首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This study was carried out to maximize the fertilization efficiency of mixed organic fertilizer (OF) for organically managed onion (Allium cepa L.) production during the one growing season of 2005–2006. The organic fertilizer was made of organic materials like sesame oil cake, rice bran and molasses and minerals like illite and mountainous soil. Four organic topdressing treatments, which all followed the same basal fertilization with solid OF, consisted of solid OF without mulch (OF/OFnM), liquid organic fertilizer without mulch (OF/LOFnM), liquid organic fertilizer under mulch (OF/LOFuM) and liquid organic fertilizer over mulch (OF/LOFoM). Chemical fertilizer (CF) and no fertilizer (NF) were treated as controls. The solid organic fertilization base was 2.0 ton ha−1, and 4.57 ton ha−1 and was used for topdressing. The total amount of liquid organic fertilization was 133.2 ton ha−1, which was divided into 6 applications from February through March. The OF/LOFuM and OF/LOFoM topdressings did not reduce onion height, leaf number or bulb diameter as compared to chemical fertilizer, whereas no mulch treatments made onion growth significantly poorer. Onion top weight in CF was significantly higher than that in OF groups at the peak growth stage, while there was not much difference in bulb weight between the CF and OF/LOFoM treatment. Finally, the onion marketable yield was 45.9 ton ha−1 in the OF/LOFoM treatment, which exceeded that in the CF treatment by up to 1.9 ton. Furthermore, OF/LOFoM was the most effective among all the treatments in transferring the nutrients from sink to source. CF made the soil pH more acidic than OF did, and the electrical conductivity (EC) remained higher with CF than OF as well. While organic fertilizer helped to keep the NO3-N content stable throughout the growing season, the concentration rapidly oscillated up and down according to CF fertilization. Organic fertilizer increased population number of soil microorganisms like aerobes, actinomycetes in the field.  相似文献   

2.
A romaine-type lettuce (Lactuca sativa L.) cv. Corsica was cultivated during three successive crop seasons (late-spring, late-autumn and late-winter) in the same soil of an experimental greenhouse in S.W. Peloponnese, Greece. Seven long-term fertilization treatments were tested for their effect on plant growth and nitrate concentration in the external lettuce leaves. Treatments included: three different doses of organic fertilization (composted sheep manure) applied at the start of each crop season, three different doses of inorganic N fertilization applied via fertigation during each crop season, and a control treatment in which no fertilizer was applied. A drip irrigation system was used to water all plants. The highest nitrate levels were observed in the medium and maximum inorganic fertilization treatments (572–664 mg kg−1) in all crop seasons. They were significantly higher compared to the respective organic fertilization treatments (253–435 mg kg−1) and all other fertilization treatments (148–435 mg kg−1). Crop season affected lettuce growth more than nitrate accumulation in the lettuce leaves: lettuce biomass production was the smallest and most uniform in the late-autumn season and did not respond to the fertilization treatments tested (ranging from 409 to 439 g plant−1), while in the late-spring season biomass production was the highest and most variable (561–841 g plant−1), it correlated with nitrate concentration in the leaves and in the medium and maximum inorganic fertilizer doses it significantly exceeded production from all other fertilization treatments (827–841 g plant−1). Following the three crop seasons the residual availability of N, P and K was clearly enhanced in the soil receiving the organic compared to the inorganic fertilization. Nitrate concentration in lettuce leaves was far below the upper limits set by the European Commission in all fertilization treatments throughout the three crop seasons, a result attributed mainly to the sufficient level of light intensity and duration throughout the year in Southern Greece.  相似文献   

3.
Greenhouse field experiments on tomato were carried out at Shouguang, Shandong province, over four double cropping seasons between 2004 and 2008 in order to understand the effects of manipulating root zone N management (RN) on fruit yields, N savings and N losses under conventional furrow irrigation. About 72% of the chemical N fertilizer used in conventional treatment (CN) inputs could be saved using the RN treatment without loss of yield. The cumulative fruit yields were significantly higher in the RN treatment than in the CN treatment. Average seasonal N from irrigation water (118 kg N ha−1), about 59% of shoot N uptake, was the main nitrogen source in treatments with organic manure application (MN) and without organic manure or nitrogen fertilizer (NN). N losses in the RN treatment were lowered by 54% compared with the CN treatment. Lower N losses were found in the MN and NN treatments due to excessive inputs of organic manure and fruit yields were consequently substantially affected in the NN treatment. The critical threshold of Nmin supply level in the root zone (0–30 cm) should be around 150 kg N ha−1 for sustainable production. April to May in the winter–spring season and September to October in the autumn–winter season are the critical periods for root zone N manipulation during crop growth. However, control of organic manure inputs is another key factor to further reduce surplus N in the future.  相似文献   

