首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 565 毫秒
1.
To investigate the susceptibility of hairy root lines of Brassica species to Plasmodiophora brassicae, hairy roots were induced in a number of Brassica species with Agrobacterium rhizogenes. Turnip hairy root was highly susceptible to P. brassicae; infection rates were high and large galls formed. In contrast, the rates of root hair infection and gall formation on intact Brassica plants did not differ significantly from the control. To induce resting spore formation, turnip hairy roots were incubated at 15°, 20°, or 25°C after 3 weeks of incubation at 25°C. The number and fresh mass of the galls per hairy root were higher and formation of resting spores was greatest after a 7-week incubation at 20°C. To subculture P. brassicae using turnip hairy root, turnip hairy roots were reinoculated with resting spores and gall with resting spores then formed on the hairy roots. In this way, P. brassicae using hairy roots could be subcultured in vitro two or three times on three single-spore isolates of P. brassicae. This is the first report of in vitro subculture of P. brassicae using hairy root.  相似文献   

2.
Clubroot of oilseed rape (OSR), caused by Plasmodiophora brassicae, is a disease of increasing economic importance worldwide. Previous studies indicated that OSR volunteers, Brassica crops and weeds play a critical role in the predisposition of the disease. To determine the effect of timing of foliar application of the herbicide glyphosate or mechanical destruction of OSR volunteers in reduction of clubroot severity and resting spore production, a series of studies was conducted under controlled conditions with a susceptible OSR cultivar and an isolate of P. brassicae. Plants were inoculated by injecting a spore suspension beside the root hairs at growth stage 11–12 (BBCH scale) and were terminated at 7 (early) or 21 (late) days post‐inoculation (dpi). Under controlled conditions, the first symptoms on roots were observed as early as 7 dpi. The early application of glyphosate as well as early mechanical destruction resulted in significant ( 0.05) reduction in the development of clubroot symptoms, root fresh weight and the number of resting spores?g root. Furthermore, the effect of volunteer management on clubroot severity in the succeeding OSR was studied by inoculating plants with the resting spores obtained from treated clubbed roots. Inoculated OSR exhibited root clubs similar to the initial symptoms after 35 dpi. Plants that were inoculated with spore suspension from early treated roots resulted in significant reductions in clubroot incidence and severity. Conversely, plants inoculated with the spore suspension from the late treated roots displayed levels of clubroot similar to the plants inoculated with the spore solutions of positive controls.  相似文献   

3.
Fusarium oxysporum f. sp. cubense (Foc) is the causal pathogen of Fusarium wilt of banana. To understand infection of banana roots by Foc race 4, we developed a green fluorescent protein (GFP)-tagged transformant and studied pathogenesis using fluorescence microscopy and confocal laser scanning microscopy. The transformation was efficient, and GFP expression was stable for at least six subcultures with fluorescence clearly visible in both hyphae and spores. The transformed Foc isolate also retained its pathogenicity and growth pattern, which was similar to that of the wild type. The study showed that: (i) Foc race 4 was capable of invading the epidermal cells of banana roots directly; (ii) potential invasion sites include epidermal cells of root caps and elongation zone, and natural wounds in the lateral root base; (iii) in banana roots, fungal hyphae were able to penetrate cell walls directly to grow inside and outside cells; and (iv) fungal spores were produced in the root system and rhizome. To better understand the interaction between Foc race 4 and bananas, nine banana cultivars were inoculated with the GFP-transformed pathogen. Root exudates from these cultivars were collected and their effect on conidia of the GFP-tagged Foc race 4 was determined. Our results showed that roots of the Foc race 4-susceptible banana plants were well colonized with the pathogen, but not those of the Foc race 4-resistant cultivars. Root exudates from highly resistant cultivars inhibited the germination and growth of the Fusarium wilt pathogen; those of moderately resistant cultivars reduced spore germination and hyphal growth, whereas the susceptible cultivars did not affect fungal germination and growth. The results of this work demonstrated that GFP-tagged Foc race 4 isolates are an effective tool to study plant–fungus interactions that could potentially be used for evaluating resistance in banana to Foc race 4 by means of root colonization studies. Banana root exudates could potentially also be used to identify cultivars in the Chinese Banana Germplasm Collection with resistance to the Fusarium wilt pathogen.  相似文献   

