首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 427 毫秒
1.
The effects of 60‐mg L?1 clove oil and 60‐mg L?1 tricaine methanesulphonate (MS‐222) on the blood chemistry of rainbow trout were compared after exposure to handling stress via caudal puncture blood sampling. Fish sampled by caudal puncture and subsequently exposed to anaesthetics showed a typical handling stress response over a 48‐h period. There were no significant differences between the responses of fish exposed to equal concentrations of clove oil and MS‐222, with the following exceptions: the blood glucose at full anaesthesia, and lactate at full recovery increased significantly in the clove oil‐exposed fish. In a subsequent experiment, the stress response observed in fish sampled by caudal puncture and exposed to clove oil and MS‐222 was compared with a non‐anaesthetized control group. The increases in plasma cortisol levels were significantly lower at recovery in fish treated with either anaesthetic compared with the control fish. Fish exposed to MS‐222 had significantly higher cortisol levels at 1 h. These findings show that few differences exist between the anaesthetic effects of clove oil and MS‐222 on the physiological response of fish to stress. However, clove oil is more effective at reducing the short‐term stress response induced by handling and blood sampling, and is recommended as an alternative fish anaesthetic.  相似文献   

2.
The effects of four anaesthetic agents, tricaine methanesulphonate (MS‐222) (112.5 mg L?1), 2‐phenoxyethanol (400 μL L?1), clove oil (70 mg L?1) and benzocaine (65 mg L?1) on juvenile marbled spinefoot (Siganus rivulatus) of three mean body weights (7.3 g, 19.1 g, 55.5 g) and at three temperatures (20, 25, 30°C) were evaluated. In addition, the relationship between body lipid content and efficacy of the four anaesthetic agents was evaluated in juvenile S. rivulatus. Times necessary for induction and recovery were recorded. Significant effects of temperature on induction and recovery times were observed. Induction and recovery times decreased with increasing water temperature. No uniform relationship between body weight of juvenile marbled spinefoot and anaesthetic efficacy was observed. Body fat content was positively correlated with induction time only when MS‐222 was used but did not affect induction times of fish exposed to 2‐phenoxyethanol, clove oil or benzocaine. Recovery times were generally longer for all fish containing more body fat. Results of the study show that anaesthetic efficiency increases with increasing water temperature but is not strongly affected by body weight for juvenile marbled spinefoot. In addition, body fat in fish affected the efficacy of the various anaesthetic agents tested in this study, generally slowing down recovery.  相似文献   

3.
Clove oil has been demonstrated to be an effective, inexpensive anaesthetic and euthanizing agent for a number of fish species, including rainbow trout, used in aquaculture and fisheries research. However, the potential for clove oil to cause perturbations in important plasma hormone concentrations has not been investigated. The effect of anaesthesia and euthanasia in trout with eugenol (the active ingredient in clove oil) on plasma cortisol, glucose, growth hormone (GH) and two thyroid hormones [tri‐iodothyronine (T3) and thyroxine (T4)] was compared with tricaine methanesulfonate (MS‐222) anaesthesia, and stunning by cranial concussion in two experiments. Effects on blood chemistry were different when comparing the particular anaesthetic method being used. Stunning fish significantly increased plasma cortisol and glucose levels (both P<0.05), while euthanizing fish using either clove oil or MS‐222 had no effect on these hormone levels. In contrast, the levels of GH, T3 and T4 hormones were unaffected regardless of whether fish were euthanized by stunning, MS‐222 or clove oil. Variation in effects between hormones were observed using clove oil eugenol. In fish sampled 10 min after anaesthetizing with 150 mg L?1 of eugenol, cortisol levels were significantly decreased (P<0.03), while there were no differences in either glucose or GH levels. Tri‐iodothyronine and T4 also showed significantly elevated levels (P<0.05) after 10‐min exposure to eugenol. These results highlight the importance of investigating the potential effects of any new anaesthetic or euthanizing compounds on blood plasma parameters, prior to using them in a research setting, or when comparing results to other studies which have utilized alternative anaesthetic compounds.  相似文献   

