首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present study gives an overview on the whole mechanism of phytate degradation in the gut and the enzymes involved. Based on the similarity of the human and pigs gut, the study was carried out in pigs as model for humans. To differentiate between intrinsic feed phytases and endogenous phytases hydrolysing phytate in the gut, two diets, one high (control diet) and the other one very low in intrinsic feed phytases (phytase inactivated diet) were applied. In the chyme of stomach, small intestine and colon inositol phosphate isomers and activities of phytases and alkaline phosphatases were determined. In parallel total tract phytate degradation and apparent phosphorus digestibility were assessed. In the stomach chyme of pigs fed the control diet, comparable high phytase activity and strong phytate degradation were observed. The predominant phytate hydrolysis products were inositol phosphates, typically formed by plant phytases. For the phytase inactivated diet, comparable very low phytase activity and almost no phytate degradation in the stomach were determined. In the small intestine and colon, high activity of alkaline phosphatases and low activity of phytases were observed, irrespective of the diet fed. In the colon, stronger phytate degradation for the phytase inactivated diet than for the control diet was detected. Phytate degradation throughout the whole gut was nearly complete and very similar for both diets while the apparent availability of total phosphorus was significantly higher for the pigs fed the control diet than the phytase inactivated diet. The pathway of inositol phosphate hydrolysis in the gut has been elucidated.  相似文献   

2.
Despite increasing practical experience and cascades of scientific reports on exogenous microbial phytases, several issues associated with their use remain unresolved because of the ambiguous and, at times, conflicting data that has been generated. One possible cause of these inconsistent outcomes is dietary calcium (Ca) levels, which are mainly derived from limestone. Thus the purpose of this review is to examine Ca interactions with dietary phytate and phytases, particularly exogenous, microbial phytases, and their consequences for poultry and pigs. The polyanionic phytate molecule has a tremendous capacity to chelate cations and form insoluble Ca–phytate complexes, which are refractory to phytase activity. Thus Ca–phytate complex formation along the gastrointestinal tract, where one phytate (IP6) molecule binds up to five Ca atoms, assumes importance and approximately one third of dietary Ca may be bound to phytate in digesta. Consequently, phytate limits the availability of both P and Ca as a result of insoluble Ca–phytate complex formation, the extent of which is driven by gut pH and molar ratios of the two components. It is accepted that Ca–phytate complexes are mainly formed in the small intestine where they have a substantial negative influence on the efficacy of mucosal phytase. However, exogenous phytases are mainly active in more proximal segments of the gut and lower pH levels, so their efficacy should not be influenced by Ca–phytate complexes in the small intestine. There is, however, data to indicate that Ca and phytate interactions occur under acidic conditions with the formation of soluble and insoluble Ca–phytate species, which could negatively impact on exogenous phytase efficacy. Also, Ca will tend to elevate gut pH because of limestone's very high acid binding capacity, which will favour Ca–phytate interactions and may influence the activity of exogenous phytases depending on their pH activity spectrum. The de novo formation of binary protein–phytate complexes that are refractory to pepsin hydrolysis may be fundamental to the negative impact of phytate on the digestibility of protein/amino acids. However, high dietary Ca levels may disrupt protein–phytate complex formation by interacting with both phytate and protein even at acidic pH levels, thereby influencing the outcomes of phytase amino acid digestibility assays. Finally, it is increasingly necessary to define the Ca and nonphytate-P requirements of pigs and poultry offered phytase-supplemented diets.  相似文献   

3.
The effectiveness of an Escherichia coli phytase in comparison with a commercially available Aspergillus phytase in improving the bioavailability of phosphorus in broilers, layers and young pigs was studied in three separate experiments. Three basal diets, marginally deficient in dietary P mainly provided as phytate, were formulated. Both phytases were added to the diets at the rate of 500 U/kg diet. The phytases significantly (P < or = 0.05) improved the availability of phytate P to broilers, layers and young pigs. Aspergillus and E. coli phytases enhanced the pre-caecal digestibility of P by 11 and 29% for broilers and 18 and 25% for layers, respectively. Total tract digestibility of P (P balance) was also enhanced but with smaller magnitude. In pigs, total tract digestibility of P was improved by 33 and 34% by Aspergillus and E. coli phytases, respectively. Under the conditions of this study, it was observed that E. coli consistently, though with small magnitude in layers and pigs, enhanced the availability of phytate P at the same range or slightly better than Aspergillus phytase. It was only in pigs that the availability of Ca was significantly (P < or = 0.05) improved by addition of both phytases. It can be concluded that E. coli phytase is highly effective in improving the bioavailability of phytate P to broilers, layers and young pigs. This seems to be based on the high proteolytic stability of the enzyme in the digestive tract, as shown recently.  相似文献   

