首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract – Otolith carbon and oxygen isotope data obtained from distinct genetic and ecological groups of lacustrine Arctic charr, Salvelinus alpinus L., from Gander Lake, Newfoundland, were used to examine hypotheses regarding the consistency of differential habitat use among the groups. Results indicated thermal habitat separation by group, with small ‘pale’ individuals consistently remaining in cooler profundal habitats and larger ‘dark’ individuals more frequently occupying warmer upper water column habitats. Theoretical measures of resource separation and competition indicated lower thermal habitat overlap among the forms and greater within‐form competition. Depth at capture data indicated more varied short‐term use of available lake habitats by ‘dark’ form Arctic charr, possibly as a result of cannibalistic foraging on profundal ‘pale’ form fish. Nominal capture depth data only partially explained observed variation in the mean temperature of occupied thermal habitat, suggesting that capture depth can only be used as a rough index of thermal habitat use. Provided that sufficient thermal gradients exist in the environments being studied, otolith oxygen isotopes provide a useful means of establishing the significance of niche differentiation among individuals.  相似文献   

2.
Abstract – Owing to limited knowledge of the habitat use and diet of juvenile Arctic charr from the High Arctic, particularly young‐of‐the‐year (YOY), we assembled data obtained from samples taken in and around Lake Hazen, Nunavut, Canada, to assess juvenile habitat use and feeding. Juvenile charr demonstrated a preference for stream environments, particularly those fed by warm upstream ponds. Charr occupying both stream and nearshore lake habitats were found to feed similarly, with chironomids occurring most frequently in diets. Some older stream‐dwelling charr preyed on smaller, younger Arctic charr. Preferred stream occupancy is likely mediated by physical barriers created mainly by water velocity, and by distance from the lake, lake‐ice dynamics, low water depth, and turbidity. Water velocities resulted in stream habitat segregation by size, with YOY mainly found in low‐velocity pools and back eddies adjacent to stream banks, but not in water velocities >0.1 m·s?1. Greatest charr densities in streams were found in small, shallow, slow‐flowing side channels, which are highly susceptible to drought. Under predicted climate change scenarios, streams fed by small ponds will be susceptible to intermittent flow conditions, which could result in increased competition among juvenile charr for the remaining stream habitats. In addition, glacier‐fed streams are likely to experience increased flow conditions that will exacerbate physical barriers created by water velocity and further reduce the availability of preferred stream habitat.  相似文献   

3.
Abstract – Stable oxygen isotopes (δ18O) derived from otoliths were used to estimate mean annual water temperatures experienced by individual Svalbard Arctic charr, Salvelinus alpinus (L.), during their first four growth seasons. The analysed Arctic charr experienced a high variety of temperatures, indicating the use of different thermal habitats. A higher proportion of the juveniles experienced warmer temperatures during their first summer compared with later summers, suggesting the selective use of the shallowest littoral areas of the lake. Although the estimated temperatures were consistent with water temperatures found in High Arctic rivers and lakes during summer, they did not represent the annual variation in air temperature registered over the 20 years of otolith measurement. Furthermore, summer otolith increment width did not correlate with the experienced temperature. However, after the second year, otolith increment width was highly dependent on increment width during the previous summer. This study estimated mean summer water temperatures experienced by individual Arctic charr during the first four growth seasons providing additional evidence that stable oxygen isotope analysis can be used to provide insight into the thermal habitat use by juvenile Arctic charr.  相似文献   

4.
Eleven Arctic charr (Salvelinus alpinus) (370–512 mm) and eight sea trout (Salmo trutta) (370–585 mm in length) were tagged externally or internally with depth‐ and temperature‐measuring data‐storage tags (DST) before they were released into the sea in the Alta Fjord in north Norway in June 2002. All sea trout were recaptured after they spent 1–40 days at sea, while all Arctic charr were recaptured after 0.5–33 days at sea. On average, trout preferred water about 0.6 m deeper and 1.3°C warmer than Arctic charr. Arctic charr spent >50% of their time between 0 and 1 m depth, while trout spent >50% of their time between 1 and 2 m depth. Both species spent >90% of their time in water no deeper than 3 m from the water surface. However, sea trout dove more frequently and to greater depths (max. 28 m) than Arctic charr (max. 16 m), and these deep dives were most frequently performed at the end of the sea migration. Arctic charr demonstrated a diel diving pattern, staying on average about 0.5 m deeper between 08:00 hours and about 15:00 hours than during the rest of the 24 h, even though there was continuous daylight during the experiments. When comparing data obtained from the DSTs with temperature measurements within the fjord system, the two species were observed to select different feeding areas during their sea migration, the sea trout choosing the inner and warmer parts of the fjord, in contrast to the Arctic charr that preferred the outer, colder parts of the fjord. The observed differences in migration behaviour between the two species are discussed in relation to species preferences for prey and habitat selection, and their optimal temperatures for growth.  相似文献   

