首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Juvenile African catfish, Clarias gariepinus (Burchell), of mean initial weight 15 g, were fed practical diets containing fresh or rancid oil (1:1 cod liver:corn oil) supplemented with either 20 or 100 mg all-rac-α-tocopheryl acetate per kg dry diet, at 0.03 × body weight per day for 8 weeks. After this time, catfish had grown by at least four times in body weight. Significant ( P < 0.05) inter-treatment differences in final body weight were noted. Clarias fed low-tocopherol: oxidized-oil diets performed least well with regard to growth, though elevated dietary vitamin E partially abrogated this effect. Growth of fish fed fresh-oil diets did not benefit from increased dietary α-tocopherol content. Muscle, liver, plasma, heart and spleen all responded significantly ( P < 0.05) to dietary vitamin E dose. Inclusion of oxidized oil in catfish diets decreased tissue α-tocopherol concentration. Hepatic α-tocopherol concentration (μg α-tocopherol per g liver) was observed to be lowered by 90% by the rancid oil diets. When fish previously fed fresh-oil diets were switched to oxidized: low-tocopherol diets, hepatic α-tocopherol concentration was significantly ( P < 0.05) lowered within 2 weeks. The results highlight the importance of dietary oil quality in modulating tissue α-tocopherol concentrations in African catfish.  相似文献   

2.
Vitamin E is important to animal health, growth, productive performance, fillet quality and immune systems. This study evaluated the effects of dietary vitamin E on flesh composition, growth, biochemical and immunological parameters of striped surubim, Pseudoplatystoma reticulatum. Prior to beginning of the feeding trial, fish were fed a vitamin E‐free control diet for 45 days to reduce body deposits. The trial was set up in a completely randomized design; diets containing 3.4; 28.4; 53.4; 103.4; 153.4 and 303.4 mg DL‐α‐tocopherol acetate per kg of ration (n = 3) were fed twice a day to apparent satiation, for 90 days. Juvenile striped surubim (38.1 ± 4.9 g and 17.5 ± 1.5 cm) randomly stocked in 18 plastic tanks (300 L; 10 fish per tank). Based on serum globulin content and liver and fillet deposition of vitamin E, inclusion of 166.6 mg/kg of DL‐alpha tocopherol acetate in the diet is recommended to improve the immunological status and, probably, flesh quality of striped surubim.  相似文献   

3.
This study was conducted to determine the dietary vitamin E requirement of juvenile hybrid striped bass ( Morone chrysops female ×  Morone saxatilis male). Semi-purified diets supplemented with 0.2 mg Se kg−1 from Na2SeO3 and either 0 (basal), 10, 20, 40, 60, or 80 mg vitamin E kg−1 as  DL -α-tocopheryl acetate were fed to hybrid striped bass initially averaging 1.8 ± 0.1 g (mean ± SD) for 12 weeks. Fish fed the basal diet, which contained 5.8 mg α-tocopherol kg−1 dry weight, were darker in colour and had reduced weight gain, as well as generally reduced haematocrit values compared with fish fed diets supplemented with vitamin E. In addition, fish fed diets containing less than 20 mg supplemental vitamin E kg−1 had significantly ( P  < 0.05) reduced weight gain and feed efficiency compared with those fed diets supplemented with vitamin E at 20–80 mg kg−1. Dietary supplementation of vitamin E caused incremental increases in the concentration of α-tocopherol in both plasma and liver tissues. However, hybrid striped bass fed graded levels of vitamin E did not exhibit a dose response in terms of ascorbic acid-stimulated lipid peroxidation of hepatic microsomes. Regression analysis of weight gain data using the broken-line model indicated a minimum vitamin E requirement ( ±  SE) of 28 ( ±  3) mg kg−1 dry diet. Based on these data, the dietary vitamin E requirement of hybrid striped bass appears to be similar to that determined for other fish species.  相似文献   