4.
Six barrows of approximately 37 kg BW, fitted with two simple T-cannulas in the duodenum (25 cm posterior to the pylorus) and terminal ileum (12 to 15 cm anterior to the ileocecal junction), were fed two diets containing 2.1 g of P/kg in the form of phytic acid and a low intrinsic phytase activity (corn-soybean meal based diet [Diet A] or a typical Dutch diet [Diet B]) without or with supplementary microbial phytase from Aspergillus niger (var. ficuum) equal to 1,500 phytase units per kilogram of diet, in a crossover design. The apparent duodenal, ileal, and total tract (overall) digestibilities of DM, total P, and phytate P (phytic acid x .282) were calculated using both Cr-NDR (neutral detergent residue mordanted with Cr) and Co-EDTA as dual-phase markers. Concentration of total P in the ileal digesta (P less than .01) and feces (P less than .001) of pigs fed microbial phytase was lower than without this enzyme, irrespective of the diet. Ileal digestibility of total P was 18.5 and 29.8 percentage units higher (which was a 1.7- to 2.9-fold increase) due to added Aspergillus niger phytase (P less than .05). Also, total tract (overall) digestibility increased by 27.0 to 29.7 percentage units (P less than .01). Phytic acid concentration in the duodenal and ileal digesta of pigs receiving microbial phytase was lower (P less than .01 or .001), resulting in its higher ileal digestibility (dephosphorylation rate) by 50.1 percentage units for Diet A and by 75.4 percentage units for Diet B. Irrespective of the treatment, no phytase activity could be detected in the ileal digesta of pigs.  相似文献   

5.
The objective of these studies was to determine if dietary enzymes increase the digestibility of nutrients bound by nonstarch polysaccharides, such as arabinoxylans, or phytate in wheat millrun. Effects of millrun inclusion rates (20 or 40%), xylanase (0 or 4,375 units/kg of feed), and phytase (0 or 500 phytase units/kg of feed) on nutrient digestibility and growth performance were investigated in a 2 x 2 x 2 factorial arrangement with a wheat control diet (0% millrun). Diets were formulated to contain 3.34 Mcal of DE/kg and 3.0 g of true ileal digestible Lys/Mcal of DE and contained 0.4% chromic oxide. Each of 18 cannulated pigs (36.2 +/- 1.9 kg of BW) was fed 3 diets at 3x maintenance in successive 10-d periods for 6 observations per diet. Feces and ileal digesta were collected for 2 d. Ileal energy digestibility was reduced (P < 0.01) linearly by millrun and increased by xylanase (P < 0.01) and phytase (P < 0.05). Total tract energy digestibility was reduced linearly by millrun (P < 0.01) and increased by xylanase (P < 0.01). For 20% millrun, xylanase plus phytase improved DE content from 3.53 to 3.69 Mcal/kg of DM, a similar content to that of the wheat control diet (3.72 Mcal/kg of DM). Millrun linearly reduced (P < 0.01) ileal digestibility of Lys, Thr, Met, Ile, and Val. Xylanase improved (P < 0.05) ileal digestibility of Ile. Phytase improved ileal digestibility of Lys, Thr, Ile, and Val (P < 0.05). Millrun linearly reduced (P < 0.05) total tract P and Ca digestibility and retention. Phytase (P < 0.01) and xylanase (P < 0.05) improved total tract P digestibility, and phytase and xylanase tended to improve (P < 0.10) P retention. Phytase improved Ca digestibility (P < 0.05) and retention (P < 0.01). The 9 diets were also fed for 35 d to 8 individually housed pigs (36.2 +/- 3.4 kg of BW) per diet. Millrun reduced (P < 0.05) ADFI, ADG, and final BW. Xylanase increased (P < 0.05) G:F; phytase reduced (P < 0.05) ADFI; and xylanase tended to reduce (P = 0.07) ADFI. In summary, millrun reduced energy, AA, P, and Ca digestibility and growth performance compared with the wheat control diet. Xylanase and phytase improved energy, AA, and P digestibility, indicating that nonstarch polysaccharides and phytate limit nutrient digestibility in wheat byproducts. The improvement by xylanase of energy digestibility coincided with improved G:F but did not translate into improved ADG.  相似文献   

