首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stream fish distributions are commonly linked to environmental disturbances affecting terrestrial landscapes. In Great Plains prairie streams, the independent and interactive effects of watershed impoundments and land cover changes remain poorly understood despite their prevalence and assumed contribution to declining stream fish diversity. We used structural equation models and fish community samples from third‐order streams in the Kansas River and Arkansas River basins of Kansas, USA to test the simultaneous effects of geographic location, terrestrial landscape alteration, watershed impoundments and local habitat on species richness for stream‐associated and impoundment‐associated habitat guilds. Watershed impoundment density increased from west to east in both basins, while per cent altered terrestrial landscape (urbanisation + row‐crop agriculture) averaged ~50% in the west, declined throughout the Flint Hills ecoregion and increased (Kansas River basin ~80%) or decreased (Arkansas River basin ~30%) to the east. Geographic location had the strongest effect on richness for both guilds across basins, supporting known zoogeography patterns. In addition to location, impoundment species richness was positively correlated with local habitat in both basins; whereas stream‐species richness was negatively correlated with landscape alterations (Kansas River basin) or landscape alterations and watershed impoundments (Arkansas River basin). These findings suggest that convergences in the relative proportions of impoundment and stream species (i.e., community structure) in the eastern extent of both basins are related to positive effects of increased habitat opportunities for impoundment species and negative effects caused by landscape alterations (Kansas River basin) or landscape alterations plus watershed impoundments (Arkansas River basin) for stream species.  相似文献   

2.
  1. Modification and loss of natural habitats caused by human activities are among the main drivers of biodiversity decline worldwide. To evaluate how land‐use changes affect species diversity at different spatial scales, amphibians represent an excellent group given that their complex life cycle requires both aquatic and terrestrial habitats.
  2. In this study, the influence of wetland characteristics and surrounding landscape features on richness and functional diversity of anurans was investigated in 26 natural wetlands in a human‐modified landscape within the Southern Andean Yungas.
  3. The analysis was performed at two spatial scales: wetland scale (the breeding pond structure) and the surrounding landscape scale. The classification of the landscape was limited to land uses modified by human activities within concentric circular buffers (radius = 0.1, 0.2, 0.5, and 1 km) centred on each breeding pond.
  4. Generalized linear models were applied to investigate the relationship between environmental variables measured at different scales and anuran species richness and functional diversity, respectively.
  5. Pond area best explained the observed variation in both diversity measures, which is consistent with other studies on anuran diversity in disturbed landscapes. In contrast to regression models including landscape scale variables only, integrated models (which included variables on both scales) highly improved model fit.
  6. Conservation strategies for anuran species diversity in these altered Andean Yungas forests should include efforts to maintain or restore aquatic habitats (e.g. breeding ponds) placed within suitable landscapes.
  7. Successful long‐term management will require an understanding of relationships between habitat characteristics at different spatial scales to identify variables that relate to species diversity in such heterogeneous habitats.
  相似文献   

3.
Measurement of fish body‐size distributions is increasingly used as a management tool to assess fishery status. However, the effects of gear selection on observed fish size structure has not received sufficient attention. Four different gear types (experimental gill nets, fine mesh bag seine, and two different sized mesh trap nets), which are commonly employed in the study area for fisheries surveys, were used to fish in five small (< 200 ha) lakes to evaluate differential catch in terms of species composition and assemblage size distributions. Kolmogorov–Smirnov tests revealed that, out of the five lakes and six comparisons, the four gear types captured fish of statistically similar size distributions in only one instance. Non‐metric multi‐dimensional scaling followed by a multi‐response permutation procedure revealed that the species composition of fish captured by these gears also differs. These results support the notion that multiple gear types should be used to assess body‐size distributions as well as fish assemblage composition.  相似文献   

