首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
BACKGROUND: Cosyntropin (adrenocorticotropic hormone [ACTH]) stimulation tests are used to evaluate adrenal function. Low-dose ACTH stimulation tests are the most accurate method for diagnosing relative adrenal insufficiency in critically ill humans but have not been evaluated in foals. HYPOTHESIS: Peak serum cortisol concentrations in healthy foals will not be significantly different after intravenous administration of 1, 10, 100, and 250 microg of cosyntropin. ANIMALS: 14 healthy neonatal foals, 3-4 days of age. METHODS: A randomized cross-over model was used in which cosyntropin (1, 10, 100, or 250 microg) was administered intravenously on days 3 and 4 of life. Blood samples were collected before and 30, 60, 90, 120, and 150 minutes after administration of cosyntropin for determination of serum cortisol concentration. RESULTS: Serum cortisol concentrations did not significantly increase after administration of 1 microg of cosyntropin. Cortisol concentration peaked 30 minutes after administration of 10 microg of cosyntropin and 90 minutes after 100 and 250 microg of cosyntropin. There was no relationship between cosyntropin dose and serum cortisol concentration at 30 minutes. Compared with the 10-microg dose, 100 and 250 microg of cosyntropin induced significantly greater cortisol concentrations at 90 minutes, at which point the 10-microg cosyntropin-dose cortisol values were indistinguishable from baseline. There was no significant difference in the area under the cortisol concentration curve between the 100- and 250-microg doses. No effect of day of testing or foal weight on peak cortisol concentration was detected. CONCLUSIONS AND CLINICAL IMPORTANCE: The results of this study suggest that 10- and 100-microg doses of cosyntropin would be appropriate for evaluating adrenal function in neonatal foals.  相似文献   

2.
Background: Hypothalamic-pituitary-adrenal (HPA) axis function is dynamic in the neonatal foal. The paired low dose/high dose cosyntropin (ACTH) stimulation test allows comprehensive HPA axis assessment, but has not been evaluated in neonatal foals.
Hypothesis: Foal age will significantly affect cortisol responses to a paired 10 and 100 μg dose cosyntropin stimulation test in healthy neonatal foals.
Animals: Twenty healthy neonatal foals.
Methods: HPA axis function was assessed in 12 foals at birth and at 12–24, 36–48 hours, and 5–7 days of age. At each age, basal cortisol and ACTH concentrations were measured and cortisol responses to 10 and 100 μg cosyntropin were assessed with a paired ACTH stimulation test protocol. Eight additional 36–48-hour-old foals received saline instead of 10 μg cosyntropin in the same-paired ACTH stimulation test design.
Results: At birth, foals had significantly higher basal cortisol and ACTH concentrations and higher basal ACTH : cortisol ratios compared with foals in all other age groups. A significant cortisol response to both the 10 and 100 μg doses of cosyntropin was observed in all foals. The magnitude of the cortisol response to both doses of cosyntropin was significantly different across age groups, with the most marked responses in younger foals. There was no effect of the paired ACTH stimulation test design itself on cortisol responses.
Conclusions and Clinical Importance: A paired 10 and 100 μg cosyntropin stimulation test can be used to evaluate HPA axis function in neonatal foals. Consideration of foal age is important in interpretation of HPA axis assessment.  相似文献   

3.
OBJECTIVE: To compare adrenal gland stimulation achieved following administration of cosyntropin (5 microg/kg [2.3 microg/lb]) IM versus IV in healthy dogs and dogs with hyperadrenocorticism. DESIGN: Clinical trial. Animals-9 healthy dogs and 9 dogs with hyperadrenocorticism. PROCEDURES: In both groups, ACTH stimulation was performed twice. Healthy dogs were randomly assigned to receive cosyntropin IM or IV first, but all dogs with hyperadrenocorticism received cosyntropin IV first. In healthy dogs, serum cortisol concentration was measured before (baseline) and 30, 60, 90, and 120 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was measured before and 60 minutes after cosyntropin administration. RESULTS: In the healthy dogs, serum cortisol concentration increased significantly after administration of cosyntropin, regardless of route of administration, and serum cortisol concentrations after IM administration were not significantly different from concentrations after IV administration. For both routes of administration, serum cortisol concentration peaked 60 or 90 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was significantly increased 60 minutes after cosyntropin administration, compared with baseline concentration, and concentrations after IM administration were not significantly different from concentrations after IV administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that in healthy dogs and dogs with hyperadrenocorticism, administration of cosyntropin at a dose of 5 microg/kg, IV or IM, resulted in equivalent adrenal gland stimulation.  相似文献   