6.
Phytate formed during maturation of plant seeds and grains is a common constituent of plant-derived fish feed. Phytate-bound phosphorus (P) is not available to gastric or agastric fish. A major concern about the presence of phytate in the aquafeed is its negative effect on growth performance, nutrient and energy utilization, and mineral uptake. Bound phytate-P, can be effectively converted to available-P by phytase. During the last decade, phytase has been used by aqua feed industries to enhance the growth performance, nutrient utilization and bioavailability of macro and micro minerals in fish and also to reduce the P pollution into the aquatic environment. Phytase activity is highly dependent on the pH of the fish gut. Unlike mammals, fish are either gastric or agastric, and hence, the action of dietary phytase varies from species to species. In comparison to poultry and swine production, the use of phytase in fish feed is still in an unproven stage. This review discusses effects of phytate on fish, dephytinisation processes, phytase and pathway for phytate degradation, phytase production systems, mode of phytase application, bioefficacy of phytase, effects of phytase on growth performance, nutrient utilization and aquatic environment pollution, and optimum dosage of phytase in fish diets.  相似文献   

7.
Phytate is an antinutrient in animal feeds, reducing the availability and increasing the excretion of nutrients. Phytases are widely used to mitigate the negative influences of phytate. This trial was designed to compare the efficacy of 2 Escherichia coli-derived phytases on broiler performance and bone ash as influenced by dietary phytate level. A total of 1,024 Arbor Acres male broilers were used with 8 replicate pens of 16 birds/pen. Experimental diets were based on low available phosphorus (avP; 1.8 g/kg) with low (6.40 g/kg) or high (10.65 g/kg) phytate. The low-avP diets were then supplemented with mono-dicalcium phosphate to increase the avP level to 4.5 g/kg, 500 phytase units/kg of phytase A, or 500 phytase units/kg of phytase B to create 8 experimental diets. Feed intake, BW gain, FCR, and livability were influenced by a P source × phytase interaction. Feed intake, BW gain, and livability were reduced and FCR was higher in broilers fed low-avP diets, particularly in the presence of high phytate. Phytase A or phytase B improved feed intake, BW gain, and FCR, particularly in the high-phytate diet. However, broilers fed phytase A ate more and were heavier than broilers fed phytase B. Tibia ash was lowest in broilers fed the low-avP diet and highest in broilers fed the diet supplemented with mono-dicalcium phosphate. Phytase increased tibia ash, and broilers fed phytase A had an increase in tibia ash compared with broilers fed phytase B. In conclusion, high dietary phytate reduced broiler performance. Phytase A and phytase B improved bone ash and growth performance, especially in the high-phytate diets. However, phytase A was more efficacious than phytase B, regardless of the level of phytate.  相似文献   