4.
Understanding the drivers of biological invasions is critical for preserving aquatic biodiversity. Stream fishes make excellent model taxa for examining mechanisms driving species introduction success because their distributions are naturally limited by catchment boundaries. In this study, we compared the relative importance of catchment‐scale abiotic and biotic predictors of native and nonindigenous minnow (Cyprinidae) richness in 170 catchments throughout the eastern United States. We compared historic and contemporary cyprinid distributional data to determine catchment‐wise native/nonindigenous status for 152 species. Catchment‐scale model predictor variables described natural (elevation, precipitation, flow accumulation) and anthropogenic (developed land cover, number of dams) abiotic features, as well as native congener richness. Native congener richness may represent either biotic resistance via interspecific competition, or trait preadaptation according to Darwin's naturalisation hypothesis. We used generalised linear mixed models to examine evidence supporting the relative roles of abiotic and biotic predictors of cyprinid introduction success. Native congener richness was positively correlated with nonindigenous cyprinid richness and was the most important variable predicting nonindigenous cyprinid richness. Mean elevation had a weak positive effect, and effects of other abiotic factors were insignificant and less important. Our results suggest that at this spatial scale, trait preadaptation may be more important than intrageneric competition for determining richness of nonindigenous fishes.  相似文献   

5.
The ecosystem size/trophic structure hypothesis predicts that the shape of body size distributions will change with ecosystem size because of increases in the relative importance of large, predatory, species. I test the hypothesis by examining the statistical moments, as measures of shape, of species body size distributions of North American freshwater fish assemblages in lakes. Species lists, coupled with dietary and body size information, are used to document the patterns. Body size distributions in small lakes are unimodal and right‐skewed, but distributions become more symmetrical and bimodal in large ecosystems. In small lakes, body sizes are generally small and fish trophic levels low, but size and trophic level increase up to lake volumes of about 0.001 km3, and change little in larger lakes. Adding trophic level to the analysis greatly improves the variance explained by the body size–lake size relation. The conclusions of Griffiths (2012, Global Ecology & Biogeography 21: 383‐392), that postglacial recolonisation and evolutionary change are important determinants of body size distributions at regional and larger scales, are combined with those of this study. Mean body size in local assemblages of lake‐dwelling species is larger than in regional and continental ones. Overall, body size distributions are affected by processes operating at a variety of spatial and temporal scales, with the type, size and duration of the ecosystem probably playing a central role by influencing the proportions of vagile and predatory species, the species which dominate the large size mode.  相似文献   

6.
Despite the significant advances in making monthly or seasonal forecasts of weather, ocean hypoxia, harmful algal blooms and marine pathogens, few such forecasting efforts have extended to the ecology of upper trophic level marine species. Here, we test our ability to use short‐term (up to 9 months) predictions of ocean conditions to create a novel forecast of the spatial distribution of Pacific sardine, Sardinops sagax. Predictions of ocean conditions are derived using the output from the Climate Forecast System (CFS) model downscaled through the Regional Ocean Modeling System (ROMS). Using generalized additive models (GAMs), we estimated significant relationships between sardine presence in a test year (2009) and salinity and temperature. The model, fitted to 2009 data, had a moderate skill [area under the curve (AUC) = 0.67] in predicting 2009 sardine distributions, 5–8 months in advance. Preliminary tests indicate that the model also had the skill to predict sardine presence in August 2013 (AUC = 0.85) and August 2014 (AUC = 0.96), 4–5 months in advance. The approach could be used to provide fishery managers with an early warning of distributional shifts of this species, which migrates from the U.S.–Mexico border to as far north as British Columbia, Canada, in summers with warm water and other favorable ocean conditions. We expect seasonal and monthly forecasts of ocean conditions to be broadly useful for predicting spatial distributions of other pelagic and midwater species.  相似文献   

7.
8.
The selection of spatial scales is of particular importance in modeling relationships between fishery abundance and its influencing factors, because these relationships are significantly affected by spatial scale. Here, we explore the spatial scale effects of catch per unit effort (CPUE)–factor relationships for Ommastrephes bartramii in the northwest Pacific. The original commercial fishery data and oceanographic factors were tessellated to 12 spatial scales from 5′ to 60′ with an interval of 5′. Under the original scale and 12 tessellated scales, we constructed the generalized additive models (GAMs) to model the relationships between the O. bartramii CPUE and the influencing factors, including Year, Month, Latitude (Lat), Longitude (Lon), sea surface salinity (SSS), sea surface temperature (SST), sea surface chlorophyll‐a (Chl‐a) concentration, and sea surface height (SSH). Our multi‐scale analysis showed that the relationships are sensitive to spatial scales. Among the factors, Year, Month, and SSS share quadratic polynomial scaling relations; Lat, SST, and Chl‐a illustrate power law scaling relations; Lon has a linear scaling relation; and SSH presents an exponential scaling relation. Considering the scale sensitivity of the factor sort‐order and the accumulation of explained residual deviance in GAM, we suggest 30′45′ as the optimal range of spatial scales for analyzing the CPUE–factor relationships for O. bartramii. Our research improves understanding of the impacts of changing scales in fisheries and provides a potential method for the selection of a suitable spatial scale for fisheries analysis and resource surveying.  相似文献   