4.
The pathogenesis of clubroot, a disease of cruciferous crops caused by the fungusPlasmodiophora brassicae, starts with infection of the root hairs. This process was studied in 13 accessions ofBrassica oleracea, B. napus and B. rapa with varying levels of plant resitance toP. brassicae. Seedlings were grown in a mineral solution, inoculated with resting spores ofP. brassicae, and the number of plasmodia developing in root hairs was recorded. When compared with the standard susceptible cultivar Septa, both higher and lower resistance to root hair infection was found in the accessions of the differentBrassica species. No complete resistance to root hair infection was found. Over the accessions studied, there was no correlation between the plant resistance estimated from greenhouse tests and the resistance to root hair infection of seedlings. The resistance of all accessions must at least partly be caused by other mechanisms which operate after the root hair plasmodia are formed.  相似文献   

5.
Samenvatting en bespreking Een vijftiental plantensoorten werd onderzocht op vatbaarheid voor het zoösporangium-stadium vanP. brassicae. Hiervan werdenTrifolium pratense, Reseda odorata enLolium perenne in zeer geringe mate, enPapaver rhoeas iets sterker aangetast. De mate van aantasting van deze laatste was echter nog aanzienlijk minder dan van als vergelijkingsobject gebruikte bloemkoolplantjes. Gezien deze resultaten is het niet waarschijnlijk, dat niet-cruciferen enigermate kunnen bijdragen tot de instandhouding of vermeerdering van de schimmel bij afwezigheid van kruisbloemigen. Evenmin is er reden te veronderstellen, dat niet-cruciferen als vangplanten voor het uitroeien van de rustsporen van groot practisch belang kunnen zijn.Summary Webb's (1949) discovery of zoosporangia ofP. brassicae in non-crucifers raises the question of further means of multiplication and survival in the soil (MacFarlane, 1952). Perhaps the fungus can maintain itself in successive generations of zoosporangia in root hairs of these plants. From there it might in turn infect crucifers and produce a fresh crop of resting spores. This must be kept in mind when considering the possibility of eradicating the fungus from the soil by growing non-crucifers which stimulate the resting spores to germinate. If survival in root hairs were important, plants for this purpose would need to resist the zoosporangial stage as well as stimulate spore germination.In the present study a number of non-crucifers was tested for susceptibility to the zoosporangial stage by a method already described (Kole, 1955). In addition, the rate of infection of susceptible non-crucifers was compared with that of cabbage grown under the same conditions. Of seven non-crucifers, not tested before, onlyTrifolium pratense became infected.MacFaralane's findings of non-cruciferous hosts were confirmed forPapaver rhoeas, Reseda odorata andLolium perenne (Table 1). In all the susceptible non-crucifers exceptPapaver rhoeas, infection was very sligth. There were more infections onPapaver rhoeas than on the other non-crucifers but fewer than on cabbage, which was heavily infected. On the basis of these results it is not thought that the occurrence of non-cruciferous hosts ofP. brassicae will generally be of great practical importance.  相似文献   

6.
The development time and parasitization rate ofDiaeretiella rapae (M’Intosh) onBrevicoryne brassicae (L.) feeding on differentBrassica cultivars was studied in the laboratory at 20°C. The shortest development time from egg to adult parasitoid was 11.6 days on cabbage cv. ‘Yalova 1’ and the longest was 12.1 days on turnip cv. ‘Antep’ and rapeseed cv. local variety. Females lived significantly longer than males on the host plants used in the study. Females and males had the shortest longevity on rapeseed at 11.1 and 5.1 days, respectively. The highest percent parasitism ofB. brassicae byD. rapae was found on cabbage (40.20%), and the lowest was recorded on turnip (32.64%). Our results demonstrate that parasitism rate could be influenced by the plant quality, probably due to the nutritional status of the aphids or to toxic compounds ingested through the plant. Cabbage, cauliflower and broccoli were found to be suitable plants for the parasitoid, considering the development time of pre-adults, and the parasitization rate ofD. rapae onB. brassicae. http://www.phytoparasitica.org posting Jan. 23, 2007.  相似文献   

