首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetics of a 2:1 ampicillin-sulbactam combination were studied in 6 sheep, after intravenous and intramuscular injection at a single dose rate of 20 mg/kg body weight (13.33 mg/kg of sodium ampicillin and 6.67 mg/kg of sodium sulbactam). The drugs were distributed according to an open 2-compartment model after intravenous administration and a one-compartment model with first order absorption after intramuscular administration. The apparent volumes of distribution calculated by the area method of ampicillin and sulbactam were 0.32+/-0.06 L/kg and 0.42+/-0.04 L/kg, respectively and the total body clearances were 0.69+/-0.07 and 0.38+/-0.03 L/kg x h, respectively. The elimination half-lives of ampicillin after intravenous and intramuscular administration were 0.32+/-0.05 h and 0.75+/-0.27 h, respectively, whereas for sulbactam the half-lives were 0.74+/-0.10 h and 0.89+/-0.16 h, respectively. The bioavailability after intramuscular injection was high and similar in both drugs (72.76+/-9.65% for ampicillin and 85.50+/-8.35% for sulbactam). The mean peak plasma concentrations of ampicillin and sulbactam were reached at similar times (0.25+/-0.10 h and 0.24+/-0.08 h, respectively) and peak concentrations were also similar but nonproportional to the dose of both products administered (13.01+/-7.36 mg/L of ampicillin and 10.39+/-3.95 mg/L of sulbactam). Both drugs had a similar pharmacokinetic behavior after intramuscular administration in sheep. Since the plasma concentrations of sulbactam where consistently higher during the elimination phase of their disposition, consideration could be given to formulating the ampicillin-sulbactam combination in a higher than 2:1 ratio.  相似文献   

2.
The pharmacokinetics of a 2:1 ampicillin-sulbactam combination after intravenous (i.v.) and intramuscular (i.m.) injection at a single dose rate of 20 mg/kg bodyweight (13.33 mg/kg of sodium ampicillin and 6.67 mg/kg of sodium sulbactam) were studied in 10-day-old neonatal calves (n = 10). The plasma concentration-time data of both antibiotics were best fitted to an open two-compartment model after i.v. administration. After i.m. administration, an open two-compartment model demonstrated first order absorption. The apparent volumes of distribution of ampicillin and sulbactam, calculated by the area method, were 0.20+/-0.01 and 0.18+/-0.01 L/kg, respectively, and the total body clearances were 0.51+/-0.03 and 0.21+/-0.01 L/kg h. The elimination half-lives of ampicillin after i.v. and i.m. administration were 0.99+/-0.03 and 1.01+/-0.02 h, respectively, whereas for sulbactam the half-lives were 2.24+/-0.02 and 3.44+/-0.94 h. The bioavailability after i.m. injection was high and similar for both drugs (70.31+/-0.2% for ampicillin and 68.62+/-4.44% for sulbactam). The mean peak plasma concentrations of ampicillin and sulbactam were reached at similar times (0.47+/-0.02 and 0.72+/-0.01 h, respectively) and peak concentrations were also similar but not proportional to the dose administered (17.88+/-0.91 mg/L of ampicillin and 12.92+/-0.79 mg/L of sulbactam). Both drugs had similar pharmacokinetic behaviour after i.m. administration. Since the plasma concentrations of sulbactam were consistently higher during the elimination phase of their disposition, consideration could be given to formulating the ampicillin-sulbactam combination in a ratio higher than 2:1.  相似文献   

3.
Summary

Some pharmacokinetic parameters of an ampicillin/sulbactam (2:1) combination were studied in six goats, after intravenous and intramuscular injection at a single dosage of 20 mg/kg bodyweight (13.33 mg/kg of sodium ampicillin and 6.67 mg/kg of sodium sulbactam). The drugs were distributed according to an open two‐compartment model. The apparent volumes of distribution calculated by the area method of ampicillin and sulbactam were 0.34 ± 0.04 l/kg and 0.45 ± 0.15 1/kg, respectively, and the total body clearances were 0.72 ± 0.11 and 0.38 ± 0.07 l/kg.h. The half‐lives of ampicillin after intravenous and intramuscular administration were 0.32 ± 0.04 h and 0.71 ± 0.14 h, respectively. For sulbactam the half‐lives were 0.79 ± 0.18 h and 1.13 ± 0.21 h after administration by the same routes. The bioavailability after intramuscular injection was high and similar for both drugs (98,29% for ampicillin and 101.84% for sulbactam). The mean peak plasma levels of ampicillin (0.43 ± 0.27 h) and sulbactam (0.34 ± 0.14 h) were reached at a similar time, and peak concentrations were also similar and non‐proportional to the dose of the products administered (11.02 ± 3.11 mg/l of ampicillin and 9.5 ± 0.98 mg/l of sulbactam).  相似文献   