4.
The effect of different fertilisation (i.e. broadcast application and fertigation) and irrigation practices (tank sprinkler and drip irrigation) on yield, yield quality (nitrate content), nitrogen uptake of white cabbage (Brassica oleracea var. capitata L.) and the potential for N losses was assessed on sandy-loam agricultural soil. 15N-labelled fertiliser was used as a tracer. It was found that different practices significantly affected yield, nitrate content in plants, N uptake, as well as fertiliser use efficiency. The highest yield (93 t ha−1), plant N uptake (246 kg ha−1), and fertiliser use efficiency (42%) were obtained under treatment with broadcast fertilisation with farmer's practice of irrigation (tank sprinkler). The N surplus after harvest was −41 kg N ha−1, indicating the lowest potential for N losses. Treatment by fertigation and drip irrigation covering 100% of the crop's water requirements did not result in the highest yield as expected (72 t ha−1), the N surplus after harvest was about +38 kg ha−1. The lowest yield (58 t ha−1), fertiliser use efficiency (30%) and hence the highest potential for N losses (N surplus after harvest +68 kg ha−1) were found in treatment with broadcast fertilisation and drip irrigation covering 50% of the crop's water requirements.  相似文献   

5.
Two field experiments were carried out at the Experimental Field, Department of Food Science (TE, Italy) in 2004 and 2005 to evaluate the effects of genotypes, different N forms and N rates on yield, safety and nutritional features of processing spinach. Experiment 1, as treatments, included spinach genotypes and N forms (CO(NH2)2; Agricote; NH4NO3); experiment 2 included three N forms (Ca(NO3)2; (NH4)2SO4; NH4NO3) applied at rates of 0, 75, 150, 200 kg N ha−1. This research work confirmed differences among spinach genotypes in terms of efficiency in N use and oxalate and nitrate accumulation. Spinach accumulated much more nitrate in petioles and much more oxalate in blades indicating that nitrate and oxalate might play a counterrole to each other. Fertilizers containing N under forms not readily available to the crop, i.e. Agricote, CO(NH2)2 and (NH4)2SO4, increased nitrate and oxalate accumulations less than fast N-release fertilizers, but their effect on yield was limited. Highest yield with contents of nitrate and oxalate lower than the limits imposed to avoid health problems, were achieved with Ca(NO3)2, at rates of 130 and 150 kg N ha−1 NH4NO3.  相似文献   