8.
The efficacy of an Escherichia coli-derived phytase preparation   总被引:1,自引:0,他引:1  
Five experiments were conducted to evaluate the effect of an Escherichia coli-derived phytase on phytate-P use and growth performance by young pigs. The first experiment involved time course, pH dependence, and phytase activity studies to investigate the in vitro release of P from corn, soybean meal, and an inorganic P-unsupplemented corn-soybean meal negative control diet. In Exp. 2, which was designed to determine the efficacy of the E. coli-derived vs. fungal phytase-added diets at 0, 250, 500, 750, 1,000, or 1,250 FTU/kg (as-fed basis; one phytase unit or FTU is defined as the quantity of enzyme required to liberate 1 micromol of inorganic P/min, at pH 5.5, from an excess of 15 microM sodium phytate at 37 approximately C) and a positive control diet, eight individually penned 10-kg pigs per diet (12 diets, 96 pigs) were used in a 28-d growth study. The third experiment was a 10-d nutrient balance study involving six 13-kg pigs per diet (four diets, 24 pigs) in individual metabolism crates. In Exp. 4, eight pens (four pigs per pen) of 19-kg pigs per treatment were used in a 42-d growth performance study to examine the effect of adding the E. coli-derived phytase to corn-soybean diets at 0, 500, or 1,000 FTU/kg (as-fed basis) and a positive control (four diets, 128 pigs). In Exp. 5, six 19-kg pigs per treatment were used in a 10-d nutrient balance study to investigate the effects of the E. coli-derived phytase added to diets at 0, 250, 500, 750, or 1,000 FTU/kg (as-fed basis) and a positive control diet (six diets, 36 pigs). The in vitro study showed that the E. coli-derived phytase has an optimal activity and pH range of 2 to 4.5. Inorganic phosphate release was greatest for soybean meal, least for corn, and intermediate for the negative control diet. Dietary supplementation with graded amounts of E. coli-derived phytase resulted in linear increases (P < 0.05) in weight gain, feed efficiency, and plasma Ca and P concentrations in 10-kg pigs in Exp. 2. Phytase also increased P digestibility and retention in the 13-kg pigs in Exp. 3. In Exp. 4, dietary supplementation with E. coli-derived phytase resulted in linear increases (P < 0.05) in weight gain and feed efficiency of 19-kg pigs. Supplementation of the diets of 19-kg pigs with the E. coli-derived phytase also improved Ca and P digestibility and retention in Exp. 5. In the current study, the new E. coli-derived phytase was efficacious in hydrolyzing phytate-P, both in vitro and in vivo, in young pigs.  相似文献   

9.
The objective was to quantify the retention of digesta and evaluate the degradation of phytate or inositol hexakisphosphate (InsP(6)) and lower inositol phosphates (InsP?, InsP?, InsP?, and InsP?) in the stomach at different times after feeding pigs a fermented liquid diet with microbial phytase or a nonfermented diet with or without microbial phytase. Six barrows fitted with gastric cannulas were used. The experiment was a 3 × 3 Latin square with 3 pigs fed 3 diets during 3 wk in 2 replicates. Each experimental period lasted for 7 d, comprising 3 d of adaptation and 4 d of total collection of gastric digesta. For each pig, the digesta was collected once daily at 1, 2, 3, or 5 h after feeding the morning meal. A basal wheat- and barley-based diet was steam-pelleted at 90°C. The dietary treatments were a nonfermented basal diet (NF-BD), the NF-BD with microbial phytase (750 phytase units of phytase/kg, as-fed basis; NF-BD + phytase), and the NF-BD + phytase fermented for 17.5 h (F-BD + phytase). Gastric InsP?-P was not detected at all in pigs fed F-BD + phytase because of complete InsP? degradation during fermentation of the feed before feeding. Gastric InsP?-P decreased over time (P < 0.05) in pigs fed NF-BD and NF-BD + phytase. The decreases were 45, 54, 56, and 61 percentage points greater at 1, 2, 3, and 5 h, respectively, in pigs fed NF-BD + phytase compared with NF-BD. However, substantial amounts of InsP? still passed into the small intestine in pigs fed NF-BD + phytase, especially within the first hour (estimated to 17% of InsP?-P intake). The accumulation of lower inositol phosphates in gastric digesta was very small for all treatments and at all times because of a rapid and almost complete degradation. In conclusion, phytase addition to the nonfermented diet increased the degradation of gastric InsP?. However, considerable amounts of intact InsP? still passed into the small intestine because of a shortage of time for InsP? degradation in the stomach. Therefore, to increase the apparent digestibility of plant P in dry wheat- and barley-based diets, the development of phytases that can degrade InsP? effectively immediately after ingestion of the feed at an initial gastric pH from 6.5 to 5.0 is needed. Feeding F-BD + phytase compensated for the shortage of time because the InsP? degradation was completed during fermentation before feeding. The degradation of InsP? to InsP? is the bottleneck for plant P utilization in pigs because the degradation of the lower inositol phosphates is rapid and almost complete.  相似文献   