4.
OBJECTIVE: To investigate the disposition kinetics of ampicillin and sulbactam after IV and IM administration of an ampicillin-sulbactam (2:1) preparation and determine the bioavailability of the combined preparation after IM administration in turkeys. ANIMALS: 10 healthy large white turkeys. PROCEDURE: In a crossover study, turkeys were administered the combined preparation IV (20 mg/kg) and IM (30 mg/kg). Blood samples were collected before and at intervals after drug administrations. Plasma ampicillin and sulbactam concentrations were measured by use of high-performance liquid chromatography; plasma concentration-time curves were analyzed via compartmental pharmacokinetics and noncompartmental methods. RESULTS: The drugs were distributed according to an open 2-compartment model after IV administration and a 1-compartment model (first-order absorption) after IM administration. For ampicillin and sulbactam, the apparent volumes of distribution were 0.75+/-0.11 L/kg and 0.74+/-0.10 L/kg, respectively, and the total body clearances were 0.67+/-0.07 L x kg(-1) x h(-1) and 0.56+/-0.06 L x kg(-1) x h(-), respectively. The elimination half-lives of ampicillin after IV and IM administration were 0.78+/-0.12 hours and 0.89+/-0.17 hours, respectively, whereas the corresponding half-lives of sulbactam were 0.91+/-0.12 hours and 0.99+/-0.16 hours, respectively. Bioavailability after IM injection was 58.87+/-765% for ampicillin and 53.75+/-5.35% for sulbactam. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that a regimen of loading and maintenance doses of 300 mg of the ampicillin-sulbactam (2:1) combination/kg every 8 hours could be clinically useful in turkeys. This dosage regimen maintained plasma concentrations of ampicillin > 0.45 microg/mL in turkeys.  相似文献   

5.
A study on bioavailability and pharmacokinetics of florfenicol was conducted in 20 crossbred healthy sheep following a single intravenous (i.v.) and intramuscular (i.m.) doses of 20 and 30 mg/kg body weight (b.w.). Florfenicol concentrations in serum were determined by a validated high-performance liquid chromatography method with UV detection at a wavelength of 223 nm in which serum samples were spiked with chloramphenicol as internal standard. Serum concentration-time data after i.v. administration were best described by a three-compartment open model with values for the distribution half-lives (T(1/2alpha)) 1.51 +/- 0.06 and 1.59 +/- 0.10 h, elimination half-lives (T(1/2beta)) 18.83 +/- 6.76 and 18.71 +/- 1.85 h, total body clearance (Cl(B)) 0.26 +/- 0.03 and 0.25 +/- 0.01 L/kg/h, volume of distribution at steady-state (V(d(ss))) 1.86 +/- 0.11 and 1.71 +/- 0.20 L/kg, area under curve (AUC) 76.31 +/- 9.17 and 119.21 +/- 2.05 microg.h/mL after i.v. injections of 20 and 30 mg/kg b.w. respectively. Serum concentration-time data after i.m. administration were adequately described by a one-compartment open model. The pharmacokinetic parameters were distribution half-lives (T(1/2k(a) )) 0.27 +/- 0.03 and 0.25 +/- 0.09 h, elimination half-lives (T(1/2k(e) )) 10.34 +/- 1.11 and 9.57 +/- 2.84 h, maximum concentrations (C(max)) 4.13 +/- 0.29 and 7.04 +/- 1.61 microg/mL, area under curve (AUC) 67.95 +/- 9.61 and 101.95 +/- 8.92 microg.h/mL, bioavailability (F) 89.04% and 85.52% after i.m. injections of 20 and 30 mg/kg b.w. respectively.  相似文献   