4.
BACKGROUND: Sepsis is an important cause for neonatal foal mortality. The hypothalamic-pituitary-adrenal axis (HPAA) responses to sepsis are well documented in critically ill humans, but limited data exist in foals. The purpose of this study was to evaluate the HPAA response to sepsis in foals, and to associate these endocrine changes with survival. HYPOTHESIS: Blood concentrations of arginine vasopressin (AVP), adrenocorticotropin hormone (ACTH), and cortisol will be higher in septic foals as compared with sick nonseptic and healthy foals. The magnitude of increase in hormone concentration will be negatively associated with survival. ANIMALS: Fifty-one septic, 29 sick nonseptic, and 31 healthy foals of < or =7 days of age were included. METHODS: Blood was collected at admission for analysis. Foals with positive blood culture or sepsis score > or =14 were considered septic. Foals admitted with disease other than sepsis and healthy foals were used as controls. AVP, ACTH, and cortisol concentrations were measured using validated immunoassays. RESULTS: AVP, ACTH, and cortisol concentrations were increased in septic foals. Septic nonsurvivor foals (n = 26/51) had higher plasma ACTH and AVP concentrations than did survivors (n = 25/51). Some septic foals had normal or low cortisol concentrations despite increased ACTH, suggesting relative adrenal insufficiency. AVP, ACTH, and cortisol concentrations were higher in sick nonseptic foals compared with healthy foals. CONCLUSIONS AND CLINICAL IMPORTANCE: Increased plasma AVP and ACTH concentrations in septic foals were associated with mortality. Several septic foals had increased AVP : ACTH and ACTH : cortisol ratios, which indicates relative adenohypophyseal and adrenal insufficiency.  相似文献   

5.
Background: Transient hypothalamic-pituitary-adrenal (HPA) axis dysfunction occurs frequently in critically ill humans and impacts survival. The prevalence and impact of HPA axis dysfunction in critically ill neonatal foals are not well characterized.
Hypotheses: (1) HPA axis dysfunction occurs in hospitalized neonatal foals, and is characterized by inappropriately low basal serum cortisol concentration or inadequate cortisol response to exogenous adrenocorticotropic hormone (ACTH); (2) hospitalized foals with HPA axis dysfunction have more severe disease and are less likely to survive than hospitalized foals with normal HPA axis function.
Animals: Seventy-two hospitalized foals and 23 healthy age-matched foals.
Methods: Basal ACTH and cortisol concentrations were measured and a paired low-dose (10 μg)/high-dose (100 μg) cosyntropin stimulation test was performed at admission in hospitalized foals. HPA axis dysfunction was defined as (1) an inappropriately low basal cortisol concentration or (2) an inadequate increase in cortisol concentration (delta cortisol) after administration of cosyntropin, with cut-off values for appropriate basal and delta cortisol concentrations determined from results obtained in healthy age-matched foals.
Results: Forty-six percent of hospitalized foals had an inappropriately low basal cortisol concentration and 52% had an inadequate delta cortisol concentration after administration of the 100 μg dose of cosyntropin. An inadequate delta cortisol response to the high (100 μg) dose of cosyntropin was significantly correlated with shock and multiple organ dysfunction syndrome in hospitalized foals, and with decreased survival in a subgroup of septic foals.
Conclusions and Clinical Importance: HPA axis dysfunction occurs frequently in hospitalized neonatal foals, and negatively impacts disease severity and survival.  相似文献   

