首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
通过室内模拟设定不同盐分含量土柱,比较TDR输出电压值和烘干法测定的水分含量值,探讨土壤盐分含量对TDR测定土壤水分含量的内在影响。结果表明:随着土壤中盐分含量的增加,TDR测定数值明显增大;土壤电导率(σ)<2.56 dS/m时,TDR测定电压与烘干法测得水分含量显著正相关(r>0.882);σ>3.2 dS/m 时,测定数值不能很好地反映土壤水分含量变化。比较TDR测定低盐条件下土壤水分含量发现,当土壤水分含量较大时,TDR测定相对误差较小,土壤水分含量较小时,TDR测定相对误差较大。根据分析结果构建TDR测定土壤水分的综合模型,结合大田验证,并对模拟值和实测值进行精度比较分析,表明该综合模型能够较好的模拟农田墒情状况。  相似文献   

2.
TDR技术测定盐碱地土壤盐分和水分及标定研究   总被引:3,自引:0,他引:3  
根据TDR(Time Domain Refletrometry,时域反射仪)测定土壤水分和土壤电导率的基本原理,使用德国生产的TRIME型TDR测定仪,以塔里木河上游地区盐碱地土壤为对象,进行了土壤盐分(或电导率)和土壤含水率方面的测定研究,并对其进行标定,得出了不同含水率下土壤盐分(或电导率)的半理论半经验的公式。其目的旨在为TDR法在塔里木盆地盐碱地土壤水分和盐分测定中的应用提供理论支持。  相似文献   

3.
柳根水 《安徽农业科学》2013,(26):10637-10639
[目的]研究基于Globe-Logging TDR系统的棉花土壤水分与温度的变化规律.[方法]在棉花土壤中分10、20、30以及40 cm土层深度水平埋装一根Globe-Logging TDR测量探针,通过无线网络在线监测7月棉花土壤水分和土壤温度的变化规律.[结论]在不降雨或不灌水的情况下,深层土土壤水分要高于浅层土,深层土的土壤含水率与土壤温度呈反比例关系;当土壤温度高于最低气温时,土壤温度随着土层深度的增加而升高.[结果]该研究可为Globe-Logging TDR系统的推广应用提供参考.  相似文献   

4.
为了研究温度对TDR法快速测量土壤含水量的影响,本文在分析TDR法测量土壤水分的基础上,利用JL-01型土壤水分测定仪分别测定不同温度下重塑粉质粘土含水量,并与烘干法测量结果进行了比较,拟合得到了TDR法测量土壤含水量误差随温度变化的公式,并给出了修正后的土壤含水量。试验及分析结果表明,虽然正低温对TDR法测量土壤含水量的结果影响在一定的范围之内,但经过温度修正的测量值会有效降低测量误差。  相似文献   

5.
朱焱  陈晓飞  马巍  邓友生 《安徽农业科学》2007,35(17):5216-5217,5282
根据冻结条件下非饱和土壤水分运动和热量迁移的基本方程,推求冻土水热耦合迁移的数学模型。采用Grank-Nicolson格式的有限差分法,计算结果表明土壤水分、温度的计算值与实验值吻合较好。  相似文献   

6.
晋西黄土区土壤水分空间异质性的地统计学分析   总被引:11,自引:0,他引:11  
土壤水分的空间分布存在着一定的随机性和结构性特征,而对不同尺度土壤水分空间变异规律的研究是土壤水分研究中的热点问题.该文通过2004—2005年对山西吉县蔡家川小流域不同取样尺度(20 m×20 m、2 m×2 m) 391个样点土壤水分的测定(TDR土壤水分测定法),使用地统计学方法进行土壤水分的空间异质性分析,以区域化变量理论为基础,以变异函数为主要工具,以克立格法为基本方法进行土壤水分异质性研究.结果表明:研究区土壤水分的理论变异模型为球状模型,20 m×20 m网格取样变程为494.16 m,2 m×2 m网格取样变程为27.4 m,试验区土壤水分的变异属于中等程度的变异;通过克立格插值估计,整个研究区坡面土壤水分平均值为10.94%(0~30 cm)和11.88%(30~60 cm).   相似文献   