4.
A 3 × 3 factorial experiment was conducted on Labeo rohita fingerlings to evaluate the effect of dietary oxidized oil and vitamin E. Nine experimental diets were made, based on three degrees of oil oxidation (fresh oil, low oil oxidation and high oil oxidation), and each level of oxidation was further supplemented with three levels of vitamin E (0, 100 and 1,000 mg/kg). Weight gain% and specific growth rate (SGR) of fish fed fresh fish oil and low oil oxidation level were significantly higher than highly oxidized oil. Moreover, vitamin E supplemented fish also showed better growth performance. Oil oxidation caused a significant reduction in the concentrations of α‐tocopherol and increase in TBARS level and antioxidant enzyme activities in fish liver and muscles. However, increasing the dietary vitamin E abrogated these effects. Dietary vitamin E supplementation improved the fatty acid, more specifically polyunsaturated fatty acids profile of oxidized oil fed fish. In conclusion, dietary oxidized fish oil increased the oxidative stress condition of fish but supplementation of high dose of vitamin E prevented lipid oxidation, improved growth performance and fatty acid profile of L. rohita.  相似文献   

5.
Juvenile African catfish, Clarias gariepinus (Burchell), were fed low-tocopherol, practical test-diets containing graded levels of α-tocopheryl acetate (0, 80, 200 and 500 mg kg?1 dry feed) at proportionately 0.02 body weight per day for 70 days. After the feeding period, selected fish tissues were assayed for α-tocopherol and thiobarbituric acid reactive substances (TBARS) concentrations, before and after iron-ascorbate stimulated peroxidation. Results show that tissue accretion of α-tocopherol in muscle, liver and blood plasma increased linearly (R2= 0.83, 0.82 and 0.93, respectively) in response to elevated dietary supplementation of α-tocopheryl acetate within the range of doses under study. In muscle and liver this resulted in a significant decrease (P < 0.05) in basal TBARS and TBARS after stimulated peroxidation, indicating a greater stability against oxidation. Growth indices were not significantly affected (P > 0.05) by dietary α-tocopheryl acetate inclusion. Clarias fed the highest α-tocopheryl acetate dose (500 mg kg?1 dry feed) were observed to have significantly lower (P < 0.05) haematocrit (% packed cell volume) than fish fed the basal diet (0 mg kg?1 dry feed). It was concluded that supplemental α-tocopheryl acetate in practical diets, for Clarias gariepinus, was effective in reducing the degree of tissue-lipid peroxidation under conditions of increased oxidative stress. Thus, the post mortem resistance to oxidation achieved would improve the stability of catfish products destined for human consumption.  相似文献   

6.
A 12-week feeding trial was conducted to establish the minimum dietary vitamin E requirement of juvenile red drum by broken-line regression analysis. The semi-purified basal diet was supplemented with 10, 20, 30, 40, 60 or 80 IU vitamin E kg−1 as all-rac -α-tocopheryl acetate. Juvenile red drum were conditioned by feeding the basal diet for 8 weeks prior to the feeding trial to reduce whole-body vitamin E levels. Then, fish initially averaging 12.2 ± 0.4 g fish−1 (mean ± SD) were fed the experimental diets at a rate approaching apparent satiation for 12 weeks. Weight gain and feed efficiency responses of fish fed diets were significantly ( P  < 0.01) altered by the level of vitamin E supplementation but not strictly in a dose-dependent manner. Vitamin E concentrations in liver and plasma also were significantly ( P  < 0.001) influenced by dietary vitamin E level. Plasma ascorbic acid in fish fed the basal diet tended ( P  = 0.066) to be lower than in fish fed diets containing the various levels of vitamin E. In addition, fish fed the basal diet showed edema in the heart, while fish fed all other diets were normal. Fish fed 60 or 80 IU all-rac -α-tocopheryl acetate kg−1 diet had significantly higher respiratory burst of head kidney macrophages than fish fed all other diets, although dietary effects on hematocrit and neutrophil oxidative radical production were not significant. The minimum dietary vitamin E requirement of juvenile red drum was established based on broken-line regression of liver thiobarbituric acid reactive substances to be 31 mg all-rac -α-tocopheryl acetate kg−1 diet.  相似文献   