9.
10.
Fishing sustainably is a fundamental problem in tropical regions where diverse fisheries and scarce fisheries information challenges efforts to make reliable estimates and associated policies. To improve evaluations and decisions, we compared the predictions of six surplus production models calibrated using various permutations of fisheries‐dependent data with a benchmark model. The benchmark model was built from fisheries‐independent estimates of r and K, tested against rates of change in Kenyan reef fisheries and found to be accurate. Comparisons with the benchmark model were made with fisheries‐dependent equilibrium and non‐equilibrium models, fixing or not fixing r and K, pooled versus site averaged solutions, and rising, falling, and pooled fishing effort over time. Evaluations indicate high variability in MMSY predictions and notable overestimates of MMSY (~75%) and effort (~210%) for Fox and Schaefer equilibrium models. Non‐equilibrium models had high failure rates (~25%) but successful fits performed better and indicated smaller overestimates (16%) for site‐level evaluations. The Pella–Tomlinson model was most accurate (MMSY = 5.6 ± 0.60 (SD) tonnes/km2/year) and best‐fit rK relationships also aligned well with ecoregional data on K and short‐term yields. Future efforts are advised to pool site data, use conservative recruitment values (z = 0.8), and collect data across times of both rising and falling effort. Recommended methods and subsequent adjustments of the benchmark model should improve local and ecoregional scale MMSYs. The benchmark model was calibrated to estimate MMSY in fished seascapes, but to conserve species with slower life histories, we suggest modifications to limit MMSYs to between 1.8 and 3.2 tonnes/km2/year.  相似文献   

11.
Abstract – Environmental factors act in a hierarchical manner at multiple spatial scales to influence the organisation of ecological assemblages; however, the relative influence of the different scale‐related factor groups is poorly known. We evaluated the importance of catchment‐scale and site‐scale environmental variables, as well as the spatial context of the sampling sites, in shaping stream fish assemblages in an agriculture‐dominated landscape in Hungary. Beside the variables describing spatial context (principal coordinates of a truncated distance matrix among sites), altogether 60 environmental variables were used to predict variability using a variance‐partitioning procedure in redundancy analysis. Presence–absence‐ and relative abundance‐based data were examined at two assemblage levels (entire assemblage and native assemblage) at 54 stream sites. Incorporation of spatial variables increased largely the total explained variability in case of relative abundance, but not for presence–absence data. Of the environmentally explained variance, catchment‐scale variables (e.g., land cover types, patch density) were relatively more influential for the native assemblage‐level analyses, than for analyses at the entire assemblage level, where site‐scale variables (e.g., altitude, depth) proved to be more influential. In addition, pure catchment‐ and pure site‐scale variables have the primary role in determining fish assemblage patterns, whereas the influence of shared variance and that of site‐scale riparian variables proved to be less important. Our findings demonstrate the importance of incorporating the spatial context of the sampling sites in predicting fish assemblage patterns and the effects of channelisation (dikes) in shaping assemblage–environment relationships in this human‐influenced landscape.  相似文献   