7.
The severity of clubroot (Plasmodiophora brassicae) on Chinese cabbage was reduced by growing plants such as oats, spinach and leafy daikon prior to Chinese cabbage in pot experiments. Resting spore densities of P. brassicae in the soil were 29–62%, depending on the pervious crop, as compared to unplanted control plot after ploughing under the previously cultivated plants. Root hairs of the preceding plants were infected with P. brassicae, but clubbed roots were not formed on these plants. The results indicate that these plants functioned as decoy plants reducing the resting-spore density in soil and thereby suppressing disease severity. Received 21 February 2000/ Accepted in revised form 5 September 2000  相似文献   

8.
Orobanche minor is a parasitic weed that attaches to the roots of red clover (Trifolium pratense) and a number of other broad‐leaved plant species in the Pacific Northwest USA. Orobanche minor seed must be stimulated by host plant exudates for germination and attachment to occur. However, plant species called false‐hosts can stimulate parasitic seed germination without attachment. These species could be utilized as trap crops to reduce the amount of parasitic seed in infested soil. Wheat (Triticum aestivum), was found to be a false‐host of O. minor; therefore, growth chamber, glasshouse and field soil experiments were conducted to evaluate the effect of six soft white winter wheats (T. aestivum), one durum wheat (Triticum turgidum), and one triticale (Triticale hexaploide) on O. minor germination. In growth chamber experiments, wheat and triticale induced 20–70% of O. minor seeds to germinate. In glasshouse studies, O. minor attachment was minimal on red clover plants grown in pots previously planted to wheat or triticale. In pots that did not receive a false‐host treatment, red clover plants averaged 4.2 O. minor attachments per plant. Red clover plants also had fewer O. minor attachments when grown in field soil taken from the plots where wheat or triticale were grown compared with plants grown in soil where no wheat or triticale were previously grown. Our results demonstrate that wheat may have the potential to be effectively integrated into an O. minor management system.  相似文献   

9.
BACKGROUND: Orobanche and Phelipanche species (the broomrapes) are root parasitic plants, some of which represent serious weed problems causing severe yield losses on important crops. Control strategies have largely focused on agronomic practices, resistant crop varieties and herbicides, albeit with marginal success. An alternative control method is the induction of suicidal seed germination with natural substances isolated from root exudates of host and non‐host plants. RESULTS: Soyasapogenol B [olean‐12‐ene‐3,22,24‐triol(3β,4β,22β)] and trans‐22‐dehydrocampesterol [(ergosta‐5,22‐dien‐3‐ol, (3β,22E,24S)] were isolated from Vicia sativa root exudates. They were identified by comparing their spectroscopic and optical properties with those reported in the literature. Soyasapogenol B was very specific, stimulating the germination of O. minor seeds only, whereas trans‐22‐dehydrocampesterol stimulated P. aegyptiaca, O. crenata, O. foetida and O. minor. CONCLUSION: Soyasapogenol B and trans‐22‐deydrocampesterol were isolated for the first time from Vicia sativa root exudates, and their biological activity as stimulants of Orobanche or Phelipanche sp. seed germination was reported. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (FO), is one of the major diseases in cucumber (Cucumis sativus) production. Root and foliar applications of 24-epibrassinolide (EBL), an immobile phytohormone with antistress activity, were evaluated for their effects on the incidence of Fusarium wilt and changes in the microbial population and community in roots of cucumber plants. EBL pre-treatment to either roots or shoots significantly reduced disease severity followed by an improved plant growth regardless of the treatment methods applied. EBL applications decreased the Fusarium population on root surfaces and in nutrient solution, but increased the population of fungi and actinobacteria on root surfaces. PCR-DGGE analysis showed that FO-inoculation had significant effects on the bacterial community on root surfaces as expressed by a decreased diversity index and evenness index, but EBL applications alleviated these changes. Moreover, several kinds of decomposing bacteria and growth-promoting bacteria were identified from root surfaces of FO-inoculated plants and EBL-pre-treated plants, respectively. Overall, these results show that the microbial community on root surfaces was affected by a complex interaction between phytohormone-induced resistance and plant pathogens.  相似文献   