10.
Supplementation of microbial phytase usually improves the digestibility and utilization of phosphorus in feedstuffs of plant origin. The effect of phytase supplementation on the digestibilities of AA also has been examined, but the results have been inconsistent. This study was carried out to determine the effect of phytase (Natuphos) supplementation, at a rate of 2,000 phytase units/kg, to two basal diets on the apparent ileal digestibilities (AID) of GE, CP, and AA, and on the apparent total-tract digestibilities (ATTD) of CP and GE. The basal diets contained 18% CP and were formulated (as-fed basis) to contain either a low (0.22%) or high content (0.48%) of phytate P. The high-phytate diet contained 20% rice bran, which is a rich source of phytate and has low intrinsic phytase activity. Eight barrows (average initial BW = 40.6 kg), fitted with a simple T-cannula at the distal ileum, were fed the four diets according to a replicated 4 x 4 Latin square design. The pigs were fed twice daily at 0800 and 2000, equal amounts each meal, at a rate of 2.4 times the daily maintenance requirement for ME. Each experimental period comprised 14 d. Ileal digesta were collected from 0800 to 2000 on d 12, 13, and 14. Feces were collected from 0800 on d 8 until 0800 on d 12. Chromic oxide was used as the digestibility marker. The AID of GE, CP, and AA and the ATTD of CP and GE were less in the high- than in the low-phytate diet (P < 0.01). With the exception of glutamic acid, phytase supplementation did not affect (P > 0.10) the AID of CP and AA. There was no effect (P > 0.05) of phytase on the ATTD of CP and GE. These results show that if a response occurs to phytase supplementation, it is independent of the dietary phytate content.  相似文献   

11.
1. The study aimed to assess the effect of a commercially available microbial phytase on phytate phosphorus and total phosphorus content at the terminal ileum as well as true ileal amino acid digestibility. 2. Five diets, each containing a different plant-based feedstuff, were supplemented with microbial phytase and fed, along with a non-supplemented corresponding diet, to 28-d-old broiler chickens, Chromic oxide was used as an indigestible marker. Ileal contents were collected and analysed, along with the diets, for total phosphorus, phytate phosphorus and amino acids. 3. Endogenous phosphorus determined at the terminal ileum was 272 +/- 108 mg/kg food dry matter (mean +/- SE). Endogenous ileal amino acid flows ranged from 58 +/- 10 mg/kg food dry matter for methionine to 568 +/- 47 mg/kg food dry matter for glutamic acid. 4. Supplementation with microbial phytase resulted in a significantly greater phytate P disappearance from the terminal ileum for rice bran (17% units), but not for soyabean meal, maize, wheat or rapeseed meal. Similarly total phosphorus digestibility was significantly (P < 0.05) higher when microbial phytase was added to the rice-bran-based diet but not for any of the other feedstuffs. 5. Amino acid digestibility was significantly greater in the presence of microbial phytase for all the amino acids examined in wheat, for several of the amino acids each in maize and rapeseed meal and for one amino acid in rice bran and soyabean meal. The average increase in amino acid digestibility for those amino acids affected, was 13, 6, 10, 7 and 12% units for wheat, maize, rapeseed meal, rice bran and soyabean meal, respectively. 6. It appears that microbial phytase improves phosphorus digestibility and amino acid digestibility for certain plant-based feedstuffs.  相似文献   

12.
1. Four diets were offered to broiler chickens from 7 to 17 d of age; these included a phosphorus-adequate positive control (PC) (4·7 g/kg available P), a sub-optimal P negative control (NC, 2·5 g/kg available P) with (500 and 12500 FTU/kg) and without phytase. Dietary apparent metabolisable energy (AME), dietary net energy for production (NEp), the efficiency of AME retention (Kre), heat production and total tract amino acid digestibility coefficients were determined. The determination of NEp involved a comparative slaughter technique in which growing chickens were fed the experimental diets ad libitum. 2. Feed intake, weight gain and feed conversion efficiency increased significantly in a dose dependent manner in response to dietary phytase activity. Overall, the NEp of the phytase supplemented diets significantly improved by approximately 15·6% compared with the negative control, while dietary AME was unaffected. Although phytase did not affect AME, the large increase in the NEp demonstrated that dietary phytases improves energy utilisation, i.e. diverting more energy, not accounted for in the AME procedure, for production. This is largely a result of the stimulatory effect that phytase has on feed intake rather than on digestibility of the diet. 3. Overall, the diet supplemented with 12500 FTU had 6·4% significant improvement in total tract digestibility coefficients of the total amino acids compared with the negative control. With regard to individual amino acids, the impact of phytase was far more pronounced for threonine, an important component of the gastrointestinal mucin, than for other amino acids. 4. Dietary NEp was more highly correlated with performance criteria than dietary AME and seems to be a more sensitive way to evaluate broiler response to phytase supplementation.  相似文献   