5.
Anadromous Arctic charr, Salvelinus alpinus (L.), was introduced to a sub‐Arctic river–lake system near the village of Kujjuuaq, Nunavik, and the stable isotope values and diets of key resident fish species were used to assess changes in feeding patterns. Stable isotope values for most species did not differ significantly between the pre‐ and post‐introduction periods, with observed shifts being within the bounds of expected natural variation. Lake chub, Couesius plumbeus (Agassiz), were the single species to show a difference between study periods, with a small but significant increase in δ15N. No significant post‐introduction changes were seen in lake trout, Salvelinus namaycush (Walbaum), omnivory or in any of the assessed quantitative food web metrics. Gut contents of major fish species similarly showed significant temporal overlap between the pre‐ and post‐introduction periods, and there was no significant change in species' weight–length relationships. The minor ecological impact was interpreted in relation to the availability of open niches exploitable by ecological generalists such as Arctic charr. The explanation accords with the known habitat and feeding flexibility of Arctic charr and the ecological immaturity of sub‐Arctic lakes known to have driven adaptive variation among Arctic charr. Findings suggest that anadromous Arctic charr may be introduced at moderate densities to other sub‐Arctic watersheds without major negative food web consequences for other resident fish species.  相似文献   

6.
Habitat use, growth and food composition of native and stocked Arctic charr, Salvelinus alpinus (L.), were studied in the subarctic Lake Muddusjärvi, northern Finland, to investigate reasons for poor stocking success. Samples were collected with pelagic and epibenthic gill nets. Stocked and native charr occurred in similar epibethic habitats, whereas pelagic habitat was avoided. Native charr grew fast after shifting to piscivory. Growth rate of stocked charr was slow because only a small proportion of stocked fish became piscivorous during the first year after stocking. During the first lake year, stocked charr divided into slow-growing planktivores and fast-growing piscivores. Piscivorous stocked and native charr consumed only whitefish, Coregonus lavaretus (L.), as their prey. Small-sized (<10 cm) whitefish were preferred when shifting to piscivory.  相似文献   

7.
Individual measurements of annual, or within‐season growth were determined from tag‐recaptured Arctic charr and examined in relation to summer sea surface temperatures and within‐season capture timing in the Ungava and Labrador regions of Eastern Canada. Differences between two years of growth (2010–2011) were significant for Ungava Bay Arctic charr, with growth being higher in the warmer year. Growth of Labrador Arctic charr did not vary significantly among years (1982–1985). Regional comparisons demonstrated that Ungava Arctic charr had significantly higher annual growth rates and experienced warmer temperatures than Labrador Arctic charr. The higher annual growth of Ungava Bay Arctic charr was attributed to the high sea surface temperatures experienced in 2010–2011 and the localised differences in nearshore productivity as compared to Labrador. Within‐season growth rates of Labrador Arctic charr peaked in June, declined towards August and were negatively correlated with the length of time spent at sea and mean experienced sea surface temperatures. A quadratic model relating growth rate to temperature best explained the pattern of within‐season growth. Collectively, results suggest that increases in water temperature may have profound consequences for Arctic charr growth in the Canadian sub‐Arctic, depending on the responses of local marine productivity to those same temperature increases.  相似文献   