11.
Light leaf spot (Pyrenopeziza brassicae) is an important disease on winter oilseed rape crops (Brassica napus) in northern Europe. In regions where economically damaging epidemics occur, resistance to P. brassicae in commercial cultivars is generally insufficient to control the disease without the use of fungicides. Two major genes for resistance have been identified in seedling experiments, which may operate by decreasing colonisation of B. napus leaf tissues and P. brassicae sporulation. Much of the resistance present in current commercial cultivars is thought to be minor gene-mediated and, in crops, disease escape and tolerance also operate. The subtle strategy of the pathogen means that early colonisation of host tissues is asymptomatic, so a range of techniques and molecular tools is required to investigate mechanisms of resistance. Whilst resistance of new cultivars needs to be assessed in field experiments where they are exposed to populations of P. brassicae under natural conditions, such experiments provide little insight into components of resistance. Genetic components are best assessed in controlled environment experiments with single spore (genetically fixed) P. brassicae isolates. Data for cultivars used in the UK Recommended List trials over several seasons demonstrate how the efficacy of cultivar resistance can be reduced when they are deployed on a widespread scale. There is a need to improve understanding of the components of resistance to P. brassicae to guide the development of breeding and deployment strategies for sustainable management of resistance to P. brassicae in Europe.  相似文献   

12.
It has been reported that Alternaria brassicae, the causal agent of gray leaf spot in Brassica plants, produces a host-specific or host-selective toxin (HSTs) identified as destruxin B. In this study, the role of destruxin B in infection of the pathogen was investigated. Destruxin B purified from culture filtrates (CFs) of A. brassicae induced chlorosis on host leaves at 50–100 μg ml−1, and chlorosis or necrosis on non-host leaves at 250–500 μg ml−1. Destruxin B was detected in spore germination fluids (SGFs) on host and non-host leaves, but not in a sufficient amount to exert toxicity to host plants. When spores of non-pathogenic A. alternata were combined with destruxin B at 100 μg ml−1 and inoculated on the leaves, destruxin B did not affect the infection behavior of the spores. Interestingly, SGF on host leaves allowed non-pathogenic spores to colonize host leaves. Moreover, a high molecular weight fraction (>5 kDa) without destruxin B obtained by ultrafiltration of SGF had host-specific toxin activity and infection-inducing activity. From these results, we conclude that destruxin B is not a HST and does not induce the accessibility of the host plant which is essential for colonization of the pathogen. In addition, the results with SGF imply that a high molecular weight HST(s) is involved in the host–pathogen interaction.  相似文献   