4.
This study investigated the feasibility of using clove oil, 2-phenoxyethanol, or Propiscin as an alternative to tricaine methane sulphonate (MS 222) as a fish anaesthetic, particularly in regard to reducing fish stress. The biochemical blood profiles of perch Perca fluviatilis L. anaesthetized with either MS 222 (100 mg L−1), clove oil (33 mg L−1), 2-phenoxyethanol (0.40 mL L−1) or Propiscin (1.0 mL L−1), and a non-anaesthetized control group were compared. Biochemical profiles were determined from blood samples collected before treatment in controls. For each anaesthetic tested, fish were divided into two groups, one sampled immediately after 10-min anaesthesia and a second, sampled 24 h after 10-min anaesthesia. The values determined in the present study suggested that internal organs and tissues of perch were slightly altered by MS 222, clove oil and 2-phenoxyethanol anaesthesia, but not by Propiscin anaesthesia.  相似文献   

5.
Effect of anaesthesia with clove oil in fish (review)   总被引:1,自引:0,他引:1  
Clove oil is an effective, local and natural anaesthetic. Many hatcheries and research studies use clove oil to immobilize fish for handling, sorting, tagging, artificial reproduction procedures and surgery and to suppress sensory systems during invasive procedures. Clove oil may be more appropriate for use in commercial aquaculture situations. Improper clove oil use can decrease fish viability, distort physiological data or result in mortalities. Because animals may be anaesthetized by unskilled labourers and released in natural water bodies, training in the proper use of clove oil may decrease variability in recovery and experimental results and increase fish survival. Here, we briefly describe many aspects of clove oil, including the legal uses of it, anaesthesia mechanism and what is currently known about the preparation and behavioural and pathologic effects of the anaesthetic. We outline methods and precautions for administration and changes in fish behaviour during progressively deeper anaesthesia and discuss the physiological effects of clove oil, its potential for compromising fish health and effectiveness of water quality parameters.  相似文献   

6.
The aim of this study was to evaluate the use of clove (Syzygium aromaticum), camphor (Cinnamomum camphora) and mint (Mentha arvensis) essential oils as anaesthetics during the management of clown anemonefish (Amphiprion ocellaris). For 15 min, the animals were subjected to concentrations of 5, 10, 20, 27 and 35 μL L?1 of clove oil, 17, 35, 50, 70 and 100 μL L?1 of mint oil, and 200, 400, 500, 550 and 600 μL L?1 of camphor oil (tested in 10 animals per concentration). A control group (without anaesthetic) and a complementary group, which was exposed to ethanol, were also evaluated. After exposure to the anaesthetic, the fish were transferred to clean water to assess recovery. The mortality and feeding behaviour of the fish were then observed for 48 h after exposure to the oils. All of the essential oils produced an anaesthetic effect on A. ocellaris. The 27, 70 and 500 μL L?1 concentrations of clove, mint, and camphor oils promoted surgical anaesthesia after 310.5, 312.0, and 535.0 s (medians) respectively. The recovery times of fish exposed to these same concentrations were 396, 329.5 and 229 s respectively. The decision of which oil to use is dependent on the management situation and the consideration of the induction and recovery times of each essential oil.  相似文献   

7.
The present study determined the effective concentrations of clove oil and MS‐222 in juvenile rohu Labeo rohita for quick induction and recovery. The immune‐biochemical responses due to 0, 1 and 24 hr exposure to those anaesthetics were also evaluated. Of four concentrations of the anaesthetics examined, the lowest effective concentration of clove oil and MS‐222 were 50 µl/L and 125 mg/L respectively. Clove oil and MS‐222 significantly increased the myeloperoxidase, total protein and alkaline phosphatase activity at some of the holding durations. However, superoxide anion production (after 0 and 1 hr) and antiprotease activity (after 24 hr) were significantly reduced in fish exposed to clove oil. Serum glucose content was significantly elevated in the MS‐222‐treated group. Furthermore, the clove oil‐treated group showed significantly higher levels of serum Na+ and K+, while the aspartate and alanine aminotransferase activities were significantly enhanced in the MS‐222 group. The use of both clove oil and MS‐222 is advised as an anaesthetic agent for rohu with a bias towards clove oil, considering its economic and operational feasibility.  相似文献   