6.
The aim of this research was to determine the influence of various forms, diverse doses, and dates of application of nitrogen fertilizers and foliar nutrition on the concentration of sugars, carotenoids and phenolics compound in carrot. Two field experiments (Experiment I in 2003–2005 and Experiment II in 2004–2005) with carrot ‘Kazan F1’ were conducted in Trzciana (50°06′N; 21°85′E) in Poland. Both experiments were arranged in a split-plot design with four replications. Two sub-blocks were identified in both experiments: sub-block (A) without foliar nutrition and sub-block (B) with plant foliar nutrition. In sub-block (B), plants were sprayed three-times with: 2% (w/v) urea, a 1% (v/v) solution of multi-component ‘Supervit R’ fertilizer, and again with 2% (w/v) urea. Combinations with diversified nitrogen fertilization were distinguished within both sub-blocks. The treatments in Experiment I consisted of: (1) Control, (2) 70 kg N ha−1 as Ca(NO3)2, (3) 70 + 70 kg N ha−1 as Ca(NO3)2, (4) 70 kg N ha−1 as (NH4)2SO4 and (5) 70 + 70 kg N ha−1 as (NH4)2SO4, where 70 kg N ha−1 was used preplant and 70 + 70 kg N ha−1 was applied preplant and as a top dressing, respectively. The treatments in Experiment II consisted of: (1) Control, (2) 35 + 35 kg N ha−1 as ENTEC-26, (3) 70 + 70 kg N ha−1 as ENTEC-26, (4) 105 + 105 kg N ha−1 as ENTEC-26, (5) 35 + 35 kg N ha−1 as NH4NO3, (6) 70 + 70 kg N ha−1 as NH4NO3, (7) 105 + 105 kg N ha−1 as NH4NO3, where 35 + 35, 70 + 70, 105 + 105 kg N ha−1 was applied preplant and as top dressing, respectively. Solid nitrogen fertilizer was added to the soil, as produced: Ca(NO3)2—Yara International ASA (Hydro), (NH4)2SO4—Zak?ady Azotowe w Tarnowie, Poland, NH4NO3—Zak?ady Azotowe w Pu?awach, Poland and ENTEC-26–COMPO GmbH & Co., KG, Germany. In Experiment I, the highest sugar concentrations were found in carrot fertilized with (NH4)2SO4 70, while in Experiment II in the control and after fertilization with ENTEC-26 35 + 35 kg N ha−1. In both experiments N-fertilization affected an increase in phenolic compound concentrations in comparison with the control. Experiment I revealed no significant effect of N-fertilization on carotenoid concentrations in carrot, however in Experiment II the highest concentration of these compounds was characteristic for the control plants and carrot fertilized with ENTEC-26 35 + 35. The foliar nutrition applied in Experiment I caused a decline in sugar concentration and an elevated carotenoid concentration, however it had no influence on the phenolic compound concentrations in carrot. Yet the foliar nutrition in Experiment II led to a decrease in phenolic and carotenoid compound concentrations, but it did not affect sugar concentration in carrot.  相似文献   

7.
The effect of five levels of nitrogen fertilization on the growth and nutritional quality of Cos lettuce (Lactuca sativa L. cv. Parris Island) at harvest and after storage was studied during autumn and winter in South-West Greece. Plants were cultivated hydroponically in a greenhouse and the nitrate, chlorophyll and ascorbic acid (vitamin C) concentrations within the plant tissues were measured at harvest and following storage at 5 or 10 °C for 10 days. Nitrate accumulated in the leaves with increasing amounts of N within the nutrient solution and was higher in the winter than in the autumn. At the lowest N level (20 mg L−1), the inner leaves accumulated more nitrate than the outer leaves, whereas at higher N levels (140, 200 or 260 mg L−1) nitrate accumulation was higher in the outer leaves. Overall, the highest nitrate concentrations were detected in the petiole and the proximal end of the leaf, but at the lowest N application rate (20 mg L−1) nitrate accumulated in the distal region of the leaf too. Although the nitrate concentrations within the leaves did not change significantly during 10 days storage at 5 or 10 °C, the chlorophyll and vitamin C concentrations decreased. Chlorophyll loss was higher in lettuce that was grown under low N levels and was higher at 10 °C than at 5 °C, but was reduced by enclosure of the lettuce in polyethylene film. It is concluded that the optimum N application rate for Cos lettuce grown hydroponically under cover during autumn and winter in South-West Greece, and in other areas with a similar climate, is 200 mg N L−1 because at this N rate yield is satisfactory and leaf nitrate concentrations are below the maximum acceptable level for human consumption. Nutritional value (vitamin C concentration) and market quality (chlorophyll content) are highest at harvest and decrease during storage, but quality in terms of nitrate concentration does not change.  相似文献   