13.
The response of microconidia from pathogenic and non-pathogenic Fusarium oxysporum to root exudates from tomato plants inoculated with different pathogenic and non-pathogenic F. oxysporum strains was studied. Root exudates from non-inoculated tomatoes highly stimulated the microconidial germination of the two tomato pathogens, F. oxysporum f.sp. lycopersici strain Fol 007 and F. oxysporum f.sp. radicis-lycopersici strain Forl 101587. In root exudates from tomato plants challenged with the pathogen Fol 007 the microconidial germination of Fol 007 was increased, whereas in root exudates from plants challenged with Forl 101587 the microconidial germination of Fol 007 was reduced. Root exudates of tomato plants challenged with the non-pathogenic unspecific F. oxysporum strain Fo 135 and the biocontrol strain Fo 47 clearly reduced microconidial germination of the pathogenic strain Forl 101587. Moreover, the microconidial germination rate of the biocontrol strain Fo 47 was increased in the presence of root exudates of tomato plants challenged with the tomato wilt pathogen Fol 007. These results indicate that pathogenic and non-pathogenic F. oxysporum strains alter the root exudation of tomato plants differently and consequently the fungal propagation of pathogenic and non-pathogenic F. oxysporum strains in the rhizosphere is affected differently.  相似文献   

14.
The rDNA-ITS sequences of ten single-sporangium isolates of Olpidium virulentus (a noncrucifer strain of Olpidium brassicae), which transmits Mirafiori lettuce big-vein virus (MLBVV) and tobacco stunt virus (TStV), were compared with those of six single-sporangium isolates of O. brassicae. The sequence similarity within isolates of O. virulentus or O. brassicae was almost identical (98.5%–100.0%), but was low between the two species (79.7%–81.8%). In a phylogenetic analysis of the rDNA-ITS region, O. virulentus and O. brassicae fell into two distinct clusters, indicating that O. virulentus, a vector of MLBVV and TStV, is a distinct species rather than a strain of O. brassicae.  相似文献   

15.
Plasmodiophora brassicae, causal agent of clubroot of crucifers, poses a serious threat to Canadian canola production. The effects of fallow (F) periods and bait crops (clubroot‐susceptible canola (B) and perennial ryegrass (R)) on clubroot severity and P. brassicae resting spore populations were evaluated in five sequences: R–B, B–R, R–F, B–F and F–F. Both host and non‐host bait crops reduced clubroot severity in a subsequent crop of a susceptible canola cultivar compared with fallow. Resting spore and P. brassicae DNA concentrations decreased in all treatments, but were lowest for the R–B and B–R bait crop sequences. In addition, two studies were conducted in mini‐plots under field conditions to assess the effect of rotation of susceptible or resistant canola cultivars on clubroot severity and P. brassicae resting spore populations. One study included three crops of susceptible canola compared with a 2‐year break of oat–pea, barley–pea, wheat–wheat or fallow–fallow. The other study assessed three crops of resistant canola, two crops of resistant canola with a 1‐year break, one crop of resistant canola and a 2‐year break, and a 3‐year break with barley followed by a susceptible canola. The rotations that included non‐host crops of barley, pea or oat reduced clubroot severity and resting spore concentrations, and increased yield, compared with continuous cropping of either resistant or susceptible canola. Growing of a susceptible canola cultivar contributed 23–250‐fold greater gall mass compared with resistant cultivars.  相似文献   

16.
SeveralAlternaria cassiae isolates were recovered from diseased sicklepod plants (Senna obtusifolia) in the southern regions of Brazil. A representative isolate (Cenargen CG593) was tested for its host range under greenhouse conditions. The fungus promoted symptoms in sicklepod, cassava (Manihot dulce), tomato (Lycopersicon esculentum) and eggplant (Solanum melongena) when tested at a spore concentration of 106 spores ml−1. When the plants were inoculated with a suspension of 105 spores ml−1 and held at a dew period of 12 h (cassava) or 18 h (tomato and eggplant), the plants showed symptoms of the disease, but they recovered and continued their normal vegetative growth. These results show that the fungusA. cassiae is safe to use for the control ofS. obtusifolia under Brazilian conditions, because it did not cause excessive damage in the three plants tested. http://www.phytoparasitica.org posting Jan. 14, 2007.  相似文献   