8.
The effects of weekly anaesthetization with clove oil and tricaine methanesulphonate (MS‐222) on feed intake and growth were examined in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually. Repeated handling without anaesthetics significantly reduced feed intake and weight gain compared with an unhandled control group during an 8‐week experiment. When anaesthetics were used during handling the feed consumption and weight gain were significantly (MS‐222) or not significantly (clove oil) higher than in fish handled without anaesthesia. When compared with the unhandled control group, neither of these two anaesthetics had significant effects on feed intake but, in contrast to MS‐222, repeated anaesthesia with clove oil had a significant negative effect on growth. However, the effects of MS‐222 and clove oil on the growth were not significantly different from each other. Feed conversion ratio (feed/gain) of MS‐222‐anaesthetized fish was significantly higher compared with unhandled control and handled control fish but was not significantly different from fish anaesthetized with clove oil. These results suggest that both MS‐222 and clove oil alleviate handling stress in juvenile rainbow trout, and that these two anaesthetics are rather similar with respect to their effects during repeated exposures.  相似文献   

9.
We evaluated the anaesthetic effect of clove oil [2‐methoxy‐4‐2‐(2‐propenyl)‐phenol] on the common octopus (Octopus minor), in terms of the time required to become anaesthetized (‘anaesthetic time’) and recovery time. We used a factorial experimental design and administered clove oil at different temperatures (15, 20 and 25°C) and concentrations (50, 100, 150, 200, 250 and 300 mg L−1). We observed a significant (P<0.05) relationship between concentration and temperature, and each variable was effective (P<0.05). Anaesthetic time linearly decreased as the concentration and temperature increased. However, recovery time increased as the concentration increased and temperature decreased. There was no mortality. A concentration of 200 mg L−1 clove oil showed rapid anaesthetic and recovery times in the common octopus, indicating its suitability for this species.  相似文献   

10.
The physiological ionoregulatory, metabolic and immune responses of Persian sturgeon, Acipenser persicus, to acute stress were investigated. Water levels were lowered to the fish dorsal scutes, and fish were blood‐sampled before stress (pre‐stress), and 0, 6, 24 and 72 h after stress. Results showed that serum cortisol rapidly increased after stress, returning to initial levels at 24 h. Serum glucose significantly increased at 6 h, declining to the pre‐stress levels at 72 h. Serum triglyceride and cholesterol showed significant decreases at 0 h, then increasing to higher than the initial levels at 72 h. Serum T3 and T4 significantly decreased at 0 h and recovered at 72 h. Serum chloride levels showed no significant changes while serum calcium showed a significant increase at 0 h and a further increase until 72 h poststress. Serum total protein and alternative complement activity showed a significant initial decrease and recovery at 24 h with further increase at 72 h. Serum lysozyme activity increased significantly at 24 and 72 h after stress. Serum total immunoglobulin significantly increased at 0 h and peaked at 24 h. This is the first work showing thyroid hormone and immunological responses in Persian sturgeon subjected to stress, and the results show that this species follows a classical hormonal and energetic stress response, although, in the low range among the sturgeons. Although transient and moderate, confinement stress can induce significant changes in the innate immune response.  相似文献   

11.
Anaesthetics are used in aquaculture and fisheries to facilitate routine procedures, such as capture, handling, transportation, tagging, grading and measurements that can often cause injury or induce physiological stress. Two experiments were performed to assess the efficacies of four anaesthetic agents, clove oil, benzocaine, 2‐phenoxyethanol and MS‐222 on juvenile marbled spinefoot rabbitfish (Siganus rivulatus). In the first experiment we tested the lowest effective doses that produced induction and recovery times in 3 min or less and 5 min or less respectively. Dosages were 70 mg L?1 for clove oil, 60–70 mg L?1 for benzocaine, 400 μL L?1 for 2‐phenoxyethanol and 100–125 mg L?1 for MS‐222. In the second experiment, we determined optimal concentrations of the four anaesthetics if they were to be used to transport rabbitfish fry. Anaesthetic concentrations suitable for handling and transport were: 10–15 mg L?1 of MS‐222, 5–10 mg L?1 of benzocaine, 5 mg L?1 of clove oil and 50–100 μL L?1 of 2‐phenoxyethanol. All anaesthetic agents are acceptable for use on S. rivulatus, however, 2‐phenoxyethanol, MS‐222 and clove oil appear to be more suitable than benzocaine. Further studies need to be conducted on effects of high and low doses of anaesthetic agents on physiology of marbled spinefoot.  相似文献   