7.
A study was conducted to characterize the effects of oxidized marine fish oil (MFO) on skeletal development in juvenile Atlantic halibut (Hippoglossus hippoglossus) and to determine the role of vitamin E on their bone health and antioxidant defense mechanisms. Juvenile halibut (4.5 ± 0.1 g) were fed six experimental diets containing untreated (peroxide value (POV)  =0.6 meq kg− 1), mod`rately oxidized (POV = 7.5 meq kg− 1) and highly oxidized (POV = 15 meq kg− 1) MFO either with or without α-tocopherol acetate (0 or 300 IU kg− 1) supplementation for 14 weeks. No significant effects on growth, survival, hepatosomatic indices, or hematocrit were observed among the dietary treatments. Fish fed diets without vitamin E and highly oxidized dietary lipids showed increased hepatic malonaldehyde concentrations indicating a response to oxidative stress. Both muscle and liver α-tocopherol concentrations were significantly lower in fish fed diets without vitamin E supplementation. Alkaline phosphatase levels in serum and bone were increased when vitamin E was present within the diet indicating higher bone formation activity by osteoblasts. Oxidized lipids and lack of dietary vitamin E significantly increased saturated and decreased polyunsaturated hepatic fatty acids. Liver lipids of fish fed diets without vitamin E also exhibited a lower ratio of 22:6n-3 to 22:5n-3 and n-3 fatty acids. The most frequent skeletal deformity observed was scoliosis, spanning the cephalic/prehemal regions, as well as the anterior hemal region of the vertebral column, which increased the frequency according to elevated levels of oxidized dietary lipid. Lordosis was also observed, with no specific pattern along the vertebral column. The pattern and type of abnormalities observed were similar to those reported in an earlier study in halibut from a commercial hatchery.  相似文献   

8.
Over a 56-day feeding period, during which juvenile African catfish, Clarias gariepinus (Burchell) increased in body weight at least threefold, diets containing fresh or rancid oils (0.352 and 9.133 mmol MDA equivalents per g oil, respectively) at two levels of supplemental vitamin E (20 or 100 mg all-rac-α-tocopheryl acetate kg-1 dry diet) were fed at 3% body weight per day. On termination of the feeding trial, growth performance and food utilization were assessed. Additionally, health criteria such as hepatosomatic index (HSI), haematocrit, plasma haemoglobin and plasma α-tocopherol concentration were determined. Plasma α-tocopherol was seen to increase significantly (P < 0.05) concomitant with dietary dose of the vitamin. Oxidation of dietary lipid source was observed to cause significant depletion (P < 0.05) of α-tocopherol from the plasma pool on consumption of the rancid test-diets. Final body weights of the catfish revealed that vitamin E supplementation in rancid diets significantly improved growth (P < 0.05), although supplementation into fresh-oil diets did not result in appreciable benefits in terms of final attained weight (P > 0.05). Values of other growth parameters and nutrient utilization indices were seen to respond positively to increased vitamin E levels and fresher dietary oils. With respect to other health indices, HSI was strongly correlated (P < 0.05) to dietary vitamin E dose and not oil oxidation state, with catfish fed lower α-tocopherol doses exhibiting larger livers proportional to somatic mass. Haematocrit values were significantly (P < 0.05) lower in fish fed low-tocopherol/fresh-oil diets. Although no measurably significant differences were found between treatments with respect to plasma-haemoglobin concentration, higher mean values for the fish fed rancid oils at the lower α-tocopherol inclusion level may indicate heightened Spontaneous haemolysis in this group. Mechanisms to account for dietary modulation of health indices in catfish under the present dietary regime are postulated. It was concluded that supplemental α-tocopheryl acetate in diets likely to undergo oxidation, would protect catfish from the nutritional stress imposed by rancid oils and increase growth above levels associated with unsupplemented dietary treatments.  相似文献   