8.
In the warm and wet north Florida climate, growing Italian parsley (Petroselinum crispum [Mill.]) is gaining popularity with small producers as a short duration crop on sandy soil. Application of compost to agricultural land can benefit the low fertile sandy soils in Florida and subsequent crop production, while providing an outlet for recycling municipal solid wastes (MSW) and biosolids. A field study was laid out in a randomized complete block design with four replications to evaluate the effects of compost (75% MSW:25% biosolids) application in comparison to fertilizer, fertilizer + compost (50:50), and control treatments on: (a) parsley fresh weight (FW), (b) soil and plant tissue nutrient concentrations, and (c) soil bulk density and moisture retention in winter and spring seasons. Soil amended with fertilizer or compost + fertilizer doubled parsley FW from 15.02 Mg ha−1 in the non-amended control plot to 30.75 and 32.67 Mg ha−1 in soils that received fertilizer + compost or fertilizer alone, respectively. Significantly higher total soil carbon (C) levels of 2.16% and 1.95% and nitrogen (N) levels of 0.19% and 0.16% were recorded in compost and fertilizer + compost treatments, respectively. Addition of compost reduced soil bulk density significantly to 1.03 Mg m−3 and increased soil moisture retention in simulated drier conditions at 1500 kPa to 0.12 m3 m−3 in plots that received only compost at the end of winter growing season. Overall, addition of compost resulted in improvement of both physical and chemical properties as well as increased parsley yields.  相似文献   

9.
Alpine strawberry (Fragaria vesca L.) was grown in hydroponics with the nutrient film technique, in order to evaluate the effects of four buffer concentrations (1.3, 1.6, 1.9, 2.2 mS cm−1) and two cultural cycles (summer-spring versus autumn-spring) in terms of growth, yield and fruit quality (dry and optical residues, sugars, acids, antioxidants, mineral composition). The longer summer-spring cycle gave a correspondingly higher yield than the autumn-spring one. The 1.3 mS cm−1 nutrient solution was the most effective in terms of overall and spring production. However, the autumn and winter yields were not affected by the buffer EC. Fruit quality did not change with the cultural cycle, but the berries harvested in the spring had higher vitamin C and sucrose content and lower nitrate content compared with berries picked up in the winter. Fruit quality was also improved when the nutrient solution concentration increased. From the productive point of view, the cultural cycle choice should be made considering that 71% of the yield of the more productive summer-spring cycle derived from the spring harvest. Moreover, as regards the nutrient solution strength, 1.3 mS cm−1 EC should be preferred during the spring season, whereas the 2.2 mS cm−1 EC proved to be best in the winter in terms of fruit quality.  相似文献   

10.
Elevated levels of nitrate-nitrogen (NO3-N) in the surficial aquifer above the drinking water quality standard, i.e. maximum contaminant limit (MCL; 10 mg L−1), have been reported in some part of central Florida citrus production regions. Soils in this region are very sandy (sand content >95%), hence are vulnerable to leaching of soluble nutrients and chemicals below the rooting depth of the trees. The objective of this research was to develop N and irrigation best management practices for citrus in sandy soils to maintain optimal crop yield and quality, and to minimize potential leaching of nitrate below the root zone. Six years of field experiment was conducted in a high productive (mean fruit yield > 80 Mg ha−1yr−1) >20-year-old ‘Hamlin’ orange trees [Citrus sinensis (L.) Osbeck] on ‘Cleopatra mandarin’ (Citrus reticulata Blanco) rootstock grown on a well drained Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) in Highland county, FL. Nitrogen rates ranged from 112 to 280 kg ha−1 yr−1 applied as fertigation (FRT), water soluble granular (WSG), 50:50 mix of FRT and WSG, and controlled-release fertilizer (CRF). Tensiometers were used to monitor the soil water content as a basis to schedule optimal irrigation. Fruit yield response over the entire range of N rates was greater for the FRT and WSG sources as compared to that for the WSG + FRT or CRF sources. Using the regression analysis of the fruit yield in relation to N rate, the optimum N rate appeared to be at 260 kg ha−1 yr−1. Based on fruit production response in this study, the N requirement for production of 1 Mg of fruit varied from 2.2 to 2.6 kg across four N sources. This study demonstrated an increased N uptake efficiency, as a result of best management of N and irrigation applications. The optimal N and K concentration in the 4–6-month-old spring flush leaves were 26–30, and 15–18 g kg−1, respectively. However, fruit yield response showed no significant relationship with concentrations of P in the 4–6-month-old spring flush leaves over a range of 0.8–2.4 g kg−1. The results of fate and transport of N in soil and in soil solution with application of different rates and sources of N, and components of citrus tree N budget, are reported in a companion paper.  相似文献   