6.
The pharmacokinetics of azithromycin after intravenous and intramuscular injection at a single dose rate of 10mg/kg bodyweight were investigated in rabbits by using a modified agar diffusion bioassay for determining plasma concentrations. The plasma creatine kinase activity was determined after i.m. administration for the evaluation of the tissue tolerance. The elimination half-lives of azithromycin after intravenous and intramuscular administration were 24.1 and 25.1h, respectively. After intramuscular administration mean peak plasma concentration was 0.26+/-0.01 mg/L and bioavailability was 97.7%. Plasma CK activity rose sharply within 8h after i.m. injection of azithromycin; activity returned to pre-treatment level by 48-72 h post-treatment. The transient rise in serum CK activity indicates some degree of muscle tissue damage at the injection site.  相似文献   

7.
The pharmacokinetic properties and bioavailability of cyclooxygenase (COX)-2 selective nonsteroidal anti-inflammatory drug nimesulide were investigated in female goats following intravenous (i.v.) and intramuscular (i.m.) administration at a dose of 4 mg/kg BW. Blood samples were collected by jugular venipuncture at predetermined times after drug administration. Plasma concentrations of nimesulide were determined by a validated high-performance liquid chromatography method. Plasma concentration-time data were subjected to compartmental analysis and pharmacokinetic parameters for nimesulide after i.v. and i.m. administration were calculated according to two- and one-compartment open models respectively. Following i.v. administration, a rapid distribution phase was followed by the slower elimination phase. The half-lives during the distribution phase (t1/2alpha) and terminal elimination phase (t1/2beta) were 0.11+/-0.10 and 7.99+/-2.23 h respectively. The steady-state volume of distribution (Vd(ss)), total body clearance (ClB) and mean residence time (MRT) of nimesulide were 0.64+/-0.13 L/kg, 0.06+/-0.02 L/h/kg and 11.72+/-3.42 h respectively. After i.m. administration, maximum plasma concentration (Cmax) of nimesulide was 2.83+/-1.11 microg/mL attained at 3.6+/-0.89 h (tmax). Plasma drug levels were detectable up to 72 h. Following i.m. injection, the t1/2beta and MRT of nimesulide were 1.63 and 1.73 times longer, respectively, than the i.v. administration. The bioavailability of nimesulide was 68.25% after i.m. administration at 4 mg/kg BW. These pharmacokinetic data suggest that nimesulide given intramuscularly may be useful in the treatment of inflammatory disease conditions in goats.  相似文献   

8.
The pharmacokinetic behaviour of an amoxicillin/clavulanic acid combination was studied after intravenous administration of single doses (20 mg/kg per kg body weight) to five sheep and six goats. The objective was to determine whether there are differences between sheep and goats in the disposition of amoxicillin and clavulanic acid. The plasma concentration-time data were analysed by compartmental pharmacokinetic and non-compartmental methods. The disposition curves for both drugs were best described by a biexponential equation (two-compartment open model) in sheep and goats. The elimination half-lives of amoxicillin were 1.43 ± 0.16 h in sheep and 1.13 ± 0.19 h in goats, and of clavulanic acid were 1.16 ± 0.01 h and 0.85 ± 0.09 h in sheep and goats respectively. The apparent volumes of distribution of amoxicillin and clavulanic acid were similar in the two species. Body clearances of amoxicillin were 0.09 ± 0.01 L/h kg in sheep and 0.11 ± 0.01 L/h kg in goats, and of clavulanic acid were 0.07 ± 0.01 L/h kg and 0.12 ± 0.01 L/h kg in sheep and goats respectively. The half-lives and body clearances of amoxicillin and clavulanic acid differed significantly between sheep and goats. It was concluded that the disposition of amoxicillin and clavulanic acid administered intravenously as an amoxicillin/clavulanic acid combination to sheep and goats differed between the two ruminant species. Even though the differences in disposition kinetics of both drugs were statistically significant, the same intravenous dosing rate of this antimicrobial combination can generally be used in sheep and goats.  相似文献   

9.
Tissue disposition of azithromycin after intravenous (IV) or intramuscular (IM) injection at a single dose rate of 10mg/kg bodyweight were investigated in rabbits using a modified agar diffusion bioassay for determining tissue concentrations. The pharmacokinetic behaviour of azithromycin was characterized by low and sustained plasma concentrations but high and persistent tissue concentrations. Kinetic parameters indicated a high retention of the drug in peripheral compartments. The plasma half-lives after IV and IM administrations were similar being 21.8h and 23.1h, respectively, while the half-lives obtained in tissues after IV and IM administration were at least 1.4 and 1.9 times longer than in plasma, respectively. The highest tissue concentrations were found in bile, liver and spleen whereas the lowest ones were found in skeletal muscle (although they were higher than those in plasma). From the results of the single administration in this study an IM dosage regimen can be proposed that achieves minimum concentrations over 2mg/L in rabbits: three doses of 4-5mg/kg/day would provide suitable therapeutic concentrations in pulmonary tissues over seven days.  相似文献   

