4, 6 and 8 g fw L?1). Total ammonia nitrogen (TAN) was the main nitrogen source excreted by F. brasiliensis, with concentrations ranging from 41.6 to 65 μM of NH4+‐N. H. cornea specific growth rates ranged from 0.8 ± 0.2 to 1.4 ± 0.5% day?1 with lowest growth rates at higher seaweed stocking density (8 g fw L?1). Nutrient removal was positively correlated with the cultivation densities in the system. TAN removal efficiency increased from 61 to 88.5% with increasing seaweed stocking density. Changes in the chemical composition of the seaweed were analysed and correlated with nutrient enrichment from shrimp effluent. The red seaweed H. cornea can be cultured and used to remove nutrients from shrimp effluents in an integrated multi‐trophic aquaculture system applied to a closed recirculation system. Recirculation through seaweed biofilters in land‐based intensive aquaculture farms can also be a tool to increase recirculation practices and establish full recirculation aquaculture systems (RAS) with all their known associated benefits.  相似文献   

17.
Piaractus mesopotamicus juveniles (total length 12 ± 0.5 mm) were exposed to different concentrations of ammonia‐N (un‐ionized plus ionized ammonia as nitrogen), using the static renewal method at different temperature levels (15, 20 and 25°C) at pH 7. The 24, 48, 72, 96 h LC50 values of ammonia‐N in P. mesopotamicus juveniles were 5.32, 4.19, 3.79 and 2.85 mg L?1 at 15°C; 4.81, 3.97, 3.25 and 2.50 mg L?1 at 20°C; and 4.16, 3.79, 2.58 and 1.97 mg L?1 at 25°C respectively. The 24, 48, 72, 96 h LC50 values of NH3‐N (un‐ionized ammonia as nitrogen) were 0.018, 0.014, 0.013, 0.009 mg L?1 at 15°C temperature; 0.023, 0.019, 0.016 and 0.012 mg L?1 at 20°C; 0.029, 0.026, 0.018 and 0.014 mg L?1 at 25°C. The temperature increase from 15 to 25°C caused an increase of ammonia‐N susceptibility by 21.80%, 9.55%, 31.92% and 30.87%, after 24, 48, 72 and 96 h exposure respectively. Furthermore, we found that exposure of fish to ammonia‐N caused an elevation in total haemoglobin and blood glucose with an increase of 2 mg L?1 concentration. Ammonia levels tolerated, especially in different temperatures levels, have important implications for the management of aquaculture.  相似文献   

18.
Argyrosomus regius (3.0 ± 0.9 g) were exposed to different concentrations of ammonia in a series of acute toxicity tests by the static renewal method at three temperature levels (18, 22 and 26°C) at a pH of 8.2. Low temperature clearly increased the tolerance of the fish to total ammonia nitrogen (TAN) and unionized ammonia (NH3) (P < 0.05). While the 96‐h LC50 values of TAN were 19.79, 10.39 and 5.06 mg L?1, the 96‐h LC50 of NH3 were 1.00, 0.70 and 0.44 mg L?1 at 18, 22 and 26°C respectively. The safe levels of NH3 for A. regius was estimated to be 0.10, 0.07 and 0.04 mg L?1 at 18, 22 and 26°C respectively (P < 0.05). This study clearly indicates that A. regius is more sensitive to ammonia than other marine fish species cultured on the Mediterranean and Eastern Atlantic coasts.  相似文献   

19.
Hybrid seabream (Pagrus major♀ × Acanthopagrus schlegelii♂) grow quickly, with retarded gonadal growth and enhanced muscle nutritional composition. This F1 hybrid seabream is a new marine aquaculture fish in China. However, the response of hybrid seabream to transport is severe, which seriously restricts its promotion and development. Water quality and the physiological response of hybrid sea bream were studied at three fish transport densities (5, 10 and 20 g/L) during 8 hr of transport in a light van (60 km hr?1 and 25°C water temperature). We found that total ammonia–nitrogen and nitrite–nitrogen levels in the water of the highest density group increased sharply after 4 and 8 hr of transport. Cumulative survival of the fish in the 10 and 20 g/L groups (86.7% and 75% respectively) was significantly lower than in the 5 g/L group (100%) after 8 hr of transport (< .05). Serum cortisol and lactate levels were significantly higher after transport than pre‐stress levels, whereas the glucose level decreased significantly (< .05). Hepatic triglyceride and glycogen levels and superoxide dismutase and catalase activities were significantly lower in the 20 g/L group than in the 5 g/L group (< .05). The results show that high‐density transport increased ammonia–nitrogen and nitrite–nitrogen levels in the water as well as cortisol secretion and anaerobic metabolism in the F1 hybrid seabream, suggesting that total cholesterol and glycogen may be used to supply the energy demand and increased oxidative stress. These results will help to optimize the transport conditions for cultured hybrid seabream.  相似文献   

20.
Oyster aquaculture is an expanding industry in the Chesapeake Bay. Oysters remove nitrogen (N) and phosphorus (P) from the water column through filtration and conversion of phytoplankton into shell and tissue, but also continuously excrete these same nutrients back into the water column as inorganic compounds readily available for plant or algal uptake. The objective of this study was to assess multiple water quality parameters upstream and downstream of a commercial oyster aquaculture facility in the mesohaline region of the Chesapeake Bay. Results of the study indicated a 78.4% average increase in total ammonia nitrogen (TAN) concentration and a 19.4% decrease in chlorophyll-a (Chl-a) concentration downstream of the facility. There was no significant change in the concentration of reactive phosphate (RP), nitrate–nitrogen (NO3–N), or nitrite–nitrogen (NO2–N) as water passed through the facility. It was determined that velocity of water through the facility had no influence on the change in TAN or Chl-a concentration from upstream to downstream of the facility. Increased reduction in Chl-a concentration from upstream to downstream was related to higher upstream concentrations of Chl-a. There was no correlation between increased rates of Chl-a removal and downstream TAN. Results of this study suggest that oyster aquaculture can significantly increase the amount of available inorganic nitrogen in the water column immediately downstream of a facility, independent of upstream availability of phytoplankton and flow velocity of water through the facility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号