首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

Context

Arid rangelands have been severely degraded over the past century. Multi-temporal remote sensing techniques are ideally suited to detect significant changes in ecosystem state; however, considerable uncertainty exists regarding the effects of changing image resolution on their ability to detect ecologically meaningful change from satellite time-series.

Objectives

(1) Assess the effects of image resolution in detecting landscape spatial heterogeneity. (2) Compare and evaluate the efficacy of coarse (MODIS) and moderate (Landsat) resolution satellite time-series for detecting ecosystem change.

Methods

Using long-term (~12 year) vegetation monitoring data from grassland and shrubland sites in southern New Mexico, USA, we evaluated the effects of changing image support using MODIS (250-m) and Landsat (30-m) time-series in modeling and detecting significant changes in vegetation using time-series decomposition techniques.

Results

Within our study ecosystem, landscape-scale (>20-m) spatial heterogeneity was low, resulting in a similar ability to detect vegetation changes across both satellite sensors and levels of spatial image support. While both Landsat and MODIS imagery were effective in modeling temporal dynamics in vegetation structure and composition, MODIS was more strongly correlated to biomass due to its cleaner (i.e., fewer artifacts/data gaps) 16-day temporal signal.

Conclusions

The optimization of spatial/temporal scale is critical in ensuring adequate detection of change. While the results presented in this study are likely specific to arid shrub-grassland ecosystems, the approach presented here is generally applicable. Future analysis is needed in other ecosystems to assess how scaling relationships will change under different vegetation communities that range in their degree of landscape heterogeneity.
  相似文献   

18.

Context

An increase in the incidence of large wildfires worldwide has prompted concerns about the resilience of forest ecosystems, particularly in the western U.S., where recent changes are linked with climate warming and 20th-century land management practices.

Objectives

To study forest resilience to recent wildfires, we examined relationships among fire legacies, landscape features, ecological conditions, and patterns of post-fire conifer regeneration.

Methods

We quantified regeneration across 182 sites in 21 recent large fires in dry mixed-conifer forests of the U.S. northern Rockies. We used logistic and negative binomial regression to predict the probability of establishment and abundance of conifers 5–13 years post-fire.

Results

Seedling densities varied widely across all sites (0–127,500 seedlings ha?1) and were best explained by variability in distance to live seed sources (β = ?0.014, p = 0.002) and pre-fire tree basal area (β = 0.072, p = 0.008). Beyond 95 m from the nearest live seed source, the probability of seedling establishment was low. Across all the fires we studied, 75 % of the burned area with high tree mortality was within this 95-m threshold, suggesting the presence of live seed trees to facilitate natural regeneration.  

Conclusions

Combined with the mix of species present within the burn mosaic, dry mixed-conifer forests will be resilient to large fires across our study region, provided that seedlings survive, fire do not become more frequent, high-severity patches do not get significantly larger, and post-fire climate conditions remain suitable for seedling establishment and survival.
  相似文献   

19.

Context

Playa wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.

Objective

To develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.

Methods

We examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.

Results

We identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).

Conclusions

Our findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.
  相似文献   

20.

Context

In the face of global change, evidence-based information for policy development and political action is needed. Research syntheses have the potential to produce more reliable and generalizable results than are possible from small and regional extent primary studies. Data-sharing and detailed reporting are indispensable prerequisites for syntheses, however syntheses often are seriously hindered by insufficient reporting of primary data.

Objectives

Since many ecological processes are strongly influenced by spatial pattern, we suggest reporting guidelines for landscape-ecological studies. Better data reporting will not only benefit the quality of primary research studies, and allow replication, but also facilitate research syntheses.

Methods

We evaluated how landscape context information was reported in primary research articles including recently published articles in the journal Landscape Ecology. We further looked at the author guidelines for several journals to check what authors are expected to report.

Results

Specifically, we found that the existing reporting of landscape context information was insufficient to evaluate the effects of tropical forest edges on bird nest predation risk. More generally, exact study locations were not provided in any evaluated article. No journal gave detailed instructions to authors on how to report study characteristics.

Conclusions

We argue that consideration of the following reporting guidelines could substantially facilitate research syntheses: (1.1) detailed map of study area, (1.2) spatial location of sampling points; (2.1) land-use types; (2.2) vegetation, key resources, soil, geology, and disturbance history; (2.3) additional site parameters; (3) results for each sampling point.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号