12.
Abstract— The freshwater prawn Macrobrachiurn rosenbergii is a commercially important culture species in the South Central United States. Two major constraints in the commercial culture of the freshwater prawn in the U.S. are poor survival during live transportation of seed‐stock to growout ponds, and live transportation of pond harvested prawn to distant live markets due to the territorial and cannibalistic nature of prawn. The use of anesthetics could possibly improve transport survival; however, to date anesthetic agents have not been evaluated for use with prawn. Two trials were conducted with juvenile freshwater prawn to compare the efficacy of anesthetics commonly used on fish. The first trial was designed to identify the most promising candidates. In Study 1, tricaine methanesulfonate (MS‐222), 2‐phenoxyethanol, quinaldine sulfate (quinaldine), clove oil, and Aqui‐STM were evaluated at 25 and 100 mg/L for 1 h in three replicate 10‐L glass containers, containing five juvenile prawn each. Relative sedation level was determined every 3 min for 1 h, then recovery time and survival were measured. In Study 1, MS‐222 and 2‐phenoxyethanol were determined to be ineffective on prawn at all rates tested. Based on their performance in Study 1, quinaldine, clove oil, and AquiSTM were evaluated at 100, 200, and 300 mg/L in Study 2. Observations were determined as in Study 1. Clove oil and Aqui‐STM induced anesthesia faster and at lower concentrations than quinaldine. At the highest treatment rate (300 mg/L) prawn suffered 60% mortality in the Aqui‐STM treatment, 13% mortality in the quinaldine treatment, and 0% mortality in the clove oil treatment and control following a 1‐h exposure to these concentrations. Based on these data, Aqui‐STM and clove oil applied at 100 mg/L may be suitable anesthetic treatments for prawn. Additional research is needed to determine optimal time and dose relationships to minimize stress during holding, handling, and transportation of prawn.  相似文献   

13.
Juvenile and adult black sea bass (Centropristis striata L.) were exposed to various concentrations of four anaesthetics to determine practical dosages for handling as well as for procedures such as bleeding, ovarian biopsy or tag implantation. In experiment 1, juveniles exposed to either 2.0 mg L?1 metomidate, 15 mg L?1 clove oil, 70 mg L?1 tricaine methanesulphonate (TMS) or 200 mg L?1 2‐phenoxyethanol (2‐PE) reached stage II of anaesthesia in 3–5 min and could be handled for weighing and measuring. All fish had completed recovery to stage III within 6 min. In experiment 2, the established concentrations of each anaesthetic were tested on juveniles to determine their ability to prevent a reflex to a subcutaneous needle puncture. All of the fish exposed to clove oil (20 mg L?1) and 40% of the TMS‐treated (70 mg L?1) fish reacted while none of the fish anaesthetized in metomidate (2.0 mg L?1) or 2‐PE (200 mg L?1) responded to the needle puncture. In experiment 3, metomidate (5.0 mg L?1), clove oil (30 mg L?1) TMS (125 mg L?1) or 2‐PE (300 mg L?1) were all effective for performing an ovarian biopsy or tag implantation on adults. In experiment 4, TMS (125 mg L?1) exacerbated the cortisol response to a short handling stressor during a 30 min exposure. Fish anaesthetized in 2‐PE (300 mg L?1), metomidate (5.0 mg L?1) or clove oil (40 mg L?1) had increased cortisol levels associated with the handling stressor but there were no further increases during the remainder of the experimental period. The results demonstrate that these anaesthetics are effective for sedation and anaesthesia of black sea bass and that the best choice is dependant upon the procedures to be performed.  相似文献   