11.
The effects of three crop load densities (4, 6 and 8 fruit per cm2 of the cross-section of each tree branch, BCSA) on fruit growth, yield, fruit quality and vegetative growth were studied in apples (Malus × domestica Borkh) Ultrared Gala/MM111, from the fourth leaf (2006–2007 season) to the sixth (2008–2009 season). The maximum fruit growth rate was reached between 90 and 108 days after full bloom (DAFB), with values above 2.6 g day−1. Accumulated yields to the sixth leaf reached 181, 157 and 123 Mg ha−1 in the high, medium and low crop loads, respectively. Mean fruit weight decreased with increasing fruit crop load but the yields of fruit weight over 194 g were similar in all crop loads; the highest crop load exceeded the lowest crop load by 18.8 and 27.5 Mg ha−1 of fruit weight of more than 172 and 154 g, respectively. The yields of harvested fruit exceeding 75% with red coloring did not show major differences, while fruit classified as 50–75% with red coloring were less common in the low crop load. No major differences were found at the end of the study in vegetative growth in the different seasons, nor in plant size. The reduction in mean fruit weight and in the percentage of fruit with good coloring was compensated by the increase in yields, thus not resulting in an effective reduction in the quality of the harvested fruit. The level of plant development reached with a semi-vigorous rootstock and high fruit loads allowed obtaining high fruit yield earlier and of good quality.  相似文献   

12.
In order to establish a rational nitrogen (N) fertilisation and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its dynamics inside the plant is crucial. In two successive years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to determine the uptake of N fertiliser, applied by means of fertigation at different stages of plant growth, and to follow the translocation of N in the plant using 15N-labelled N. In 2006, two experiments were carried out. In the first experiment, labelled 15N fertiliser was supplied at the female-bloom stage and in the second, at the end of fruit ripening. Labelled 15N fertiliser was made from 15NH415NO3 (10 at.% 15N) and 9.6 kg N ha−1 were applied in each experiment over 6 days (1.6 kg N ha−1 d−1). In 2007, the 15N treatment consisted of applying 20.4 kg N ha−1 as 15NH415NO3 (10 at.% 15N) in the middle of fruit growth, over 6 days (3.4 kg N ha−1 d−1). In addition, 93 and 95 kg N ha−1 were supplied daily by fertigation as ammonium nitrate in 2006 and 2007, respectively. The results obtained in 2006 suggest that the uptake of N derived from labelled fertiliser by the above-ground parts of the plants was not affected by the time of fertiliser application. At the female-flowering and fruit-ripening stages, the N content derived from 15N-labelled fertiliser was close to 0.435 g m−2 (about 45% of the N applied), while in the middle of fruit growth it was 1.45 g m−2 (71% of the N applied). The N application time affected the amount of N derived from labelled fertiliser that was translocated to the fruits. When the N was supplied later, the N translocation was lower, ranging between 54% at female flowering and 32% at the end of fruit ripening. Approximately 85% of the N translocated came from the leaf when the N was applied at female flowering or in the middle of fruit growth. This value decreased to 72% when the 15N application was at the end of fruit ripening. The ammonium nitrate became available to the plant between 2 and 2.5 weeks after its application. Although the leaf N uptake varied during the crop cycle, the N absorption rate in the whole plant was linear, suggesting that the melon crop could be fertilised with constant daily N amounts until 2–3 weeks before the last harvest.  相似文献   

13.
Aluminium phosphide (AlP) is a widely used fumigant due to its ability to kill a broad spectrum of stored-grain insect pests and its easy penetration into the commodity while leaving minimal residues. Field trials were conducted to ascertain the efficacy of AlP as a methyl bromide (MeBr) alternative in tomato (Solanum lycopersicum L.). Six treatments were replicated five times in a randomized complete block design: fumigation with MeBr (400 kg ha−1), three AlP doses (18.75, 37.50 and 56.25 kg ha−1), an avermectin dose (7.5 L ha−1), and a non-treated control. Results consistently indicated that MeBr was generally superior to the treatments involving all AlP and avermectin, which in turn were superior to the control, for improving tomato yield, inhibiting nematode and weed. In two successive seasons, AlP at the dose of 56.25 kg ha−1 was as effective as MeBr in increasing plant height and vigor as well as maintaining excellent tomato yield, but it providing relatively medium control over nematode and weeds. The present data support the conclusion that AlP is a promising alternative to MeBr for managing nematodes and weeds in tomato crop and can be used effectively in integrated pest management programs.  相似文献   