12.
The combined effects of temperature (18–34°C) and light intensity (100–1,800 lx) on the vitellus utilization, duration of vitelline absorption and larval growth in Pseudobagrus ussuriensis were studied under laboratory conditions using a central composite design and response surface methodology. The results showed that the first‐ and second‐order effects of temperature and light intensity were significant (< 0.05), the interactive effect between temperature and light intensity was non‐significant (p > 0.05) and the effects of light intensity were greater than that of temperature. Predicated on the reliable models of vitelline utilization regarding temperature and light intensity, the optimal rearing environment shaped by a temperature/light intensity of 25–26°C/1,030 lx (12.98 μmol m?2 s?1) was obtained via model optimization. Verification results attained under laboratory conditions showed that vitelline utilization was most efficient at these optima. The application of the environmental optima would contribute to refining the seed quality in the larviculture of this species.  相似文献   

13.
14.
The impacts of ocean warming resulting from recent climate change on the abundance patterns of marine species have been well documented in temperate seas of the northern hemisphere, but the impacts of a widening tropical belt are largely unexplored. Using measurements of sea surface temperature and spear‐fishing records for 84 species spanning a 19‐yr period, we examined the effects of ocean warming on a sub‐tropical reef‐fish community on the southeastern coast of Africa. Corresponding with a 0.46°C increase in average sea surface temperature between the time periods 1989–97 and 2002–2007, the ratio of species showing an overall decrease/ no change/increase in abundance was 1 : 3 : 2 among six species at the northern limits of their distribution in the region (temperate species), 1 : 15 : 6 among 22 broadly distributed species, and 1 : 5 : 9 among 15 species at the southern limits of their distribution (tropical species). Also, the relative abundance of temperate species as a whole decreased by 10–13% whereas that of tropical species increased by 9%, and broadly distributed species showed little change. Average species richness and diversity increased 33 and 15% respectively between the two time periods. These results are broadly consistent with a predicted poleward shift in species ranges and a predicted increase in species richness and diversity with increasing sea temperature. Our findings confirm that large‐scale climate change causing a widening of the tropical belt and subsequent ocean warming is having a profound impact on marine species abundance patterns and community composition at a local scale in the sub‐tropics.  相似文献   

15.
The Eg–Uur River ecosystem in north‐central Mongolia provides an opportunity to study salmonid species in a system that has already experienced significant climate change. These species are currently imperilled in Mongolian waters, with Baikal grayling (Thymallus arcticus baicalensis) listed as near‐threatened and lenok (Brachymystax lenok) listed as vulnerable on the Mongolian red list. Air temperature records demonstrate that in the last 40 years Northern Mongolia's rate of warming has been three times greater than the northern hemisphere average. Despite alarming trends in air temperatures, little is known of the thermal ecology of these species. Due to the threat of climate change to these species, the objective of our study was to quantify metabolic costs for these species from streamside routine metabolic measures and derive bioenergetics models that we used to assess potential climate change response. Streamside measurements of metabolism were remarkably consistent with expectations from measures of other salmonids gathered under more closely controlled laboratory conditions. Metabolism increased exponentially with temperature for both species. The resulting preliminary bioenergetics models suggest these species are already experiencing temperatures near their upper levels for growth during summer and conditions are expected to deteriorate with warming. Even a modest 2 °C increase in water temperatures during ice out would result in a 59% reduction in growth of lenok, and an inability of Baikal grayling to grow (if food levels remained unchanged) or a 14–23% increase in consumption in order to maintain current growth rates.  相似文献   

16.
17.
Understanding the interactions among biological and physical processes is essential to determining how the environment affects transport and survival of fishes. We examined vertical distribution in larval Atlantic menhaden (Brevoortia tyrannus) and Atlantic croaker (Micropogonias undulatus) using 126 depth stratified tows in Delaware Bay, USA, during two cruises, in December 2007 and February 2008. Menhaden larvae were 16.8–24.6 and 20.5–26.2 mm standard length in December and February. Corresponding lengths for croaker were 9.3–17.9 and 8.6–19.6 mm. Using empirical observations, and statistically derived models, we explored larval concentration for both species as a function of location, depth, diel period, tidal period, size, and pairwise interactions. Menhaden concentration was best modeled as a function of station, cruise, and interactions between depth and size as well as between station and cruise. No significant differences in larval menhaden concentration were present among tidal and diel periods. Croaker concentration was best modeled as a function of size and interactions between station and diel period, depth and size, cruise and size. Despite tidal period not emerging as a significant model parameter, we observed larger croaker larvae during nighttime flood tides. Our statistical models are consistent with processes of up‐estuary transport for both species, suggesting larvae are increasingly affected by behavioral responses as larvae grow, exhibiting stronger patterns in vertical distribution. The results refine our understanding of the potential importance of size‐related differences in vertical distribution for larval transport in these species. Future research should examine the interactions among size‐specific vertical migratory capabilities, vertical distribution, transport, and retention.  相似文献   