17.
Fusarium wilt caused by Fusarium oxysporum f. sp. pisi (Fop) is one of the major constraints of pea worldwide. Its control is difficult and is mainly based on the use of resistant cultivars. This study aimed to identify and characterize resistance mechanisms interfering with Fop spore germination, as an additional pre‐penetration resistance mechanism little explored so far. For this, root exudates were collected from 12 pea accessions with differential responses to the disease, from resistant to susceptible, and their effects on Fop germination and growth were determined. While root exudates from most accessions stimulated Fop germination, the root exudates of three accessions, JI 1412, JI 2480 and P42, did not stimulate, or even inhibited, Fop germination. Although some additional compounds might be involved, the analysis showed that the most active metabolite was the pea phytoalexin pisatin. Pisatin was identified in the active fraction of pea root exudate extracts and its amount in the root exudates was negatively correlated with the extent of Fop germination. This suggests an important role of pisatin in the constitutive defence of pea against F. oxysporum.  相似文献   

18.
Pythium and Phytophthora species were isolated from kalanchoe plants with root and stem rots. Phytophthora isolates were identified as Phytophthora nicotianae on the basis of morphological characteristics and restriction fragment length polymorphism (RFLP) analysis of the rDNA-internal transcribed spacer regions. Similarly, the Pythium isolates were identified as Pythium myriotylum and Pythium helicoides. In pathogenicity tests, isolates of the three species caused root and stem rots. Disease severity caused by the Pythium spp. and Ph. nicotianae was the greatest at 35°–40°C and 30°–40°C, respectively. Ph. nicotianae induced stem rot at two different relative humidities (60% and >95%) at 30°C. P. myriotylum and P. helicoides caused root and stem rots at high humidity (>95%), but only root rot at low humidity (60%).  相似文献   

19.
Clubroot, caused by Plasmodiophora brassicae, has emerged as a serious disease threatening cruciferous crop production throughout the world. Crop rotation with non-host species is commonly practised to avoid clubroot, but it is not known whether rotation crops can control clubroot when the resting spores of P. brassicae remain unaffected. Pot experiments were performed to investigate the response of clubroot in Chinese cabbage to crop rotation with potato onion. The results showed that Chinese cabbage rotated with potato onion exhibited less clubroot disease than Chinese cabbage monoculture. Compared with residues from potato onion, the addition of root exudates from potato onion significantly decreased the disease incidence and index of clubroot (p ≤ 0.05). Potato onion root exudates decreased the number of secondary plasmodia of P. brassicae and the expression of the PRO1 gene of P. brassicae. These results suggest that root exudates from potato onion may play an important role in suppressing clubroot in a Chinese cabbage-potato onion-Chinese cabbage rotation system.  相似文献   

20.
Broomrape (Orobanche ramosa L.) is a common root parasite of solanaceous, leguminous and other crops grown in the semi-arid regions of the world. The seeds germinate when root exudates from host plants are released in their immediate vicinity (Lindley, 1853; Koch, 1887; Chabrolin, 1934). Brown et al. (1951a) reported that non-host plants, such as flax (Linum usitatissimum L.) may stimulate Orobanche seed germination without being parasitized. The stimulating properties of flax exudate were studied by Brown et al. (1951b). They reported that the stimulant was unstable in alkaline solutions, but moderately stable in weakly acidic media, which may indicate the presence of an acidic (lactone) grouping. Nash & Wilhelm (1960) reported that gibberellic acid in agar media stimulated O. ramosa seed germination. Abu- Shakra, Miah & Saghir (1970) found that pre-treatment of 0. ramosa seeds with 100 ppm of gibberellic acid followed by incubation on a flax-root diffusate agar medium gave a high (81·7%) germination. The purpose of this study was to collect root exudates from three species of plants cultured under three experimental systems, namely (a) germ-free, (b) glasshouse (non-sterile), and (c) growth chamber (hydroponic, initially aseptic), and to evaluate their biological activity as germination stimulants for O. ramosa seeds. The plants used were tomato (Lycopersicon esculentum Mill.), sorghum (Sorghum vulgare Pers.) and flax. Exudate from marigold (Tagetes erecta L.) also was collected from germ-free culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号