14.
In conservation tillage systems based on legume mulches it is important to optimize N management strategies. The present study evaluated the effect of some winter legume cover crops converted into mulches on the following no-tillage tomato (Solanum Lycopersicum L.) yield, tomato nitrogen uptake, tomato use efficiency (NUE), soil nitrate and the apparent N remaining in the soil (ARNS) in a Mediterranean environment. Field experiments were carried out from 2002 to 2004 in a tomato crop transplanted into: four different types of mulches coming from winter cover crops [hairy vetch (Vicia villosa Roth.), subclover (Trifolium subterranem L.), snail medic (Medicago scutellata L. Miller), and Italian ryegrass (Lolium multiflorum Lam.)]; a conventional tilled soil (CT); and a no-tilled bare soil (NT). All treatments were fertilized with three different levels of nitrogen (N) fertilizer (0, 75, and 150 kg N ha−1). Cover crop above-ground biomass at cover crop suppression ranged from 4.0 to 6.7 t ha−1 of DM and accumulated from 54 to 189 kg N ha−1, hairy vetch showed the highest values followed by subclover, snail medic and ryegrass. The marketable tomato yield was higher in no-tilled legume mulched soil compared to no-tilled ryegrass mulched soil, CT, and NT (on average 84.8 vs 68.7 t ha−1 of FM, respectively) and it tended to rise with the increase of the N fertilization level. A similar trend was observed on tomato N uptake. Hairy vetch mulch released the highest amount of N during tomato cultivation followed by subclover, snail medic, and ryegrass (on average 141, 96, 90 and 33 kg N ha−1). The tomato NUE tended to decrease with the increase of the N fertilization rates, it ranged from 39 to 60% in no-tilled legume mulched soil and from −59 to 30% in no-tilled ryegrass mulched soil when compared to the CT. The soil NO3-N content and the ARNS was always higher in the soil mulched with legumes compared to the soil mulched with ryegrass and in NT and CT. This study shows that direct transplanting into mulches coming from winter legume cover crops could be useful for improving the yield and the N-uptake in a no-tillage tomato crop. Furthermore, considering the high N content in the upper soil layer and the remaining N content in the organic mulch residues after tomato harvesting, there is a large amount of N potentially available which could be immediately used by an autumn–winter cash crop.  相似文献   

15.
Very little information is available on organic specialty cut flower production, especially fertilization requirements. In order to better understand organic fertilization requirements of two specialty cut flower crops, Limonium sinuatum and Celosia argentea, we initiated a field and greenhouse experiment to study the effect of compost (organic) and conventional (inorganic) fertilization treatments on the growth and productivity of these crops. Optimum yields in the field, expressed as fresh weight per plot, were achieved at compost applications of 98.8 t ha−1 for both Limonium and Celosia. However, when number of stems, height of the stems, and the environmental impacts of such compost applications are considered we concluded that the optimal organic fertilizer amounts were 12.4 and 24.7 t ha−1, for Limonium and Celosia, respectively. Limonium and Celosia plants in the greenhouse experiment were fertilized with 100, 200, 300, and 400 mg L−1 nitrogen, combined with 0, 5, 10, 20, 40, and 60 mg L−1 phosphorus. The generation of response surfaces for total weight per pot, number of stems per pot, average weight per stem, and average stem length were attempted for each species. The results showed that nitrogen did not significantly contribute to any of the models, except for Celosia average weight and length per stem models. Total weights per pot on the other hand showed both a linear and quadratic relationship over the range of phosphorus applications we tested. Maximum number of stems and total weight per pot were observed between 30 and 46 mg L−1 P in both Limonium and Celosia. Our results suggest that organic fertilizer recommendations, in the form of animal manure composts should be based on phosphorus content of the compost rather than nitrogen content especially for soils high in initial phosphorous content.  相似文献   