18.
In the upper Chattahoochee River basin, where some populations of shoal bass, Micropterus cataractae Williams & Burgess, are imperilled, age and growth data are lacking. Age and growth of shoal bass in this basin were assessed with non‐lethal means using scales and mark–recapture. Mark–recapture data allowed for estimation of accuracy and determination of effects of any scale‐based inaccuracies on growth models. Scale‐based age estimates were accurate for 57% of the samples, and errors of 1 to 3 years included equal numbers of over‐ and underestimates of age. von Bertalanffy growth models based on scale ages were similar to those based on mark–recapture ages for ages 3–8 but noticeably divergent for younger and older fish. Scales provided estimates of longevity up to 12 years of age, and growth models produced from mark–recapture suggest scale ages underestimated age, especially for older fish. These populations of shoal bass live longer and grow slower than other populations, suggesting regional management strategies may be needed.  相似文献   

19.
We investigate the impact of oceanographic variability on Pacific bluefin tuna (Thunnus orientalis: PBF) distributions in the California Current system using remotely sensed environmental data, and fishery‐dependent data from multiple fisheries in a habitat‐modeling framework. We examined the effects of local oceanic conditions (sea surface temperature, surface chlorophyll, sea surface height, eddy kinetic energy), as well as large‐scale oceanographic phenomena, such as El Niño, on PBF availability to commercial and recreational fishing fleets. Results from generalized additive models showed that warmer temperatures of around 17–21°C with low surface chlorophyll concentrations (<0.5 mg/m3) increased probability of occurrence of PBF in the Commercial Passenger Fishing Vessel and purse seine fisheries. These associations were particularly evident during a recent marine heatwave (the “Blob”). In contrast, PBF were most likely to be encountered on drift gillnet gear in somewhat cooler waters (13–18°C), with moderate chlorophyll concentrations (0.5–1.0 mg/m3). This discrepancy was likely a result of differing spatiotemporal distribution of fishing effort among fleets, as well as the different vertical depths fished by each gear, demonstrating the importance of understanding selectivity when building correlative habitat models. In the future, monitoring and understanding environmentally driven changes in the availability of PBF to commercial and recreational fisheries can contribute to the implementation of ecosystem approaches to fishery management.  相似文献   

20.
Accounting for variation in prey mortality and predator metabolic potential arising from spatial variation in consumption is an important task in ecology and resource management. However, there is no statistical method for processing stomach content data that accounts for fine‐scale spatio‐temporal structure while expanding individual stomach samples to population‐level estimates of predation. Therefore, we developed an approach that fits a spatio‐temporal model to both prey‐biomass‐per‐predator‐biomass data (i.e. the ratio of prey biomass in stomachs to predator weight) and predator biomass survey data, to predict “predator‐expanded‐stomach‐contents” (PESCs). PESC estimates can be used to visualize either the annual landscape of PESCs (spatio‐temporal variation), or can be aggregated across space to calculate annual variation in diet proportions (variation among prey items and among years). We demonstrated our approach in two contrasting scenarios: a data‐rich situation involving eastern Bering Sea (EBS) large‐size walleye pollock (Gadus chalcogrammus, Gadidae) for 1992–2015; and a data‐limited situation involving West Florida Shelf red grouper (Epinephelus morio, Epinephelidae) for 2011–2015. Large walleye pollock PESC was predicted to be higher in very warm years on the Middle Shelf of the EBS, where food is abundant. Red grouper PESC was variable in north‐western Florida waters, presumably due to spatio‐temporal variation in harmful algal bloom severity. Our approach can be employed to parameterize or validate diverse ecosystem models, and can serve to address many fundamental ecological questions, such as providing an improved understanding of how climate‐driven changes in spatial overlap between predator and prey distributions might influence predation pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号