10.
The bioavailability and pharmacokinetic disposition of florfenicol in broiler chickens were investigated after intravenous (i.v.), intramuscular (i.m.) and oral administrations of 15 and 30 mg/kg body weight (b.w.). Plasma concentrations of florfenicol were determined by a high performance liquid chromatographic method in which plasma samples were spiked with chloramphenicol as internal standard. Plasma concentration-time data after i.v. administration were best described by a two-compartment open model. The elimination half-lives were 168 +/- 43 and 181 +/- 71 min, total body clearance 1.02 +/- 0.17 and 1.02 +/- 0.16 L x kg/h, the volume of distribution at steady-state 4.99 +/- 1.11 and 3.50 +/- 1.01 L/kg after i.v. injections of 15 and 30 mg/kg b.w., respectively. Plasma concentration-time data after i.m. and oral administrations were adequately described by a one-compartment model. The i.m. bioavailability and the oral bioavailability of florfenicol were 95, 98 and 96, 94%, respectively, indicating that florfenicol was almost absorbed completely after i.m. and oral administrations of 15 and 30 mg/kg b.w.  相似文献   

11.
The purpose of this study was to establish the stereospecific pharmacokinetics of ketorolac (KT) in calves following a single 2 mg/kg intravenous (i.v.) and a single 8 mg/kg oral dose. Plasma concentrations were determined using a stereoselective HPLC assay. Pharmacokinetic parameters for both the stereoisomers were estimated by model-independent methods. Following an i.v. dose, the plasma concentration profiles of the stereoisomers were similar with half-lives of 5.9 +/- 5.1 h for R-KT and 6.0 +/- 4.9 h for S-KT. Clearance values for R- and S-KT after an i.v. dose were 0.0470 +/- 0.0370 and 0.0480 +/- 0.0370 L/h/kg respectively. After an oral dose, the terminal half-lives were longer than following i.v. administration with values of 14.77 +/- 3.08 and 14.55 +/- 2.95 h for R-KT and S-KT respectively. The average oral bioavailability was 86.5 +/- 20.6% for R-KT and 86.7 +/- 20.3% for S-KT. The results indicate that the stereoisomers of KT have similar pharmacokinetic profiles in calves. Although, unlike humans, bioinversion between KT stereoisomers appears minimal in calves, studies with individual isomers are needed before any firm conclusions can be drawn about this lack of KT bioinversion.  相似文献   

12.
Knowledge of the pharmacokinetic properties of drugs to combat bacterial infections in cod (Gadus morhua) and wrasse (Ctenolabrus rupestris) is limited. One antimicrobial agent likely to be effective is flumequine. The aim of this study was to investigate the pharmacokinetic properties of flumequine in these two species. Flumequine was administered intravenously to cod (G. morhua) at a dose of 5 mg/kg bodyweight and wrasse (C. rupestris) at a dose of 10 mg/kg. Flumequine was also administered orally to both species at a dose of 10 mg/kg body weight, and as a bath treatment at a dose of 10 mg/L water for 2 h. Identical experimental designs were used otherwise. The study was performed in seawater with a salinity of 3.2% and a temperature of 8.0 +/- 0.2 degrees C (cod) and 14.5 +/- 0.4 degrees C (wrasse). Pharmacokinetic modelling of the data showed that flumequine had quite different pharmacokinetic properties in cod and wrasse. Following intravenous administration, the volumes of distribution at steady-state (Vss) were 2.41 L/kg (cod) and 2.15 L/kg (wrasse). Total body clearances (Cl) were 0.024 L/hxkg (cod) and 0.14 L/hxkg (wrasse) and the elimination half-lives (t1/2lambda z) were calculated to be 75 h (cod) and 31 h (wrasse). Mean residence times (MRT) were 99 h (cod) and 16 h (wrasse). Following oral administration, the t1/2 lambda z were 74 h (cod) and 41 h (wrasse). Maximal plasma concentrations (tmax) were 3.5 mg/L (cod) and 1.7 mg/L (wrasse), and were observed 24 h post-administration in cod and 1 h post-administration in wrasse. The oral bioavailabilities (F) were calculated to be 65% (cod) and 41% (wrasse). Following bath administration, maximal plasma concentrations were 0.13 mg/L (cod) and 0.09 mg/L (wrasse), and were observed immediately after the end of the bath.  相似文献   