16.
Fruit cracking after rain limits the production of a number of crops, including some Ribes species. To gain a better understanding of the factors involved in cracking, fruit growth, deposition of the cuticular membrane (CM), water uptake and fruit cracking were studied in black currant (Ribes nigrum L. cv. Zema), gooseberry (Ribes uva-crispa L. cv. Rote Triumph), and jostaberry (Ribes nidigrolaria B. cv. Jostine). Fruit surface area and fresh mass increased continuously throughout development, whereas deposition of the CM was biphasic. CM mass per fruit increased rapidly up to 42, 41, and 49 days after full bloom (DAFB) in black currant, gooseberry, and jostaberry, respectively. Thereafter, CM mass per fruit remained constant in gooseberry and jostaberry or increased at a lower rate in black currant. The cessation of or reduced rate of CM deposition resulted in a decrease in CM mass per unit area in all berries. Elastic strain of the CM at maturity averaged 23.8% and 19.5% in gooseberry and jostaberry, respectively, and only 8.2% in black currant. Microcracks in the CM were observed first in gooseberry and jostaberry 64 DAFB, whereas there were no microcracks in black currant. Water uptake into mature detached berries was linear over 2 h of incubation. Rates of uptake were highest in gooseberry followed by black currant and jostaberry. Relative uptake was similar via the cut end of the pedicel (32.1%), the apex of the fruit (34.7%) and the fruit surface (33.2%). Rates of water uptake through the fruit surface were positively related to surface area. Average fruit water potential for black currant, gooseberry, and jostaberry was −2.14 ± 0.17, −1.24 ± 0.03, and −1.89 ± 0.20 MPa, while the permeability for osmotic water uptake was 7.7 ± 0.4 × 10−8, 5.2 ± 0.1 × 10−8, and 3.3 ± 0.3 × 10−8 m s−1. Incubating whole fruit in deionized water for 72 h resulted in more cracked jostaberries (94%) than black currants (74%) or gooseberries (50%). A comparison of our findings in Ribes berries with published data for the sweet cherry drupe revealed that the berries fitted the relationships established in sweet cherry among fruit growth, cuticle deposition, strain of the cuticle, microcracking, permeability for osmotic water uptake, frequency of stomata and cracking. The Ribes berries were less susceptible to cracking than sweet cherry.  相似文献   

17.
Two field experiments (Experiment I in 2003–2005 and Experiment II in 2004–2005) with carrot c.v. ‘Kazan F1’ were conducted at Trzciana village (50°06′N, 21°85′E). The experiments were arranged in a split-plot design with four replications. Two sub-blocks were identified in both experiments: I, without foliar nutrition; II, receiving plant foliar nutrition. The plants were sprayed three times alternately with: 2% urea solution, 1% solution of multi-component ‘Supervit R’ fertilizer (produced by Intermag, Poland) and again with 2% urea solution. Combinations with diversified nitrogen fertilization were distinguished within both sub-blocks. Experiment I comprised of: (1) Control, (2) Ca(NO3)2 70, (3) Ca(NO3)2 70 + 70, (4) (NH4)2SO4 70 and (5) (NH4)2SO4 70 + 70. Experiment II included: (1) Control, (2) ENTEC-26 35 + 35, (3) ENTEC-26 70 + 70, (4) ENTEC 26 105 + 105, (5) NH4NO3 35 + 35, (6) NH4NO3 70 + 70, (7) NH4NO3 105 + 105. Where 70 kg N ha−1 was used before sowing, whereas 35 + 35, 70 + 70 and 105 + 105 kg N ha−1 were applied before sowing and as top dressing. Solid nitrogen fertilizer was added to the soil (produced by): Ca(NO3)2, Yara International ASA (Hydro); (NH4)2SO4, Zak?ady Azotowe in Tarnów, Poland; NH4NO3, Zak?ady Azotowe in Pu?awy, Poland; and ENTEC-26, COMPO GmbH & Co. KG, Germany. The research aimed at determining the effect of diversified nitrogen fertilization and foliar nutrition on NO3, NH4+, N-total and dry matter (d.m.) concentrations in carrot, and N uptake by storage roots. In Experiment I, nitrogen fertilization did not affect NO3 concentration, whereas in Experiment II, the applied N treatment increased NO3 concentration in carrot in relation to the control, except for the storage roots of plants fertilized with ENTEC-26 35 + 35. Nitrogen fertilization applied in both experiments caused a significant increase in N-total concentration in carrot and N uptake by storage roots in comparison with the control plants. In both experiments, nitrogen fertilization had a different effect on the concentrations of NH4+ and d.m. in carrot. What is more, foliar nutrition treatments in both experiments had a different effect on the concentrations on NO3, N-total, d.m. in carrot and N uptake by carrot storage roots.  相似文献   