8.
Countergradient variation (CGV) is defined as genetic variation that counteracts the negative influences of the physical environment, minimising phenotypic variability along an environmental gradient. CGV is thought to have relevance in predicting the response of organisms to climate variability and change. To test the hypothesis that growth rate increased with latitude, consistent with CGV, young‐of‐the‐year (YOY) Arctic charr, Salvelinus alpinus, were examined along a ~27° latitudinal gradient in central and eastern Canada. Growth rates were estimated from fork lengths standardised by the thermal opportunity for growth based on experienced water temperatures derived using otolith oxygen stable isotopes. Results demonstrated patterns consistent with CGV, where northern populations demonstrated faster growth rates. A secondary aim was to test for similar geographical patterns in otolith‐inferred metabolic rates, which reflect the energetic costs of standard metabolic rate (SMR) and other processes such as feeding, locomotion, thermoregulation, reproduction and growth. Results demonstrated a significant, positive relationship between otolith‐inferred metabolic rate and latitude, which may reflect an increase in one, or a combination, of the above‐noted physiological processes. The similar latitudinal pattern in growth and otolith‐inferred metabolic rates suggests greater intake of food per unit of time by northern fish. The phenotypic variation in physiological traits observed here demonstrates the significant adaptability of Arctic charr to different thermal regimes with different growing season lengths. Determining the relative contributions of phenotypic plasticity and genetic variation to the observed latitudinal variation will be critical to predicting the responses of Arctic charr to climate change more accurately.  相似文献   

9.
Anadromous Arctic charr, Salvelinus alpinus, feed in the marine environment for several months during the summer and migrate back to fresh water in late summer to spawn and/or overwinter. While overwintering, anadromous Arctic charr are generally believed to reduce or cease feeding, and they are poorly described in their winter movement activity. This study used telemetry data collected from two locations to describe overwintering movement activity, including interindividual variation. Movement activity declined markedly during the ice‐covered period, suggesting opportunistic maintenance feeding was used as an energy conservation strategy. Fall and spring movement was correlated with daylight hours, and ice break‐up had a significant effect on the timing of outmigration. Movement activity was negatively correlated with body length, with smaller individuals being more active than larger fish. Although general activity patterns were evident, there were significant differences among individuals, particularly during spring immediately prior to lake departure. Lake size and individual differences in metabolic rate may account for some of this variation.  相似文献   

10.
Abstract— Fry of the Arctic charr, Salvelinus alpinus , were experimentally stocked into a small fish-free lake to test the hypothesis that the size-dependent habitat shift from the epibenthic to the pelagic habitat is genetically determined. The charr originated from a nearby lake inhabiting predatory brown trout Salmo trutta. The cohort of stocked charr was investigated for three years. The Arctic charr started to exploit the pelagic habitat in their first summer at a size of 7–9 cm in contrast to about 15 cm in the donor lake. In the next two summers, the pelagic fraction of the cohort increased. The main fraction lived in epibenthic areas, utilizing the same prey as pelagic charr. Water temperature moderated the habitat use of juveniles such that they avoided warm (>16°C) waters and resided in cool, deep areas. The result was consistent with the hypothesis of a tradeoff between feeding benefit and the predation risk producing spatial segregation of Arctic charr and demonstrated that the fish can facultatively respond to predation risk and adjust the size at which they migrate to the pelagic zone to feed on zooplankton.  相似文献   

11.
Abstract– Habitat use and population dynamics in brown trout Salmo trutta and Arctic charr Salvelinus alpinus were studied in an oligotrophic lake over a period of 10 years. Previous studies showed that the species segregated by habitat during summer. While brown trout occupied the surface water down to a depth of 10 m, Arctic charr were found deeper with a maximum occurrence at depth 10–15 m. Following the removal of a large number of intermediate sized fish in 1988–89, habitat segregation between the species broke down and Arctic charr were found in upper waters, while brown trout descended to deeper waters. The following year, both species were most frequently found in surface waters at depths of 0–5 m. During the last four years, the species reestablished their original habitat segregation despite another removal experiment of intermediate-sized fish in 1992–1994. The removal of fish resulted in an increased proportion of large (≥ 25 cm) fish in both species. Furthermore, the charr stock responded by reduced abundance and increased size-at-age. The results revealed plasticity and strong resistance to harvest populations of brown trout and Arctic charr. This is probably due to internal mechanisms of intraspecific competition within each population, which result in differential mortality among size classes.  相似文献   

12.
Abstract— Large piscivorous fish are assumed to affect habitat selection and food intake of prey fish. To study the effects of cannibalistic Arctic charr, Salvelinus alpinus (L.), on smaller stunted charr, we sampled the prey fish in littoral and pelagic habitats using gill nets, before and shortly after the release of large charr in a small lake (0.52 km2). In the habitats where the risk of predation was highest, the catch per unit effort de creased from 13.3 to 4.8 fish per 100 m2 of gillnet after release of pred ators. The large decrease in numbers of charr < 18 cm corresponded with the predicted vulnerable prey sizes, according to a model based on the size distribution of predators. The occurrence of planktivorous fish and weight-specific food intake decreased in the high risk habitat and remained unaffected in the low risk habitats. Changes in the food intake of prey fish could not be explained in terms of fish length, indicating that prey fish changed diet when the risk of predation was high.  相似文献   