7.
土壤水分传感器实用性能对比研究   总被引:10,自引:0,他引:10  
该文针对时域反射法(TDR)、频率分解法(FD)型土壤水分传感器和中国农业大学研制的基于驻波率原理(SWR)的新型土壤水分传感器,在德国北部典型的沙壤土、黄土、含煤沙土及含铅壤土土样上做了试验.根据采集的数据进行方差分析,结果表明:SWR型土壤水分传感器是一种高精度、高可靠性、受土壤质地影响不明显的快速土壤水分测量传感器,其性能可与世界先进TDR型和FD型土壤水分测量传感器相媲美.   相似文献   

8.
TRIME-T3管式TDR在测量土壤水分时的误差及校正   总被引:1,自引:0,他引:1  
TRIME-T3管式TDR (Time domain reflectometry)系统线路简单、能耗小、价格便宜、可实现非扰动定位瞬时剖面观测,广泛用于测量土壤水分.但是,在安装和使用过程中,受土壤空隙、温度、类型、电导率、含水量等因素的影响,测定土壤水分会产生误差.为提高土壤水分数据的准确性,系统总结国内外研究成果和笔者实际操作经验,提出了经验公式、室内校正、野外校正和其他校正等方法.  相似文献   

9.
温度条件对TDR测定土壤水分的影响   总被引:3,自引:0,他引:3  
时域反射仪(TDR)法是速测土壤水分常用的方法之一,该方法具有快速、使用方便等优点。而土钻法(又称质量法或烘干法)则被认为是测定土壤水分的经典方法。本试验通过这两种方法测定了黄土高原沟壑区王东沟流域的土壤不同层次的水分,结果发现,两者存在一定的差异。在通常温度(23—31℃)下,对黄土高原土壤用TDR所测土壤含水量比土钻法所测值偏高;温度低于23℃或高于31℃,TDR所测土壤含水量比土钻法所测值偏低。所以,与土钻法相比,TDR法具有一定温度条件的限制性。  相似文献   

10.
利用TDR定位监测的方法,研究武陵山区马尾松天然林土壤水分分配规律。结果表明:在空间分布上,土壤各层含水量随土层深度的增加而改变。降雨后土壤水分损失率与干旱天数存在曲线函数关系(P0.05)。不同土层间土壤水分变异系数随着干旱时间的推后显示递增趋势,但趋于平缓。  相似文献   

11.
土壤水分时域反射仪(TDR)自制探头的校正与应用   总被引:2,自引:0,他引:2  
根据TDR工作原理制作了TDR探头,并对其进行了室内标定,结果表明,介电常数的平方根(Ka)与体积含水量(,θ%)有良好的线性相关(R2=0.995)。并在田间与中子仪测定结果进行了对比,结果表明,平均绝对偏差为0.17%,平均相对偏差为8.58%,说明TDR自制探头可以在黄土高原地区推广应用。  相似文献   

12.
[目的]探讨TDR测定土壤含水量的原理,找出TDR测量土壤含水量的适合范围.[方法]用波兰TDR/MUX/mpts水分测定仪,对不同湿度土样的体积含水量进行测定,同时用烘干法和环刀法分别测量其质量含水量和容重,然后转化成体积含水量与TDR的测量值进行比较.[结果]对于质量含水量为0~5%之间的干燥土壤和质量含水量为22%以上的湿润土壤,TDR的测量精度较低.与烘干法相比,绝对误差均大于2%,相对误差大于10%.对于质量含水量为5% ~22%之间的土壤,TDR的测量精度较高.[结论]在湿润或半湿润地区,TDR法测量土壤体积含水量有较高的精度.  相似文献   

13.
TDR法、中子法、重量法测定土壤含水量的比较研究   总被引:15,自引:0,他引:15  
对用TDR法、中子法和重量法测得的土壤水分含量观测值的比较结果表明,随着土壤深度和测量时间的变化,中子法的平均测定误差为3.76%,TDR法为3.59%。并且这2种方法的土壤水含量观测值的时空变化和重量法具有相同的趋势。因此,用TDR法测定土壤含水量与用中子法是同样可靠的。  相似文献   

14.
The development of site-specific crop management is constrained by the availability of sensors for monitoring important soil and crop related conditions. A mobile time-domain reflectometry (TDR) unit for geo-referenced soil measurements has been developed and used for detailed mapping of soil water content and electrical conductivity within two research fields. Measurements made during the early or late season, when soil moisture levels are close to field capacity, are related to the amount of plant available water and soil texture. Combined measurements of water content and electrical conductivity are closely related to the clay and silt fractions of a variable field. The application to early season field mapping of water content, electrical conductivity and clay content is presented. The water and clay content maps are to be used for automated delineation of field management units. Based on a spatial analysis of the soil water measurements, recommendations are made with respect to sampling strategies. Depending on the variability of a given area, between 15 and 30 ha can be mapped with respect to soil moisture and electrical conductivity with sufficient detail within 8 h.  相似文献   