9.
Six purified diets were formulated to contain three lipid sources, fish oil (FO), linseed oil (LO) and soybean oil (SO), at 6% diet lipid crossing two levels of vitamin E (100 and 300 mg α‐tocopheryl acetate/kg diet) for each lipid source (FO100, FO300, LO100, LO300, SO100, SO300). The juvenile Chinese mitten crab, Eriocheir sinensis, respectively, fed on these diets with four replicates for 6 weeks. The crab weight gain (WG) and specific growth rate (SGR) were significantly affected by dietary lipid sources. No difference was found between the crabs fed two levels of vitamin E, but the WG and SGR were numerically higher in crab fed 300 mg/kg vitamin E than those fed the other level of vitamin E. The lipid source and vitamin E level could affect fatty acid composition in the hepatopancreas. The contents of saturated fatty acids (SAFA) and n‐3HUFA were significantly higher in the crab‐fed fish oil. The highest contents of n‐6PUFA and n‐3PUFA were found in the crab‐fed soybean oil and linseed oil respectively. The contents of SAFA, n‐3HUFA and n‐3PUFA were higher in the 300 mg/kg vitamin E treatment. A lower malondialdehyde (MDA) content and higher phenoloxidase (PO) activity were observed in the crab fed 300 mg/kg vitamin E. The results of this study indicate that the Chinese mitten crab fed the diet with 6% fish oil and 300 mg/kg vitamin E showed better growth, antioxidant capacity and resistance to Aeromonas hydrophila.  相似文献   

10.
Atlantic salmon (Salmo salar) fry, initial weight 0.16 g, were fed a semipurified diet with 0, 15, 30, 60 or 120 mg dl-α-tocopheryl acetate/kg. After 24 weeks, the first two of these groups were extinct, and the fish receiving 30 mg/kg were clearly vitamin E deficient. Vitamin E deficient fish had low hemoglobin levels, characterized by a combination of reduced cellular hemoglobin concentration, red cell volume and red cell number, and an increased number and fraction of immature red blood cells. The hemoglobin concentration decreased over the decreasing range of experimental dl-ga-tocopheryl acetate levels. Therefore, even if 60 mg dl-α-tocopheryl acetate/kg gave good survival, this level was clearly physiologically suboptimal. Ceroid accumulated in the liver of fish fed 30 mg vitamin E/kg, and autofluorescent inclusions were found in the red blood cells of fish fed 30 and 60 mg vitamin E/kg. Degeneration of skeletal muscle was not observed in the present study.  相似文献   

11.
A 10-month feeding trial was performed with channel catfish, Ictalurus punctatus , to re-evaluate the minimum level of dietary vitamin E supplementation required under conditions of commercial production. Four levels (0, 15, 30 and 60 mg kg−1 diet) of supplemental vitamin E were added as DL -α-tocopherol acetate to a typical commercial catfish diet. Sixteen 0.04-ha ponds were stocked in July, at a rate of 25 000 fish ha−1, with two size classes (averaging 18 and 265 g fish−1) of fingerling channel catfish, and each diet was fed to fish in four replicate ponds once daily to satiation. After 10 months of feeding, a total harvest was performed to obtain final production data, and samples were obtained from fish in all ponds. Liver and plasma samples were obtained for α-tocopherol determination, and liver, heart and muscle samples were processed for histological evaluation.
No discernible differences occurred among fish fed the different diets with respect to weight gain or survival. Mean production rate was 9734 kg ha−1, with a final average fish weight of 0.53 kg. A significant ( P < 0.05) effect of diet was noted in plasma and liver α-tocopherol levels, which increased with dietary supplementation. An effect of size also was apparent, with plasma and liver α-tocopherol levels being higher in larger fish compared with smaller fish within a dietary treatment. Histological evaluation revealed no differences among fish fed the different dietary treatments. Based on the lack of overt histological signs of deficiency, it appears that the current level of vitamin E supplementation of commercial catfish diets may be reduced considerably with no detriment to channel catfish health or production.  相似文献   