13.
The pharmacokinetic properties of ceftriaxone, a third-generation cephalosporin, were investigated in five cats after single intravenous, intramuscular and subcutaneous administration at a dosage of 25 mg/kg. Ceftriaxone MICs for some gram-negative and positive strains isolated from clinical cases were determined. Efficacy predictor (t > MIC) was calculated. Serum ceftriaxone disposition was best fitted by a bicompartmental and a monocompartmental open models with first-order elimination after intravenous and intramuscular and subcutaneous dosing, respectively. After intravenous administration, distribution was fast (t1/2d 0.14 +/- 0.02 h) and moderate as reflected by the volume of distribution (V(d(ss))) of 0.57 +/- 0.22 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.37 +/- 0.13 L/h.kg and a t1/2 of 1.73 +/- 0.23 h. Peak serum concentration (Cmax), tmax and bioavailability for the intramuscular administration were 54.40 +/- 12.92 microg/mL, 0.33 +/- 0.07 h and 85.72 +/- 14.74%, respectively; and for the subcutaneous route the same parameters were 42.35 +/- 17.62 microg/mL, 1.27 +/- 0.95 h and 118.28 +/- 39.17%. Ceftriaxone MIC for gram-negative bacteria ranged from 0.0039 to >8 microg/mL and for gram-positive bacteria from 0.5 to 4 microg/mL. t > MIC was in the range 83.31-91.66% (10-12 h) of the recommended dosing interval (12 h) for Escherichia coli (MIC90 = 0.2 microg/mL).  相似文献   

14.
Pharmacokinetics of cefotaxime in the dog   总被引:1,自引:0,他引:1  
Each of five dogs was given cefotaxime at a dose rate of 50 mg/kg by intravenous, intramuscular and subcutaneous routes, in three separate treatments. Plasma concentration time profiles were characterised by a linear two-compartment model after the intravenous administration. After intravenous, intramuscular and subcutaneous injections the mean biological half-lives were 0.74, 0.83 and 1.71 hours, respectively. The apparent steady state volume of distribution was 0.48 litre/kg and body clearance after intravenous injection was approximately 0.63 litre/hour/kg. After intramuscular and subcutaneous injections peak plasma cefotaxime concentrations were 47 +/- 15 and 29.6 +/- 16 micrograms/ml at 0.5 and 0.8 hours, respectively. The average bioavailability of cefotaxime given by intramuscular injection was 86.5 per cent and for cefotaxime given subcutaneously it was approximately 100 per cent. After two hours, the cefotaxime plasma concentration remained higher after subcutaneous than after intramuscular administration.  相似文献   

15.
Pharmacokinetics of difloxacin, a fluoroquinolone antibiotic, was determined in pigs and broilers after intravenous (i.v.), intramuscular (i.m.), or oral (p.o.) administration at a single dose of five (pigs) or 10 mg/kg (broilers). Plasma concentration profiles were analyzed by a compartmental pharmacokinetic method. Following i.v., i.m. and p.o. doses, the elimination half-lives (t(1/2beta)) were 17.14 +/- 4.14, 25.79 +/- 8.10, 16.67 +/- 4.04 (pigs) and 6.11 +/- 1.50, 5.64 +/- 0.74, 8.20 +/- 3.12 h (broilers), respectively. After single i.m. and p.o. administration, difloxacin was rapidly absorbed, with peak plasma concentrations (C(max)) of 1.77 +/- 0.66, 2.29 +/- 0.85 (pigs) and 2.51 +/- 0.36, 1.00 +/- 0.21 microg/mL (broilers) attained at t(max) of 1.29 +/- 0.26, 1.41 +/- 0.88 (pigs) and 0.86 +/- 0.4, 4.34 +/- 2.40 h (broilers), respectively. Bioavailabilities (F) were (95.3 +/- 28.9)% and (105.7 +/- 37.1)% (pigs) and (77.0 +/- 11.8)% and (54.2 +/- 12.6)% (broilers) after i.m. and p.o. doses, respectively. Apparent distribution volumes(V(d(area))) of 4.91 +/- 1.88 and 3.10 +/- 0.67 L/kg and total body clearances(Cl(B)) of 0.20 +/- 0.06 and 0.37 +/- 0.10 L/kg/h were determined in pigs and broilers, respectively. Areas under the curve (AUC), the half-lives of both absorption and distribution(t(1/2ka), t(1/2alpha)) were also determined. Based on the single-dose pharmacokinetic parameters determined, multiple dosage regimens were recommended as: a dosage of 5 mg/kg given intramuscularly every 24 h in pigs, or administered orally every 24 h at the dosage of 10 mg/kg in broilers, can maintain effective plasma concentrations with bacteria infections, in which MIC(90) are <0.25 microg/mL and <0.1 microg/mL respectively.  相似文献   