15.
为将AquaCrop模型应用于华北平原夏玉米水分研究中,于2011-2012年在中国科学院栾城农业生态系统试验站进行了夏玉米水分处理试验,在参数率定与模型验证的基础上对华北平原水量平衡及水分利用效率的现状进行了分析。结果表明,AquaCrop模型能够较好地模拟夏玉米的产量、生物量、冠层发育过程以及表层土壤水储量的动态变化。从生物量角度来看,夏玉米的水分利用效率在8月中旬达到最大,可达10 kg/m3左右,其整个生长季水分利用效率为4.9-5.8 kg/m3;从产量角度来看,水分利用效率为2.3-3.0 kg/m3,且在整个生长季土壤水储量呈增加趋势。研究阐明了AquaCrop模型在华北平原地区有较好的适用性,可以应用于夏玉米耗水与水分利用效率方面的研究。  相似文献   

16.
为了检验具有我国自主知识产权的基于相位差检测原理的时域反射仪(TDR)测定土壤水分的性能,利用室内土柱试验,获得了该仪器测定土壤含水量的标定曲线,分析了影响因素,并在田间对标定曲线进行了实际验证。结果表明,容重对仪器测定土壤含水量的影响不显著;土壤质地对校正结果有明显影响,供试的砂质土类,壤质黏土类和黏土类分别可以使用一个特定标定公式,R2均大于0.98,估计标准误差均小于0.020cm3/cm3;该仪器用于田间测定含水量的均方根误差小于0.035cm3/cm3。因此,经过室内标定后,将新型时域反射仪用于测定田间土壤含水量是可靠的。  相似文献   

17.
野外和室内试验表明,用6050Ⅺ型时域反射仪(TDR)测定土壤含水率与中子仪法相比,速度快,精度高;还发现随着导棒长度的增大,TDR与烘干法测定结果的偏差有所增大,文中给出了5种导棒长度的校正公式  相似文献   

18.
[目的]研究北京地区不同质地土壤水分变化规律。[方法]选取北京地区3种典型质地土壤观测站近5年的土壤水分观测资料,对土壤水分的年际变化和季节变化特征进行分析。[结果]黏土平均土壤含水率最大,壤土次之,砂壤土最小;3种质地土壤水分的季节变化均可分为4个时期,即初春短暂增墒期、春季失墒期、雨季增墒期和秋季失墒期;在雨季,砂壤土各层土壤水分随着降雨和蒸发而迅速变化,且变幅较大,黏土的变化最为平稳,但在少雨期黏土变化幅度较大。[结论]不同质地土壤水分在非冻结期内的季节变化特征总体相似,而随降水量变化的幅度有所差异。  相似文献   

19.
【目的】通过揭示不同土壤含水量对蔬菜产量及蔬菜地土壤水分渗漏量的影响,为蔬菜生产中合理灌溉提供指导。【方法】通过3年田间试验,利用TDR连续监测土壤含水量,运用田间定位通量法计算土体水分渗漏量,分析不同水分处理下蔬菜产量和土体水分渗漏量之间的差异。【结果】传统水分处理下蔬菜地水分累积渗漏量为982mm,其中蔬菜生长期内累积渗漏量为748mm,占蔬菜生长期内供水量的36%;优化水分处理和充分水分处理下蔬菜地水分累积渗漏量230mm和468mm,其中蔬菜生长期内水分累积渗漏量分别144mm和293mm,占各处理下供水量的9%和17%。除2002年优化和充分水分处理下花椰菜产量高于传统水分处理下花椰菜产量并达到显著水平外,其余年份蔬菜产量并无显著差异。【结论】保持土壤含水量在蔬菜生长有效土壤含水量50%~80%的优化水分处理在蔬菜生产中有很大的推广价值。  相似文献   

20.
介绍了一种根据土壤介电常数和传输线理论来测量土壤含水量的新型土壤水分传感器。传感器采用四针不等长结构,从探针结构、土壤种类、土壤容重和盐分等几个方面对该传感器的工作特性进行试验研究,结果表明该传感器输出稳定、线性度好,适应大多数土壤类型的测量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号