14.
This study explores the anaesthetic activity of Alpinia galanga oil (AGO) in fish. Cyprinus carpio (koi carp) was used as a fish model. It was found that the induction time to stage 3 anaesthesia and the recovery time of the fish after exposure to AGO were exponentially and polynomially correlated to AGO concentrations. The viability of normal blood cells of koi carp anaesthetized with 500 mg/L AGO was found to be higher than 90% for normal red blood cells and white blood cells and 89% for peripheral blood nuclear cells indicating nontoxicity of AGO to the fish. A concentration of 300 mg/L of AGO was the most suitable for anaesthetizing koi carp due to the safety and effectiveness aspects as being ideally fitted to anaesthetic criteria. This concentration gave the induction time of 205.55 ± 5.07 s and the recovery time of 202.50 ± 9.30 s. Determination of stress biomarker such as blood cortisol and glucose as well as gene expression showed that the blood cortisol level of the fish anaesthetized with AGO was similar to normal levels. Moreover, blood glucose level was significantly less increased than those anaesthetized with tricaine methanesulfonate. Gene expressions of the fish cortisol receptor, cytochrome oxidase subunit1, heat shock protein 70 and Na+/K+‐ATPaseα3 were significantly reduced after exposure to AGO indicating the advantages of AGO on fish stress reduction. Thus, AGO is a promising natural source for an alternative fish anaesthetics.  相似文献   

15.
The effects of clove oil anaesthetic on mitigating the physiological responses to air exposure, a stressful and routine situation in fish farming, laboratory conditions and sport fishing (catch and release), were evaluated in lambari (A. altiparanae). Adult females (n = 80) were randomly sorted to receive one of four treatments: control, anaesthesia (clove oil 50 mg/L), stress (5 min air exposure) and pre‐anaesthesia associated to stress. Their cortisol, glucose, lactate and haematocrit levels, the hepatosomatic index (HSI), liver and muscle glycogen, lipid peroxidation and the enzymatic activity of lactate dehydrogenase (LDH), catalase (CAT) and glutathione reductase (GR), were recorded. Glucose levels increased (53.9%) after anaesthesia and/or stress. The stress situation increased plasma cortisol (146.6%), lactate (294.6%) and lipid peroxidation in white muscle (45%) and decreased glycogen in white muscle (40.1%). The haematocrit increased after stress or anaesthesia (7.9%) while the liver glycogen and HSI did not change. Anaesthesia or stress did not affect the LDH but reduced the activity of CAT (46.1%) and GR (30.3%). We concluded that the anaesthetic clove oil in the concentration 50 mg/L modulates the physiological responses to air exposure stress improving the welfare; air exposure and clove oil affect the antioxidant defences of lambari; the activity of CAT and GR and the concentration of MDA can be used as biomarkers of stress in A. altiparanae.  相似文献   

16.
We examined the effects tricaine methanesulfonate (MS-222), clove oil and CO2 on feed intake and cortisol response in steelhead trout, Oncorhynchus mykiss. Even though a body of literature exists about the effects of different anaesthetics on fish, no comparative information seems to be available about their effects on feed intake after anaesthesia, which would be important to know especially in aquaculture research. We anaesthetised juvenile steelhead trout with these three anaesthetics, and then sampled them 4, 24 and 48 h later. Fish in all groups ate relatively well already 4 h after anaesthesia. However, feed intake in fish treated with clove oil or MS-222 was lower than in the controls. There were no differences in feed intake among anaesthetised groups. Plasma cortisol concentrations were elevated 48 h after anaesthetisation, but the treatment means were equal throughout the experiment. Our results support previous findings that clove oil is a reasonable alternative to MS-222.  相似文献   