13.
Brook charr inhabit a wide variety of habitats and exhibit considerable growth variation within and among populations. We used biannual mark–recapture electrofishing surveys and PIT tags at two streams in coastal Maine to examine spatial and temporal variability in brook charr growth. We documented considerable stream‐to‐stream and year‐to‐year variation in the growth of coastal brook charr. Based on 2892 recaptures between 2006 and 2010, we developed a suite of linear mixed models to examine variation in individual growth rates at Stanley Brook as a function of environmental variables. We distilled physical habitat data from surveys in 2010 into principle components for entry into the growth model. Growth was related primarily to an interaction between season and body length, mean water temperature, and instream location. Growth rates were highest in the summer, and smaller individuals grew more rapidly than larger conspecifics in the same stream. Individuals using habitats closer to the head of tide grew faster than those in upstream locations. Physical habitat variation was not an important control of individual growth variation within Stanley Brook. We suggest local variability in growth rates should be considered when developing management strategies for coastal populations.  相似文献   

14.
Salmonid fishes may reside within or migrate between stream and lake habitats, or undergo anadromous migrations between freshwater and the ocean. While the degree of anadromy of salmonids has been thoroughly compared, no analogous review has examined the degree of lake use. To assess the extent of reliance on lake habitat in this family, we considered 16 species of salmon, trout and charr from the genera Oncorhynchus, Salmo and Salvelinus, comparing their (a) use of lakes as spawning habitat, (b) rearing strategies in lakes, and (c) occurrence and diversity of lacustrine trophic polymorphism. In identifying the primary life‐history patterns of each species and exploring the lesser‐known lacustrine behaviours, we found that the extent of reliance on lakes exhibits a negative association with the degree of anadromy. Oncorhynchus rely least on lakes, Salmo to an intermediate level and Salvelinus the most, opposite of the general prevalence of anadromy among these genera. Lakes are critical to adfluvial and lake‐resident salmonids, but they also support anadromous and fluvial life histories by providing spawning, rearing, overwintering and/or summer refuge habitat. Adfluviality, although a non‐anadromous life history, consists of similar migration‐related traits and behaviours as anadromy, including the parr–smolt transformation, sex‐biased patterns of migration and residency, and the presence of precocious males. Lakes support life‐history variants, reproductive ecotypes and trophic morphs unique to lacustrine habitat. Therefore, conservation of salmonids is dependent on maintaining the diversity and quality of their habitats, including lakes.  相似文献   

15.
16.
In subarctic lake systems, fish species like brown trout are often important predators, and their niche performance is a key characteristic for understanding trophic interactions and food web functioning at upper trophic levels. Here, we studied summer habitat use and stomach contents of brown trout under both allopatric and sympatric conditions in six subarctic lakes to reveal its trophic role, and population‐ and individual‐level niche plasticity. In allopatry, brown trout mainly used the littoral habitat, but also less commonly used the pelagic zone. In sympatry with stickleback, there was always a considerable habitat overlap between the two species. In contrast, sympatric populations of brown trout and Arctic charr generally revealed a distinct habitat segregation. In the sympatric systems, in general, there was a distinct resource partitioning between the trout and charr, whereas the observed diet overlap between trout and stickleback was much larger. Trout modified their individual dietary specialisation between the littoral and pelagic zone, always being lower in the pelagic. Piscivorous behaviour of trout was only found in sympatric systems, possibly contributing to a competitive advantage of trout over charr and stickleback. Hence, the trophic level of trout was strongly related to the fish community composition, with a higher trophic level in sympatric systems where piscivorous behaviour was frequent. These changes in the trophic level of trout linked with the observed food resource partitioning might be an important mechanism in the ecosystem functioning of subarctic lakes to allow coexistence among sympatric‐living fish species.  相似文献   