6.
BACKGROUND: Little information exists on the hypothalamic-pituitary-adrenal axis in septic foals. HYPOTHESIS: The plasma concentrations of adrenocorticotropin (ACTH) and cortisol are expected to be higher in septic foals as compared to normal foals. The concentrations of hormones in septic foals also are expected to differ further depending upon survival. ANIMALS: Twenty-eight control foals and 46 septic foals <14 days of age were included in this study. METHODS: Blood was collected in EDTA once from 28 normal foals born in the University of Georgia or Cornell University equine research herds and from 46 septic foals within 12 hours after admission to 1 of the 3 tertiary care referral centers involved in the study. Septic foal selection was based on a sepsis score of >11 or a positive blood culture. The control foals were age matched to the septic foals in the study. ACTH and cortisol concentrations were measured by a chemiluminescent immunoassay system. RESULTS: Cortisol concentrations in control foals did not vary with age. Septic foals had significantly higher mean ACTH, cortisol, and ACTH/cortisol ratios than did normal foals. Within the septic foal group, 28 foals survived to discharge, and 18 were euthanized or died. The mean age was not significantly different between the septic surviving and nonsurviving foals. The mean ACTH/cortisol ratio was significantly higher in the septic nonsurviving foals as compared to the septic surviving foals. CONCLUSIONS AND CLINICAL IMPORTANCE: Septic foals had higher hormone concentrations as compared to normal foals, which is an expected endocrine response to critical illness. The increased ACTH/cortisol ratio in nonsurviving septic foals in comparison to surviving septic foals could indicate hypothalamic-pituitary-adrenal axis dysfunction at the level of the adrenal gland in critically ill septic foals.  相似文献   

7.
Serum cortisol concentrations were measured in five healthy dogs in response to five adrenocorticotropic hormone (ACTH) preparations. Cortisol concentrations were similar at time 0 (pre-ACTH) and at 30 and 60 minutes after injection of all forms of ACTH. However, at 90 and 120 minutes post-ACTH, serum cortisol concentrations were significantly lower following injection of two compounded forms of ACTH. The data showed that injection of four compounded forms of ACTH caused elevations in serum cortisol concentrations of a similar magnitude as cosyntropin in samples collected 60 minutes after administration; but concentrations at later times varied, depending on the type of ACTH used.  相似文献   

8.
The serum cortisol responses of 10 normal cats to natural adrenocorticotrophic hormone (ACTH) gel and synthetic ACTH (cosyntropin) were evaluated and compared. Following administration of either ACTH gel or cosyntropin, mean serum cortisol concentrations increased significantly (P less than 0.05) within 30 minutes and reached a maximal response (2.5 to 10 times basal values) at 90 minutes. The time to reach peak serum cortisol concentrations was variable, however, and occurred sooner after cosyntropin (30 to 60 minutes) than after ACTH gel administration (90 to 180 minutes). While ACTH gel tended to produce a prolonged cortisol response, the effects of cosyntropin were more transient, with serum cortisol concentrations returning to normal range within three hours after injection. Results of this study indicate that the administration of either ACTH gel or cosyntropin consistently produces an adequate adrenocortical response in the cat. Based on the time response studies, post ACTH cortisol samples should be collected 60 to 90 minutes after cosyntropin or 90 to 120 minutes after ACTH gel injection to ensure detection of peak adrenocortical response with either ACTH preparation.  相似文献   