13.
Consensus phytase is a new biosynthetic, heat-stable enzyme derived from the sequences of multiple homologous phytases. Two experiments were conducted to determine its effectiveness, relative to inorganic P and a mutant enzyme of Escherichia coli phytase (Mutant-EP), in improving dietary phytate-P availability to pigs. In Exp. 1, 36 pigs (3 wk old, 7.00 +/- 0.24 kg of BW) were fed a low-P corn-soybean meal basal diet plus consensus phytase at 0, 250, 500, 750, 1,000, or 1,250 U/kg of feed for 5 wk. Plasma inorganic P concentration, plasma alkaline phosphatase activity, bone strength, and overall ADG and gain:feed ratio of pigs were improved (P < 0.05) by consensus phytase in both linear (R2 = 0.20 to 0.70) and quadratic (R2 = 0.30 to 0.70) dose-dependent fashions. In Exp. 2, 36 pigs (4 wk old, 9.61 +/- 0.52 kg BW) were fed the basal diet + inorganic P at 0.1 or 0.2%, consensus phytase at 750 or 450 U/kg of feed, Mutant-EP at 450 U/kg of feed, or 225 U consensus + 225 U Mutant-EP/kg of feed. Pigs fed 750 U of consensus phytase or 450 U of Mutant-EP/kg feed had plasma inorganic concentrations and bone strength that fell between those of pigs fed 0.1 or 0.2% inorganic P. These two measures were 16 to 29% lower (P < 0.05) in pigs fed 450 U of consensus phytase/kg of feed than those of pigs fed 0.2% inorganic P. Plasma inorganic P concentrations were 14 to 29% higher (P < 0.05) in pigs fed Mutant-EP vs. consensus phytase at 450 U/kg at wk 2 and 3. In conclusion, the experimental consensus phytase effectively releases phytate P from the corn-soy diet for weanling pigs. The inorganic P equivalent of 750 U of consensus phytase/kg of feed may fall between 0.1 and 0.2%, but this requires further determination.  相似文献   

14.
Diarrhea incidence in weaned pigs may be associated with the concentration of intestinal microbial metabolites (ammonia, amines, and VFA) that are influenced by dietary CP content. Three experiments were conducted to determine effects of a low-protein, AA-supplemented diet on ileal AA digestibility, growth performance, diarrhea incidence, and concentration of microbial metabolites in ileal and cecal digesta of pigs weaned at 14 d of age. In Exp. 1, 8 pigs fitted with a simple T-cannula at the distal ileum were assigned in a crossover design to 2 diets containing 24 or 20% CP using wheat, corn, full-fat soybeans, whey powder, fish meal, and blood plasma as the main ingredients. Supplemental AA were added to the diets to meet the AA standards according to the 1998 NRC recommendations. Chromic oxide was used as an indigestible marker. Diets were fed at 2.5 times the ME requirement for maintenance. The reduction of dietary CP decreased (P < 0.05) the apparent ileal digestibility of most AA, except Lys, Met, Thr, Val, and Pro. Dietary CP content did not affect the pH of ileal digesta or ileal concentrations of ammonia N, cadaverine, putrescine, or VFA. In Exp. 2, 8 pigs fitted with a simple T-cannula in the cecum were assigned to 2 diets, similar to Exp. 1. Dietary CP content did not affect the pH of cecal digesta. The reduction in CP content decreased (P < 0.05) cecal ammonia N, acetic acid, isobutyric acid, isovaleric acid, total VFA, and putrescine concentrations by 28 to 39%. In Exp. 3, 32 pigs were assigned to 2 diets, similar to Exp. 1, according to a randomized complete block design. Pigs had free access to feed and water. Dietary CP content did not affect growth performance or fecal consistency scores during the 3-wk study, and diarrhea was not observed. The results of these experiments indicate that lowering the dietary CP content combined with supplementation of AA markedly reduced the production of potentially harmful microbial metabolites in cecal digesta of early-weaned pigs without affecting growth performance.  相似文献   