16.
Pharmacokinetics of sarafloxacin, a fluoroquinolone antibiotic, was determined in pigs and broilers after intravenous (i.v.), intramuscular (i.m.), or oral (p.o.) administration at a single dose of 5 (pigs) or 10 mg/kg (broilers). Plasma concentration profiles were analysed by a noncompartmental pharmacokinetic method. Following i.v., i.m. and p.o. doses, the elimination half-lives (t1/2beta) were 3.37 +/- 0.46, 4.66 +/- 1.34, 7.20 +/- 1.92 (pigs) and 2.53 +/- 0.82, 6.81 +/- 2.04, 3.89 +/- 1.19 h (broilers), respectively. After i.m. and p.o. doses, bioavailabilities (F) were 81.8 +/- 9.8 and 42.6 +/- 8.2% (pigs) and 72.1 +/- 8.1 and 59.6 +/- 13.8% (broilers), respectively. Steady-state distribution volumes (Vd(ss)) of 1.92 +/- 0.27 and 3.40 +/- 1.26 L/kg and total body clearances (ClB) of 0.51 +/- 0.03 and 1.20 +/- 0.20 L/kg/h were determined in pigs and broilers, respectively. Areas under the curve (AUC), mean residence times (MRT), and mean absorption times (MAT) were also determined. Sarafloxacin was demonstrated to be more rapidly absorbed, more extensively distributed, and more quickly eliminated in broilers than in pigs. Based on the single-dose pharmacokinetic parameters determined, multiple dosage regimens were recommended as: a dosage of 10 mg/kg given intramuscularly every 12 h in pigs, or administered orally every 8 h in broilers, can maintain effective plasma concentrations with bacteria infections, in which MIC90 are <0.25 microg/mL.  相似文献   

17.
The pharmacokinetic properties of amoxicillin and clavulanic acid were studied in healthy, fasted pigs after single intravenous (i.v.) and oral (p.o.) dosage of 20 mg/kg of amoxicillin and 5 mg/kg of clavulanic acid. The plasma concentrations of the drugs were determined by validated high-performance liquid chromatographic methods and the pharmacokinetic parameters were calculated by compartmental and noncompartmental analyses. After i.v. administration of the two drugs, plasma concentration-time curves were best described by a three-compartmental open model for amoxicillin and a two-compartmental open model for clavulanic acid. Amoxicillin (with a t(1/2 gamma) = 1.03 h and a clearance of 0.58 L/h.kg) and clavulanic acid (with a t(1/2 beta) of 0.74 h and a clearance of 0.41 L/h.kg) were both rapidly eliminated from plasma. Both drugs had apparently the same volume of distribution of 0.34 L/kg. After p.o. administration of the two drugs, a noncompartmental model was used. Elimination half-lives of amoxicillin and clavulanic acid were not significantly different, i.e. 0.73 and 0.67 h respectively. The mean maximal plasma concentrations of amoxicillin and clavulanic acid were 3.14 and 2.42 mg/L, and these were reached after 1.19 and 0.88 h respectively. The mean p.o. bioavailability was found to be 22.8% for amoxicillin and 44.7% for clavulanic acid.  相似文献   