9.
Plasma cortisol and immunoreactive (IR)-ACTH responses to 125 micrograms of tetracosactrin and cosyntropin--the formulation of synthetic ACTH available in Europe and the United States, respectively--were compared in 10 clinically normal cats. After administration of tetracosactrin or cosyntropin, mean plasma cortisol concentration reached a peak and plateaued between 60 and 120 minutes, then gradually decreased to values not significantly different from baseline concentration by 5 hours. Mean plasma IR-ACTH concentration reached a maximal value at 15 minutes after administration of tetracosactrin or cosyntropin and was still higher than baseline concentration at 6 hours. Difference between mean plasma cortisol and IR-ACTH concentrations for the tetracosactrin or cosyntropin trials was not significant at any of the sample collection times. Individual cats had some variation in the time of peak cortisol response after administration of either ACTH preparation. About half the cats had peak cortisol concentration at 60 to 90 minutes, whereas the remainder had the peak response at 2 to 4 hours. In general, however, peak cortisol concentration in the cats with delayed response was not much higher than the cortisol concentration at 60 to 90 minutes. Overall, these results indicate that tetracosactrin or cosyntropin induce a comparable, if not identical, pattern of adrenocortical responses when administered to healthy cats.  相似文献   

10.
Functional activities (phagocytosis and killing) of neutrophil leucocytes (NL) and immunoglobulin G concentrations were evaluated in six healthy foals from birth to 6 months of age. Peripheral blood NL were reacted with Streptococcus equisimilis in 20 per cent pooled equine serum for 30, 60 and 90 mins and functional activities of NL were determined using a fluorochrome microassay. Values for foal NL function were compared with those of healthy adult horses (n = 28). Foal neutrophil function was influenced by age. Killing capacity of NL decreased, whereas phagocytic capacity increased, until 113 days of age, after which a reversal in trends became apparent. Immunoglobulin G concentrations changed significantly over time and were lowest at 29 to 56 days of age. All foal values for NL function fell within the range of normal values established for healthy adult horses.  相似文献   

11.
Background: Arginine vasopressin (AVP) has received increased attention in equine critical care but there is minimal information of AVP concentration in foals. The clinical usefulness of measuring AVP in ill foals depends on knowledge of age-related changes in AVP concentrations in healthy foals.
Hypothesis: Plasma AVP concentrations will be significantly different when measured from birth to 3 months of age in healthy foals.
Animals: Thirteen healthy university-owned foals.
Methods: Prospective, observational study. Blood was collected from healthy foals at birth and 3, 5, 7, 10, 14, 21, 28, 42, 56, and 84 days of age. Plasma was harvested and plasma AVP concentrations were determined by radioimmunoassay.
Results: No statistically significant differences were detected in plasma AVP concentrations over the study period. Plasma AVP concentrations over the entire study period was 6.2 ± 2.5 pg/mL.
Conclusions and Clinical Importance: There was no age-related variation in plasma AVP concentrations detected in healthy foals from birth to 3 months of age suggesting that AVP concentrations are similar across foals of these ages.  相似文献   

12.
Adrenocortical and medullary function was investigated during the immediate post natal period in premature and full term foals. High plasma cortisol concentrations were characteristic of the term foals in the first 2 h after birth and these were accompanied by significant arteriovenous differences in plasma cortisol across the umbilical circulation at birth, indicating enhanced adrenal activity before delivery. No such arteriovenous differences were detected in the premature group and post natal changes in plasma cortisol were minimal. The apparent inability of the premature foal adrenal to secrete cortisol was not due to the lack of endogenous adrenocorticotrophic hormone (ACTH) because high levels of this hormone were found immediately after birth in both groups of foals. Tests on the sensitivity of the foal adrenal to exogenous ACTH1-24 (0.125 mg intramuscularly [im]) showed that a maximum response to this hormone could be elicited in term foals on the day of birth. Subsequently basal cortisol levels and the response of the adrenal to ACTH1-24 declined. By contrast, only a slight response was observed following the same dose of ACTH1-24 in the premature group. Exposure to Depot ACTH1-24 over 24 h enhanced the basal secretion of cortisol in both premature and term foals but no consistent response to the same ACTH test dose could be elicited in the former. A wide range of total plasma catecholamine concentrations was observed in both groups of newborn foals. The highest values were seen in acidotic animals and there was a significant inverse relationship between blood pH and total plasma catecholamine level at delivery.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The aim of this study was to investigate the possible effects of environmental factors such as temperature, rainfall, and light conditions on hair cortisol concentrations in foals during the perinatal period. The study, performed during three consecutive foaling seasons from January to July, enrolled 219 foals from one farm. Hair samples were collected from each foal immediately after birth and at 30 days of age, and the samples were analyzed by radioimmunoassay to measure the cortisol concentrations. The mean cortisol concentration of hair collected at 30 days of age was significantly (P < .01) lower than that found at birth, but none of the evaluated environmental factors (temperature, rainfall, or day length) influenced the hair cortisol concentrations.  相似文献   