12.
The wide use of lipid as a non‐protein energy substitute has led to lipid metabolic problems in cultured tilapia. Therefore, studies that reduce the effects of high‐fat diets in genetically improved farmed tilapia (GIFT) are required. This study evaluated the optimum level and effects of dietary α‐lipoic acid (α‐LA) on growth performance, body composition, antioxidant capacity and lipid metabolism of GIFT tilapia. The basal diet (120 g/kg lipid) was supplemented with six concentrations of α‐LA at 0 (control), L300, L600, L900, L1200 and L2400 mg/kg diet to make the experimental diets, which were fed to GIFT tilapia juveniles (initial body weight: 0.48 ± 0.01 g) for 8 weeks. The weight gain of fish improved significantly in the L300 than other dietary treatments. The intraperitoneal fat index and lipid content of fish fed on the L2400 diet decreased significantly than those fed on the control diet. The activities of superoxide dismutase and glutathione peroxidase (GSH‐Px) in serum and liver were significantly higher in fish fed on the L300 diet than the control. The reduced GSH content of fish fed on the L300 in serum and liver was significantly higher than those fed on control diet. The malondialdehyde content in serum and liver was significantly lower in L300 than in the control. The adipose triglyceride lipase gene was significantly up‐regulated in fish fed on the L2400, but the diacylglycerol acyltransferase 2 gene was down‐regulated in adipose. The liver‐type fatty acid‐binding protein gene in the liver was significantly up‐regulated in fish fed on the L300 and L600 diets. Moreover, the acyl‐coenzyme A oxidase gene in liver was significantly up‐regulated in fish fed on the L300, L600, L900 and L1200 diets. Polynomial regression analysis indicated that 439–528 mg/kg α‐LA is an appropriate dosage in high‐fat diet to improve growth performance and relieve lipid oxidative damage by accelerating lipid catabolism and reducing lipid synthesis in GIFT tilapia.  相似文献   

13.
A 56‐day experiment was carried out to investigate the effects of dietary vitamin C and vitamin E on the growth, antioxidant status and digestive enzyme activities of discus fish (Symphysodon haraldi; initial body weight: 7.96 ± 0.61 g and body length: 5.45 ± 0.65 cm). Animals were fed with 13 different diets including one control diet and 12 treatment diets containing four levels of vitamin C (magnesium‐L‐ascorbyl‐2‐phosphate; 40, 80, 120 and 160 mg/kg) crossed with three levels of vitamin E (DL‐α‐tocopheryl acetate; 40, 80 and 120 mg/kg). The results showed that the fish fed diets containing additional vitamin C (40 mg/kg) and vitamin E (80 mg/kg) showed higher specific growth rate, length growth rate, total antioxidant capacity and protease activity but had lower feed conversion ratio and total superoxide dismutase activity than those fed the control diet. Collectively, these findings suggest that the inclusion of additional 40 mg/kg of vitamin C and 80 mg/kg of vitamin E in the basal diet could have beneficial effect on the growth, antioxidant defence and digestion of S. haraldi.  相似文献   

14.
Atlantic salmon were fed 40, 300 or 1100 mgall-rac--tocopheryl acetate kg feed–1 for 12 weeks.After 6 weeks half of the fish in each group were marked and vaccinated (i.p.injection) against furunculosis and vibriosis. Liver -tocopherol levelsreflected the dietary input after 6 and 12 weeks of feeding. Noimmunomodulatoryeffects of dietary vitamin E on baseline levels of the immune parameters beforevaccination were detected in this study, as evaluated by antibody dependent andspontaneous plasma complement activities. In general, vaccination increasedplasma complement activities and the number of antigen specific antibodyproducing cells as compared with unvaccinated control fish, but with nodifferences with respect to the vitamin E regimes. Also the ability ofunvaccinated fish to withstand experimental furunculosis was unaffected bydietary vitamin E. The concentrations of -tocopherol and ascorbic acidinthe liver were, however, negatively affected 6 weeks post vaccination comparedto respective unvaccinated fish.  相似文献   

15.
An 8‐week feeding trial was conducted to establish the dietary vitamin E requirement of juvenile cobia. The basal diet was supplemented with 10, 20, 30, 40, 60, 120 mg vitamin E kg?1 as all‐rac‐α‐tocopheryl acetate. The results indicated that fish fed the diets supplemented vitamin E had significantly higher specific growth rate, protein efficiency ratio, feed efficiency and survival rate than those fed the basal diet. It was further observed that vitamin E concentrations in liver increased significantly when the dietary vitamin E level increased from 13.2 to 124 mg kg?1. Fish fed the basal diet had significantly higher thiobarbituric acid‐reactive substances concentrations in liver than those fed the diets supplemented vitamin E. Fish fed the diets supplemented with 45.7 and 61.2 mg kg?1 vitamin E had significantly higher red blood cell and haemoglobin than those fed the basal diet, while fish fed the diets supplemented with 61.2 and 124 mg kg?1 vitamin E had higher immunoglobulin concentration than those fish fed the basal diet. Lysozyme and superoxide dismutase were significantly influenced by the dietary vitamin E level. The dietary vitamin E requirement of juvenile cobia was established based on second‐order polynomial regression of weight gain and lysozyme to be 78 or 111 mg all‐rac‐α‐tocopheryl acetate kg?1 diet, respectively.  相似文献   