17.
Arctic charr (Salvelinus alpinus) are the northernmost distributed freshwater fish and can grow at water temperatures as low as 0.2 °C. Other teleost species have impaired immune function at temperatures that Arctic charr thrive in, and thus, charr may maintain immune function at these temperatures. In this study, a fibroblastic cell line, named ACBA, derived from the bulbus arteriosus (BA) of Arctic charr was developed for use in immune studies at various temperatures. ACBA has undergone more than forty passages at 18 °C over 3 years, while showing no signs of senescence‐associated β‐galactosidase activity and producing nitric oxide. Remarkably, ACBA cells survived and maintained some mitotic activity even at 1 °C for over 3 months. At these low temperatures, ACBA also continued to produce MH class I proteins. After challenge with poly I:C, only antiviral Mx proteins were induced while MH proteins remained constant. When exposed to live viruses, ACBA was shown to permit viral infection and replication of IPNV, VHSV IVa and CSV at 14 °C. Yet at the preferred temperature of 4 °C, only VHSV IVa was shown to replicate within ACBA. This study provides evidence that Arctic charr cells can maintain immune function while also resisting infection with intracellular pathogens at low temperatures.  相似文献   

18.
The sustainability of freshwater fisheries is increasingly affected by climate warming, habitat alteration, invasive species and other drivers of global change. The State of Michigan, USA, contains ecologically, socioeconomically valuable coldwater stream salmonid fisheries that are highly susceptible to these ecological alterations. Thus, there is a need for future management approaches that promote resilient stream ecosystems that absorb change amidst disturbances. Fisheries professionals in Michigan are responding to this need by designing a comprehensive management plan for stream brook charr (Salvelinus fontinalis), brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) populations. To assist in developing such a plan, we used stream‐specific regression models to forecast thermal habitat suitability in streams throughout Michigan from 2006 to 2056 under different predicted climate change scenarios. As baseflow index (i.e., relative groundwater input) increased, stream thermal sensitivity (i.e., relative susceptibility to temperature change) decreased. Thus, the magnitude of temperature warming and frequency of thermal habitat degradation were lowest in streams with the highest baseflow indices. Thermal habitats were most suitable in rainbow trout streams as this species has a wider temperature range for growth (12.0–22.5 °C) compared to brook charr (11.0–20.5 °C) and brown trout (12.0–20.0 °C). Our study promotes resilience‐based salmonid management by providing a methodology for stream temperature and thermal habitat suitability prediction. Fisheries professionals can use this approach to protect coldwater habitats and drivers of stream cooling and ultimately conserve resilient salmonid populations amidst global change.  相似文献   

19.
Abstract –  Winter growth and survival of wild individually tagged juvenile Arctic charr (1+ age) from a riverine anadromous stock, were studied in a small ice-covered (∼6 months) ground water brook (temperature ∼1 °C) connected to Skibotnelva in subarctic northern Norway. The overall winter survival was estimated to be 68% from late October 2005 to early May 2006. The recaptured charr were not significantly different in initial length or weight compared with the nonrecaptured fish suggesting low size-dependent mortality. The majority (98%) of the recaptured charr showed significant increase in size, with a mean increment of 62% from their initial bodyweight and 12% of the charr parr had more than doubled their weight. The mean specific growth rate was calculated to be slightly lower (0.27) than estimated values from a growth model (∼0.35). In addition, the condition factor increased significantly during the field experiment. These results are the first individual growth data on riverine anadromous Arctic charr parr under natural winter conditions, and indicate that charr can grow relatively fast during periods with low temperature and also that ground water brooks can be good over-wintering habitat for juvenile Arctic charr. These results suggest that the winter period is perhaps a less severe bottleneck than previously recognised for the cold-adapted Arctic charr.  相似文献   

20.
Abstract – Brook charr (Salvelinus fontinalis) is a sentinel fish species that requires clean, cold water habitats generally resulting from landscapes that allow for surface water flows devoid of sediment and contaminants and high groundwater discharge of cold water. As such, brook charr are impacted by land cover changes that alter stream temperature regimes. We evaluated brook charr populations across their eastern and midwestern range in the United States with reference to thermal habitat availability in relationship to land cover and per cent baseflow. We found that while forest cover does protect brook charr thermal habitat, high levels of groundwater discharge can allow for increased levels of agriculture within a watershed by keeping the water cold in spite of warm ambient summer temperatures. Our study concludes that with enhanced communication among land, water and fisheries managers, society can provide for sustainable stream salmonid populations despite increased threats on cold water resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号