14.
OBJECTIVE: To determine whether low doses of synthetic ACTH could induce a maximal cortisol response in clinically normal dogs and to compare a low-dose ACTH stimulation protocol to a standard high-dose ACTH stimulation protocol in dogs with hyperadrenocorticism. DESIGN: Cohort study. ANIMALS: 6 clinically normal dogs and 7 dogs with hyperadrenocorticism. PROCEDURE: Each clinically normal dog was given 1 of 3 doses of cosyntropin (1, 5, or 10 micrograms/kg [0.45, 2.3, or 4.5 micrograms/lb] of body weight, i.v.) in random order at 2-week intervals. Samples for determination of plasma cortisol and ACTH concentrations were obtained before and 30, 60, 90, and 120 minutes after ACTH administration. Each dog with hyperadrenocorticism was given 2 doses of cosyntropin (5 micrograms/kg or 250 micrograms/dog) in random order at 2-week intervals. In these dogs, samples for determination of plasma cortisol concentrations were obtained before and 60 minutes after ACTH administration. RESULTS: In the clinically normal dogs, peak cortisol concentration and area under the plasma cortisol response curve did not differ significantly among the 3 doses. However, mean plasma cortisol concentration in dogs given 1 microgram/kg peaked at 60 minutes, whereas dogs given doses of 5 or 10 micrograms/kg had peak cortisol values at 90 minutes. In dogs with hyperadrenocorticism, significant differences were not detected between cortisol concentrations after administration of the low or high dose of cosyntropin. CLINICAL IMPLICATIONS: Administration of cosyntropin at a rate of 5 micrograms/kg resulted in maximal stimulation of the adrenal cortex in clinically normal dogs and dogs with hyperadrenocorticism.  相似文献   

15.
Plasma cortisol and immunoreactive (IR)-ACTH responses to 125 micrograms of synthetic ACTH (cosyntropin) administered IV or IM were compared in 10 clinically normal cats. After IM administration of cosyntropin, mean plasma cortisol concentration increased significantly (P less than 0.05) within 15 minutes, reached maximal concentration at 45 minutes, and decreased to values not significantly different from baseline concentration by 2 hours. After IV administration of cosyntropin, mean plasma cortisol concentration also increased significantly (P less than 0.05) at 15 minutes, but in contrast to IM administration, the maximal cortisol response took longer (75 minutes) and cortisol concentration remained significantly (P less than 0.05) higher than baseline cortisol concentration for 4 hours. Mean peak cortisol concentration (298 nmol/L) after IV administration of cosyntropin was significantly (P less than 0.05) higher than the peak value (248 nmol/L) after IM administration. All individual peak plasma cortisol concentrations and areas under the plasma cortisol response curve were significantly (P less than 0.05) higher after IV administration of cosyntropin than after IM administration. Mean plasma IR-ACTH concentration returned to values not statistically different from baseline by 60 minutes after IM administration of cosyntropin, whereas IR-ACTH concentration still was higher than baseline concentration 6 hours after IV administration. Peak plasma IR-ACTH concentration and area under the plasma IR-ACTH response curve also were significantly (P less than 0.05) higher after IV administration of cosyntropin. Results of the study confirmed that IV administration of cosyntropin induces significantly (P less than 0.05) greater and more prolonged adrenocortical stimulation than does IM administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
OBJECTIVE: To determine the lowest of 5 doses of cosyntropin (1.0, 0.5, 0.1, 0.05, or 0.01 microg/kg) administered IV that stimulates maximal cortisol secretion in clinically normal dogs. ANIMALS: 10 clinically normal dogs. PROCEDURES: 5 dose-response experiments were performed in each of the dogs. Each dog received 5 doses of cosyntropin (1.0, 0.5, 0.1, 0.05, and 0.01 microg/kg) IV in random order (2-week interval between each dose). Serum samples for determination of cortisol concentrations were obtained before (baseline) and at 10, 20, 30, 40, 50, 60, 120, and 240 minutes after cosyntropin administration. RESULTS: Compared with baseline values, mean serum cortisol concentration in the study dogs increased significantly after administration of each of the 5 cosyntropin doses. Mean peak serum cortisol concentration was significantly lower after administration of 0.01, 0.05, and 0.1 microg of cosyntropin/kg, compared with findings after administration of 0.5 and 1.0 microg of cosyntropin/kg. After administration of 0.5 and 1.0 microg of cosyntropin/kg, mean peak serum cortisol concentration did not differ significantly; higher doses of cosyntropin resulted in more sustained increases in serum cortisol concentration, and peak response developed after a longer interval. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of cosyntropin IV at a dose of 0.5 microg/kg induced maximal cortisol secretion in healthy dogs. Serum cortisol concentration was reliably increased in all dogs after the administration of each of the 5 doses of cosyntropin. These data should be useful in subsequent studies to evaluate the hypothalamic-pituitary-adrenal axis in healthy and critically ill dogs.  相似文献   