16.
A 10‐week feeding trial was conducted to evaluate the effect of dietary vitamin E and astaxanthin on growth performance, skin colour and antioxidative capacity of large yellow croaker Larimichthys crocea. Six practical diets were formulated in a 2 × 3 factorial design to supplement with two levels of astaxanthin (25 and 50 mg/kg) and three levels of vitamin E (0, 120 and 800 mg/kg). The results showed that both the highest final body weight and specific growth rate were found in fish fed diets with 120 mg/kg vitamin E supplementation. No significant differences were found in survival rate, feed conversion ratio and protein efficiency ratio among all the treatments (> .05). Skin lightness (L*) was not significantly affected by dietary treatments (> .05). Ventral skin redness (a*) of fish fed diet with 25 mg/kg astaxanthin and 0 mg/kg vitamin E supplementation was significantly lower than that of fish fed with other diets. Yellowness (b*) and carotenoid contents both in the dorsal and in the ventral skin were found to be significantly increased with increasing dietary astaxanthin or vitamin E (< .05), but no significant interactions were found (> .05). The vitamin E content in liver reflected the dietary vitamin E content. Level of vitamin E content in fish fed diets with 800 mg/kg vitamin E supplementation was significantly higher than that in fish fed with the other diets (< .05). Liver superoxide dismutase activity and thiobarbituric acid reactive substance levels were found to be decreased with increasing dietary astaxanthin and vitamin E levels, respectively. Levels of reduced glutathione in the liver were found to be increased with increasing dietary vitamin E contents. The total antioxidative capacity in the liver was found to be decreased with increasing dietary vitamin E or astaxanthin contents. In conclusion, adequate dietary vitamin E can improve the growth of large yellow croaker, and the supplementation of astaxanthin and vitamin E benefited the skin coloration and antioxidative capacity of large yellow croaker.  相似文献   

17.
This study was conducted to evaluate the dietary α‐tocopherol (vitamin E) requirement in juvenile sea cucumber, Apostichopus japonicus. Sea cucumbers averaging 1.48 ± 0.07 g (mean ± SD) were randomly distributed into 18 rectangular plastic tanks of 20 L capacity in a recirculating system (20 animals per tank). Six semi‐purified experimental diets with average protein and crude lipid levels (dry matter) of 29.7 ± 0.36% and 4.39 ± 0.23% (mean ± SD), respectively were formulated to contain 0 (E4), 15 (E12), 30 (E23), 60 (E44), 120 (E77) and 600 (E378) mg α‐tocopherol/kg diet, supplied as dl‐α‐tocopheryl acetate. Diets were analyzed for α‐tocopherol content by HPLC and the α‐tocopherol levels were 4.01, 12.4, 23.1, 44.3, 77.4 and 378 mg α‐tocopherol/kg diet for E4, E12, E23, E44, E77 and E378 diets, respectively. Casein and defatted fish meal were used as the protein sources in the diets while wheat flour was the carbohydrate source. Sea cucumbers were fed each of the six experimental diets in triplicate groups. At the end of the 14‐week feeding trial, weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) of sea cucumbers fed on E23, E44, E77 and E378 diets were significantly (P < 0.05) higher than those of animals fed on E4 and E12 diets. However, there were no significant differences in WG, SGR and FE among sea cucumbers fed on E23, E44, E77 and E378 diets or among those fed on E4 and E12 diets. Survival of sea cucumbers fed on E44, E77 and E378 diets were significantly higher than those of animals fed on E4, E12 and E23 diets. However, there were no significant differences among sea cucumbers fed on E4, E12 and E23 diets or among those fed on E44 and E77 diets. Whole‐body vitamin E concentration increased with α‐tocopherol content of the diets. Broken line analysis of WG showed an optimum dietary α‐tocopherol requirement of 41 mg α‐tocopherol/kg diet in sea cucumber. These results indicated that the optimum dietary α‐tocopherol requirement in sea cucumber in the form of dl‐α‐tocopheryl acetate could be higher than 23.1 mg α‐tocopherol/kg diet but lower than 44 mg α‐tocopherol/kg diet.  相似文献   