18.
The pharmacokinetics and bioavailability of trimethoprim-sulfamethoxazole (TMP-SMX) were studied in six healthy male-castrate alpacas (Lama pacos) after intravenous (i.v.) or oral (p.o.) drug administration of 15 mg/kg TMP-SMX using a crossover design with a 2-week washout period. After 90 days one group (n = 3) was given a p.o. dose of 30 mg/kg TMP-SMX and the other group (n = 3) was given a p.o. dose of 60 mg/kg TMP-SMX. After i.v. administration of 15 mg/kg of TMP-SMX the mean initial plasma concentration (C0) was 10.75 +/- 2.12 microg/mL for trimethoprim (TMP) and 158.3 +/- 189.3 microg/mL for sulfamethoxazole (SMX). Elimination half-lives were 0.74 +/- 0.1 h for TMP and 2.2 +/- 0.6 h for SMX. The mean residence times were 1.45 +/- 0.72 h for TMP and 2.8 +/- 0.6 h for SMX. The areas under the respective concentration vs. time curves (AUC) were 2.49 +/- 1.62 microg h/mL for TMP and 124 +/- 60 microg h/mL for SMX. Total clearance (Clt) for TMP was 21.63 +/- 9.85 and 1.90 +/- 0.77 mL/min kg for SMX. The volume of distribution at steady state was 2.32 +/- 1.15 L/kg for TMP and 0.35 +/- 0.09 L/kg for SMX. After intragastric administration of 15, 30 and 60 mg/kg the peak concentration (Cmax) of SMX were 1.9 +/- 0.8, 2.6 +/- 0.4 and 2.8 +/- 0.7 microg/mL, respectively. The AUC was 9.1 +/- 5, 25.9 +/- 3.3 and 39.1 +/- 4.1 microg h/mL, respectively. Based upon these AUC values and correcting for dose, the respective bioavailabilities were 7.7, 10.5 and 7.94%. Trimethoprim was not detected in plasma after intragastric administration. These data demonstrate that therapeutic concentrations of TMP-SMX are not achieved after p.o. administration to alpacas.  相似文献   

19.
The pharmacokinetics of ampicillin and sulbactam administered in combination were studied in calves and sheep. The animals were administered an aqueous solution of ampicillin/sulbactam (2: 1, w/w) intravenously and intramuscularly at doses of 13.2 and 6.6 mg.kg-1, respectively. A microbiological method was used to detect ampicillin, and HPLC was used to detect sulbactam in serum. Following intravenous (i, v.) administration, the distribution phases were rapid and similar (about 15 min) for both drugs in both species, whereas sulbactam in calves and ampicillin in sheep showed a faster elimination rate. After intramuscular (i.m.) administration both drugs showed peak concentrations higher in calves than in sheep: the peak time of sulbactam was shorter in calves than in sheep. No other significant differences in the pharmacokinetics of the combination were observed between the species after i.m. injection. The mean residence and absorption times, calculated by non-compartmental analysis, for both calves and sheep suggested that the differences in ampicillin and sulbactam phgrmacokinetics could be attributable to the different molecular structures.  相似文献   

20.
Pharmacokinetics of danofloxacin 18% in lactating sheep and goats   总被引:1,自引:0,他引:1  
The pharmacokinetics of danofloxacin administered at 6 mg/kg bodyweight by the intravenous and subcutaneous (s.c.) routes were determined in sheep and goats. Milk concentrations were also determined following s.c. administration. Plasma and milk concentrations of danofloxacin were measured using high-performance liquid chromatography. The plasma concentration-time curves were analysed by noncompartmental methods. Danofloxacin had a similar large volume of distribution at steady state in sheep and goats of 2.19 +/- 0.28 and 2.43 +/- 0.13 L/kg, and a similar body clearance of 0.79 +/- 0.15 and 0.98 +/- 0.13 L/kg.h, respectively. Following s.c. administration, danofloxacin achieved a similar maximum concentration in sheep and goats of 1.48 +/- 1.54 and 1.05 +/- 0.09 mg/L, respectively at 1.6 h and had a mean residence time of 4.93 +/- 0.79 and 4.51 +/- 0.44 h, respectively. Danofloxacin had an absolute bioavailability of 93.6 +/- 13.7% in sheep and 97.0 +/- 15.7% in goats and a mean absorption time of 2.07 +/- 0.75 and 2.01 +/- 0.53 h, respectively. Mean danofloxacin concentrations in milk after s.c. administration to sheep were approximately 10 times higher than plasma at 12 h postdose and remained eight times higher at 24 h postdose. In goats, mean concentration of danofloxacin in milk were approximately 13 times higher than plasma at 12 h postdose and remained four times higher at 24 h postdose. Thus, danofloxacin 18% administered s.c. to lactating ewes and goats at a dose rate of 6 mg/kg was characterized by extensive absorption, high systemic availability and high distribution into the udder resulting in higher drug concentrations being achieved in milk than in plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号