15.
An experiment with 224 weaner pigs (initial BW of 7.8 kg) was conducted to determine the effect of dose of dietary phytase supplementation on apparent fecal digestibility of minerals (P, Ca, Mg, Na, K, and Cu) and on performance. Four blocks, each with 8 pens of 7 pigs, were formed. Eight dietary treatments were applied to each block in the 43-d experiment: supplementation of 0 (basal diet), 100, 250, 500, 750, 1,500, or 15,000 phytase units (FTU) or of 1.5 g of digestible P (dP; monocalcium phosphate; positive control) per kilogram of feed. The basal diet, with corn, barley, soybean meal, and sunflower seed meal as the main components, contained 1.2 g of dP per kilogram of feed. Fresh fecal grab samples were collected in wk 4 and 5 of the experiment. Average daily feed intake, ADG, G:F, and digestibility of all of the minerals increased (P < 0.001) with increasing phytase dose. Digestibility of P increased from 34% in the basal diet to a maximum of 84% in the diet supplemented with 15,000 FTU, generating 1.76 g of dP per kilogram of feed. At this level, 85% of the phytate phosphorus was digested, compared with 15% in the basal diet. Compared with the basal diet, digestibility of the monovalent minerals increased maximally at 15,000 FTU, from 81 to 92% (Na) and from 76 to 86% (K). In conclusion, phytase supplementation up to a level of 15,000 FTU/kg of a dP-deficient diet improved performance of weaner pigs and digestibility of minerals, including monovalent minerals. Up to 85% of the phytate-P was digested. Thus, dietary phytase supplementation beyond present day standards (500 FTU/kg) could further improve mineral use and consequently reduce mineral output to the environment.  相似文献   

16.
无氮日粮纤维水平对猪内源氨基酸测值的影响   总被引:4,自引:0,他引:4  
以醋酸纤维素为纤维源配制成粗纤维水平分别为2.0%、5.0%、8.0%的3种无氮日粮,采用3头回—直肠吻合猪,分3期试验,通过3×3拉丁方设计研究在等进食量(750g/d)条件下日粮的纤维水平对回—直肠吻合猪消化道内源氨基酸测值的影响。结果表明:除缬氨酸、异亮氨酸和胱氨酸外,无氮日粮的粗纤维水平对回肠末端食糜干物质中其他内源氨基酸含量(%)无显著影响(P>0.05)。而对回肠末端内源氨基酸的总排泄量影响显著(P<0.05)或极显著(P<0.01)。相关分析表明,粗纤维水平与各种内源氨基酸的排泄总量之间存在显著(P<0.05)或极显著(P<0.01)的强相关关系,随无氮日粮中粗纤维水平的升高,各种内源氨基酸排泄量呈直线增加。  相似文献   

17.
The effects of phytase supplementation on the apparent ileal digestibility (AID) of amino acids (AA) have been inconsistent. Two experiments evaluated the effect of providing a mixture of pancreatic enzymes (Pancreatin®) to growing pigs fed sorghum–soybean meal diets supplemented with phytase on the AID of AA, energy, and phosphorus (P), as well as the ileal digestibility (ID) of phytate; there were four periods per experiment. In Experiment 1, eight pigs (BW 22.1 ± 1.3 kg) were fitted with a T‐cannula at the distal ileum. Each period consisted of 9 days; 7 days for diet adaptation, and 2 days for digesta collection. Treatments (T) were: (i) basal sorghum–soybean meal diet, (ii) basal diet plus Pancreatin®, (iii) basal diet plus phytase and (iv) basal diet plus phytase and Pancreatin®. Phytase increased the digestibilities of phytate and P (p < 0.001), but did not affect the AID of AA and energy (p > 0.10). Except for methionine (p = 0.07), Pancreatin® did not affect the AID of AA. Phytase and Pancreatin® did not interact (p > 0.10). Experiment 2 was similar to Experiment 1, but Pancreatin® was infused into duodenum. Pancreatin® infusion did not affect the AID of AA (p > 0.10); and tended to reduce (p = 0.09) the AID of lysine. Phytase × Pancreatin® interactions were not observed (p > 0.10). In conclusion, phytase and Pancreatin® did not improve the AID of AA in growing pigs fed sorghum–soybean meal diets indicating that phytates did not affect AA digestibility.  相似文献   