17.
Responses to anaesthesia with essential oil (EO) of Aloysia triphylla (135 and 180 mg L?1) and tricaine methanesulfonate (MS222) (150 and 300 mg L?1) were assessed in silver catfish. Exposure to the anaesthetics elicited a stress response in the species. In the case of MS222, it was displayed as a release of cortisol into bloodstream, elevation in hematocrit and plasma ion loss. The EO presented cortisol‐blocking properties, but increased haematocrit and disturbances of hydromineral balance were observed. Liver antioxidant/oxidant status of EO and MS222‐anaesthetized silver catfish was also estimated. The synthetic anaesthetic induced lipoperoxidation, notwithstanding increased catalase contents, whereas the naturally occurring product was capable of preventing the formation of lipid peroxides, possibly due to combined actions of catalase and glutathione‐S‐transferase. Anaesthetic efficacy was also tested via induction and recovery times. Overall, the promising results obtained for the physiological parameters of the EO‐treated fish counterbalanced the slight prolonged induction time observed for 180 mg L?1. As for 135 mg L?1, both induction and recovery times were lengthy; despite that, the EO was able to promote oxidative protection and mitigate stress. None of the MS222 concentrations prompted such responses concomitantly.  相似文献   

18.
To handle large river eels during procedures such as measuring and tagging for field and aquaculture studies, they must be anaesthetized. During our initial biological studies of Anguilla reinhardtii (Steindachner) it was found that the anaesthetic benzocaine was relatively expensive and elicited a variable response, even when used at relatively high concentrations. Human health risks are also a concern when using benzocaine, as some of the eels may later be sold for human consumption. Therefore, experiments were done to evaluate the use of clove oil (a safe, naturally occurring product) for anaesthesia of this species at a range of temperatures (17 and 25 °C) and salinities (0–32 g L?1). It was found that clove oil provided a suitable anaesthetic response through this wide range of temperatures and salinities. Response times were found to be relatively variable for both benzocaine and clove oil. This variability may be related to stress, environmental factors, or the condition of the fish. Clove oil is recommended for anaesthesia of anguillid eels because it is effective, relatively inexpensive, and poses little risk to human health.  相似文献   

19.
The anaesthetic effects of clove-oil-derived eugenol were studied in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum). Acute lethality and the effects of multiple exposures to eugenol were measured. The estimated 8-96 h LC50 for eugenol was found to be approximately 9 p.p.m. Times to induction and recovery from anaesthesia were measured and compared with MS-222 under similar conditions. Eugenol generally induced anaesthesia faster and at lower concentrations than MS-222. The recovery times for fish exposed to eugenol were six to 10 times longer than in those exposed to similar concentrations of MS-222. Clove oil eugenol was determined to be an acceptable anaesthetic with potential for use in aquaculture and aquatic research. Doses of 40-60 p.p.m. eugenol were found to induce rapid anaesthesia with a relatively short time for recovery in juvenile trout.  相似文献   

20.
We studied the simultaneous effect of sex and dose on anaesthesia efficacy to estimate, if possible, the lowest effective dose (LED) for clove oil, tricaine methanesulphonate (MS‐222), 2‐phenoxyethanol (2‐PE) and propofol in mature guppies. LED is the lowest dose needed to reach A5 stage in a mean time of 3 min, with mean recovery (R5) time of 5 min. We used four doses/anaesthetic: 25, 50, 75 and 100 mg/L for clove oil; 120,140,160 and 180 mg/L for MS‐222; 800, 1,000, 1,200 and 1,400 mg/L for 2‐PE, and 7.50, 8.25, 10.00 and 11.25 mg/L for propofol. Each dose was tested on 10 females and 10 males. Morbidity, mortality and behavioural changes were checked on two control groups (10 males and 10 females/group). Sedation (A3), A5 and R5 times were recorded. Significant interactive effect dose*sex on A5 time was found for each anaesthetic agent (pdose*sex < .05). Except for MS‐222 (pdose*sex = .284), significant interactive effect dose * sex on R5 time was found (pdose*sex < .05). A5 time in females tended to be greater than in males, but, in general, R5 times were longer in males. Body size differences between males and females could explain these differences in MS‐222 on A5 time and for clove oil, 2‐PE and propofol on R5 time. No dose simultaneous meet LED′s conditions relating to both A5 and R5 times; therefore the lowest doses inducing A5 in a mean time of 3 min could be a safe guideline for anaesthetic procedure in both male and females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号