18.
Swim bladder is an ideal source of collagen production in fish for improved human health. Proline (Pro) is the main proteinogenic amino acid needed for collagen production. However, the effects of Pro supplementation on the swim bladder collagen synthesis have rarely been evaluated in fish. We determined the effects of dietary Pro supplementation on swim bladder collagen synthesis and its possible signalling pathway in spotted drum, Nibea diacanthus. A total of 450 N. diacanthus (100 ± 3.05 g) were randomly assigned into six treatments and fed with diets supplemented with different levels of Pro (0, 2.5, 5, 7.5, 10 and 12.5 g/kg of dry diet, hereafter P0, P1, P2, P3, P4 and P5, respectively) for 8 weeks. At the end, we evaluated collagen synthesis in swim bladder and the expression of genes related to TGF‐β/Smad pathway in the fish. Dietary Pro levels increased significantly the contents of crude protein, total collagen (TC) and the levels of some amino acids in swim bladder than the control diet (p < .05). The optimum amount of dietary Pro inclusion in diets for swim bladder collagen synthesis in N. diacanthus was 7.6 and 7.5 g/kg based on crude protein and TC in swim bladder, respectively. Dietary Pro levels increased significantly the proline 4‐hydroxylase (P4H) content in fish serum, swim bladder, muscle and liver tissues than control (p < .05). The relative expression of collagen type I alpha 1 (COL1A1), alpha 2 (COL1A2) and mothers against decapentaplegic homolog 2 (Smad2) genes in liver and swim bladder initially increased significantly as the concentration of Pro and later decreased (p < .05). Similarly, the relative expression of transforming growth factor beta (TGF‐β), P4Ha2 and P4Ha3 genes in the swim bladder increased significantly as dietary Pro levels increased (p < .05). Using K‐means clustering analysis, dietary proline partly promoted collagen accumulation in swim bladder through upregulation of Smad2 and TGF‐βRT genes. Taken together, Pro affected the collagen metabolism in swim bladder, probably by regulating the TGF‐β/Smad pathway, most likely via transient overexpression of Smad2 gene.  相似文献   

19.
20.
This study aimed to compare the efficacy of dietary α-tocopherol with that of dl-α-tocopheryl acetate, both either alone or in combination with vitamin C (ascorbic acid), on the growth performance, survival, and stress resistance of angelfish, Pterophylum scalare, juveniles. Juveniles were fed ad libitum for four weeks with Artemia enriched with no vitamins (control), vitamin C (Tc), α-tocopherol (Tα), dl-α-tocopheryl acetate (T dl ), α-tocopherol and vitamin C (Tα+C), and dl-α-tocopheryl acetate and vitamin C (T dl+C). After four weeks, an osmotic stress test was performed using seawater (25 g/L) to evaluate juvenile’s resistance to stress. Whole-body glucose and cortisol were used as stress indicators. At the end of the feeding trial, growth performance and survival of the juveniles fed vitamin-enriched Artemia were significantly (< 0.05) higher than for the control fish. Best performance was recorded for the Tα+C group. Survival, however, was not significantly (P > 0.05) different between the vitamin-fed groups. Osmotic stress significantly elevated the stress indicators, whole-body cortisol and glucose levels (P < 0.05), highest and lowest values being observed in control and Tα+C groups, respectively. Survival after osmotic stress of juveniles fed the Tα+c diet was significantly higher (by 46.2%, P < 0.001) than for controls. Results suggested that α-tocopherol has greater efficacy than dl-α-tocopheryl acetate and enriching Artemia with α-tocopherol and vitamin C together improves growth performance, survival, and stress resistance of angelfish juveniles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号