17.
REASONS FOR PERFORMING STUDY: Intrauterine growth retardation (IUGR) impairs post natal adaptive responses and is associated with increased adrenocortical activity in many species. OBJECTIVES: To determine whether a restricted or enhanced intrauterine environment affects neonatal adaptation and adrenocortical function in horses. METHODS: Embryos from large (577 kg) Thoroughbred (TB) mares were transferred to smaller (343 kg) pony (P) mares and vice versa, to create a restricted (TB-in-P, n = 11) or enhanced (P-in-TB, n = 8) intrauterine environment. Control groups (TB-in-TB, n = 8; P-in-P, n = 7) were also included. RESULTS: Thirty foals were born live at full term (range 314-348 days) and 4 (3 TB-in-P, 1 P-in-TB) were stillborn between 275 and 335 days. TB-in-P foals were significantly (P<0.05) lighter than TB-in-TB, but heavier than P-in-P foals. TB-in-P foals took longer to first stand and suck and some had fetlock hyperextension and low (<4 g/l) plasma immunoglobulin G concentrations. Other foal groups showed normal behavioural responses. Haematological parameters were normal in all 4 groups of foals. Plasma ACTH levels were high at birth and plasma cortisol concentrations increased after delivery and returned to baseline within 6 h post partum in all but the TB-in-P foals, which had elevated levels until 48 h post partum. Plasma cortisol concentrations increased in all groups following exogenous ACTH administered on Days 1 and 5 postpartum. CONCLUSIONS: The TB-in-P foals showed IUGR and impaired post natal adaptive responses with basal hypercortisolaemia. POTENTIAL RELEVANCE: Foals born following IUGR may require clinical assistance in the early post natal period, but appear mature with respect to adrenocortical function.  相似文献   

18.
Antithrombin (AT) levels are lower in human neonates affected by sepsis and in nonsurvivors compared with survivors. The aims of this study were to evaluate AT profile in healthy newborn foals and its diagnostic and prognostic role in septic foals during the first week of life. Fifteen healthy foals and 35 septic foals were enrolled. Blood samples were collected from each healthy foal at 30 minutes, 3 and 12 hours from birth, daily from days 1–7, and at days 10 and 14. Blood was collected from each septic foal twice a day from admission to discharge or death. The AT analysis was performed by chromogenic method. Healthy foals showed decreasing levels of AT between 3 hours and 2 days, followed by an increasing trend. Septic foals did not show any difference during the period of observation, and no differences were found between healthy and septic age-matched foals. The analysis of AT activity on the day of admission in septic foals showed higher levels compared with healthy foals, in animals hospitalized at 12 and 24 hours of age (P < .01). No differences were found at admission between foals affected by sepsis and that with septic shock. Nonsurviving foals showed significantly lower levels at 3 and 4 days of age compared with surviving foals; when surviving and nonsurviving foals were compared independently by the age, nonsurviving foals showed significant (P < .05) lower levels 12 hours after admission. In conclusion, AT seems to show neither a diagnostic nor a prognostic role in septic neonatal foals.  相似文献   