18.
The effect of pre-feeding treatment of a pig diet on gut environment and digestibility was studied in a double 3 × 3 Latin-square experiment using growing castrated PVTC cannulated male pigs. The diets were based on local feed resources and were fed raw (R), cooked (C) or naturally fermented (F). There were no differences (P > 0.05) in pH and butyric acid concentration of ileal digesta between diets. However, on diet F concentrations of acetic, lactic and propionic acid in ileal digesta were higher (P < 0.05) than on diets R and C. The relative proportions of individual organic acids in ileal digesta were not a reflection of the fermentation profile found in diet F. The ileal apparent digestibility of crude protein, crude fiber and NDF were higher (P < 0.05) on diet F than on diets R and C. The total tract apparent digestibility of crude protein was higher (P < 0.05) on diet F diet than on diets R and C, while there were no differences in total tract apparent digestibility between diets for any other dietary component. In conclusion, when compared with a pig diet in the raw form, fermentation influenced the gut environment and improved the digestibility of some dietary component, while cooking prior to feeding had no measurable effects.  相似文献   

19.
Phytases catalyse the hydrolysis of phytate rendering phosphorus (P) available for absorption. Endogenous plant phytases are to some extent present in cereals (depending on species and varieties) while microbial phytases are added to cereal based diets to increase the digestibility of phytate bound P. The present study compared two different microbial phytases. The basal diet was composed of wheat, barley, soybean and rapeseed meal without feed phosphate. The diet was initially expanded, pelleted at 90 °C and crumbled. Phytases were added at 250, 500 and 750 FTU kg− 1 diet (Aspergillus niger; Phytase 1) and 375 and 750 FYT kg− 1 diet (Peniophora lycii; Phytase 2). The experiment comprised 6 treatment groups of 6 pigs each kept in metabolism crates and fed one of the 5 test diets or a diet with no added microbial phytase. The diets were fed for 12 days, 5 days for adaptation and 7 days for total collection of faeces and urine. Phosphorus digestibility of the basal diet averaged 43% and increased to 55, 61 and 66% following addition of 250, 500 and 750 FTU/kg of Phytase 1 and 54 and 60% following addition of 375 and 750 FYT/kg of Phytase 2, respectively. In conclusion, equivalent effects were obtained when Phytase 2 was given at 1.5 times the doses of Phytase 1.  相似文献   

20.
The hypothesis that increase in dietary phytin amplifies phytin binding to protein thereby reducing protein digestion, which is alleviated by phytase, was tested. A 2 × 2 factorial arrangement of dietary treatments was used to investigate the response of growing pigs to supplemental phytase (0, or 1200 units/kg) in low- or high-phytin P diets (2.2 or 3.9 g/kg). Eight crossbred barrows (28–30 kg) were canulated and assigned to crates using a double, 4 × 4 Latin Square design. Pigs were fed each of the 4 diets at 3 times metabolic BW (0.09  BW kg 0.75) for 7 d. Ileal digesta was collected for 12 h on d 6 and d 7 by attaching plastic bags to the cannula. Feed and ileal digesta were analyzed for N, energy and P. Phytase had no effect on apparent ileal digestibility (AID) of N or AAs. The AID of some AAs was higher in the high-phytin diet, which contradicts the hypothesis that higher phytin content would have a negative impact. In contrast, the AID of P was depressed by high dietary phytin (P < 0.01) and increased by phytase (P < 0.01) more so at the higher dietary phytin resulting in a phytin × phytase interaction (P < 0.01).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号