18.
The research was conducted in two successive seasons to compare the effect of nutrient sources, organic manure and inorganic conventional nutrient solution, in cucumber production performed with different local substrates. In fall, the experiment was designed to test three factors, namely cultivar [(a) Armada, (b) Gordion], nutrient source [(a) inorganic nutrient solution, (b) solid organic manure] and substrate [(a) 3 + 1 perlite + clinoptilolite, (b) 1 + 1 perlite + clinoptilolite, (c) 3 + 1 tuff + clinoptilolite, (d) 1 + 1 tuff + clinoptilolite, v/v]. Results showed that organic manuring decrease the total yield by 22.4% in comparison to inorganic nutrient solution. In organic manure treatment, vigorous variety (Armada) gave higher yield than less vigorous variety (Gordion). In the spring season, the tested factors were decreased to two and tested as nutrient source [(a) inorganic nutrient solution, (b) solid organic manure, (c) organic nutrient solution] and substrate. Armada was the only cultivar. Compared to that of the inorganic nutrient solution, total yield was reduced by 10.9% in the organic nutrient solution system and 31.3% in solid organic manure treatment.  相似文献   

19.
The effects of successive brassinosteroid analogue (BR) applications (0.1 mg l−1 of brassinosteroid analogue BB-16) were evaluated on commercial yellow passion fruit (Passiflora edulis f. flavicarpa) orchards in the first year of production. The treatments applied were: control, BR-1 (1 BR application shortly after the first flowers appeared), BR-2, BR-3, BR-4 and BR-5 (BR application in two, three, four and five consecutive weeks after the appearance of the first flowers, respectively). The fruits were collected for seven consecutive weeks (105 fruits treatment−1) and fruit mass, length and diameter, soluble solid contents; pulp mass and peel thickness were evaluated in the laboratory. Multivariate analysis was performed in order to determine whether there were differences among the treatments taking into account all the measurements made. BR-3 was the most promising treatment because it produced the highest number of fruits plant−1 (81.5) compared to the control (53.5) and the soluble solid content was 1 °Brix greater than the control. The BR-3 treatment resulted in a 65% increase in the estimated yield of the passion fruit plants, corresponding to 20 t ha−1 compared to the control yield of 12 t ha−1. The results showed that BB-16 sprayed during a period of reproductive development can increase the number of fruits per plant.  相似文献   

20.
Banana is an increasingly demanded food and cash crop in sub-Saharan Africa. Reported yields in smallholder farms vary substantially. The importance and spread of yield constraints have not been properly quantified. A study was carried out in Central Kenya to (i) quantify the yield levels, the primary yield constraints, and the spatial production gradients in such systems (ii) explore how soil fertility gradients relate to gradients in soil fertility management, and whether this is a function of farmer resource availability. Data was collected on crop management aspects, pests and diseases, and soil and plant tissue samples analyzed for nutrient contents. Bunch yields were higher near homesteads (29.8 t ha−1 yr−1) than at mid-distance (26.8 t ha−1 yr−1), or far away 20.2 t ha−1 yr−1. Yields were much higher than previously reported (11–14 t ha−1 yr−1) in Kenya. Both soil and tissue K levels were higher near and mid-distance, than far from the homestead. Gradients of soil pH, total N, available P and Organic carbon were found, being higher near the homestead, while Mg and Ca were lowest near the homesteads. K was the most deficient nutrient, with tissue K index (IK) decreasing when moving away from the homesteads. P and Ca deficiencies were also observed. Resource-poor farmers’ soils were higher in exchangeable K and Mg, pH, and total N, and supported higher mat densities compared to resource-endowed farmers’ farms. Soil quality problems were the biggest yield loss factors and not pests and diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号