19.
BACKGROUND: Although definitive diagnosis of hypoadrenocorticism usually is made by an adrenocorticotrophic hormone (ACTH) stimulation test using 250 microg/dog of synthetic ACTH (cosyntropin/tetracosactrin), increased costs have prompted a search for less-expensive diagnostic methods. HYPOTHESIS: A low-dose ACTH stimulation test (5 microg/kg) will distinguish between dogs with nonadrenal illness and hypoadrenocorticism. Additionally, administration of cosyntropin will not affect the results of another ACTH stimulation test performed 24 hours later. ANIMALS: Eight healthy adult dogs and 29 hospitalized dogs with suspected hypoadrenocorticism. METHODS: In this prospective study, each healthy dog received 4 ACTH stimulation tests. Dogs received either 5 microg/kg or 250 microg/dog of cosyntropin on day 1 and the alternate dose on day 2. The opposite dosing sequence was used after a 2-week washout period (days 15 and 16). Dogs with suspected Addison's disease received 2 ACTH stimulation tests, 24 hours apart, using either a dose of 5 microg/kg cosyntropin or 250 microg/dog on the 1st day and the alternate dose on the 2nd day. RESULTS: In healthy dogs, poststimulation cortisol concentrations on days 2 and 16 and days 1 and 15 were equivalent (90% confidence interval [CI]: 86.7-101.2%). In dogs with suspected Addison's disease, mean (+/-SD) cortisol responses to ACTH in the 5 microg/kg dose (16.2+/-7.7 microg/dL) and 250 microg/dog dose (15.9+/-6.3 microg/dL) were statistically equivalent (90% CI: 91.2-105.4%). CONCLUSIONS AND CLINICAL IMPORTANCE: Low-dose ACTH stimulation testing distinguishes between dogs with nonadrenal illness and hypoadrenocorticism. Additionally, the administration of 2 ACTH stimulation tests on consecutive days does not affect results of the second test.  相似文献   

20.
Duration and magnitude of hypothalamic-pituitary-adrenal axis suppression caused by daily oral administration of a glucocorticoid was investigated, using an anti-inflammatory dose of prednisone. Twelve healthy adult male dogs were given prednisone orally for 35 days (0.55 mg/kg of body weight, q 12 h), and a control group of 6 dogs was given gelatin capsule vehicle. Plasma cortisol (baseline and 2-hour post-ACTH administration) and plasma ACTH and cortisol (baseline and 30-minutes post corticotropin-releasing hormone [CRH] administration) concentrations were monitored biweekly during and after the 35-day treatment period. Baseline plasma ACTH and cortisol and post-ACTH plasma cortisol concentrations were significantly (P less than 0.05) reduced in treated vs control dogs after 14 days of oral prednisone administration. By day 28, baseline ACTH and cortisol concentrations remained significantly (P less than 0.05) reduced and reserve function was markedly (P less than 0.0001) reduced as evidenced by mean post-CRH ACTH, post-CRH cortisol, and post-ACTH cortisol concentrations in treated vs control dogs. Two weeks after termination of daily prednisone administration, significant difference between group means was not evident in baseline ACTH or cortisol values, post-CRH ACTH or cortisol values, or post-ACTH cortisol values, compared with values in controls. Results indicate complete hypothalamic-pituitary-adrenal axis recovery 2 weeks after oral administration of an anti-inflammatory regimen of prednisone given daily for 5 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号