首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
Purpose

A large area of desert land in the desert-oasis ecotone in northwestern China is being reclaimed for continuous cotton production for several decades. However, little is known about the possible effect of reclamation and long-term monocultural cotton cultivation on soil properties and microbial communities in the desert-oasis ecotone area.

Materials and methods

Soil samples were collected from the 0–20-cm mineral soil from croplands that had been continuously planted cotton for 5, 25, and 50 years after reclamation, as well as a desert land (t?=?0, before reclamation, used as the control). Soil physical and chemical properties, enzyme activities, and bacterial and fungal community diversities were determined.

Results and discussion

Soil organic carbon, total nitrogen, and enzyme activities increased up to 25 years after reclamation, and further monocultural cotton cropping was not beneficial to improve soil quality. Soil urease, alkaline phosphatase, and sucrase activities increased by 121~205%, 100~167%, and 206~719% in croplands as compared with the desert land, respectively, after reclamation with the highest value at 25 years of cotton cultivation. Bacterial richness and diversity increased from desert land to the 5-year-old cropland and then remained stable after 5 years of cotton cropping, and soil fungal richness and diversity were not affected by reclamation and cropping years.

Conclusions

Crop rotation or fallow should be considered to maintain or improve soil quality over the long-term monocultural cropping.

  相似文献   

2.
Community composition strongly affected the soil C and N storages. However, the influences of community composition on native grassland remain poorly understood. The purpose of this study is to investigate the ability of plant communities including how legumes affect the soil C and N storages in the semi‐arid grassland. Experimental grassland communities were separated by whether or not containing legumes. We measured soil C and N storages and determined above‐ground and below‐ground biomass, litter biomass, plant species richness, and species diversity to understand the mechanisms underlying the changes of soil C and N storages and to determine the relationship of species diversity and productivity. The results showed that legumes increased above‐ground and below‐ground biomass and C and N storages. Soil C and N storages were significantly and positively related to above‐ground and below‐ground biomass, litter biomass, plant species richness, and diversity in the presence of legumes. The presence of legumes increased soil C and N simultaneously but not synchronously, which resulting in a higher C:N ratio. This study indicated that legumes increased soil C and N storages possibly through increasing biomass and soil C and N inputs. The increases are mediated by plant diversity and plant functional complementarity. We suggest that the combination of legumes‐grass species may greatly enhance ecosystem services such as soil C and N storages, productivity, and diversity in semi‐arid grassland. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The present study of arbuscular mycorrhizal (AM) fungi is focused on the identification of AM ecotypes associated with different plants species (Poa annua, Medicago polymorpha, and Malva sylvestris) growing in three contaminated soils with different organic matter, phosphorus, and trace element (TE; Cu, Cd, Mn, and Zn) contents. Soils were amended with biosolid and alperujo compost. Shifts in AM fungal community structure, diversity, richness, root colonization, and plant TE uptake were evaluated. Soil properties and plant species had a significant effect on AM fungal community composition as well as on root colonization. However, AM fungal diversity and richness were only affected by soil properties and especially by soil organic matter that was a major driver of AM fungal community. As soil quality increased, Glomeraceae decreased in favor of Claroideoglomeraceae in the community, AM fungal diversity and richness increased, and root colonization decreased. No effect due to amendment (exogenous organic matter) addition was found either in AM fungal parameters measured or TE plant uptake. Our results revealed that the role of TE contamination was secondary for the fungal community behavior, being the native organic matter content the most significant factor.  相似文献   

4.
Wang  Fenghua  Chen  Shuaimin  Qin  Shuping  Sun  Ruibo  Zhang  Yuming  Wang  Shiqin  Hu  Chunsheng  Hu  Hangwei  Liu  Binbin 《Journal of Soils and Sediments》2021,21(6):2394-2403
Purpose

The excessive use of nitrogen (N) fertilizer in intensive agriculture has increased nitrate leaching into groundwater, but its impacts on N transformation processes and the associated microbial communities in the deep vadose zone remain unclear.

Materials and methods

Soil samples from 0–1050 cm depth were collected from a 20-year field experiment with two N fertilization treatments: 0 (N0) and 600 kg N ha?1 year?1 (N600). Amplicon sequencing and quantitative PCR analyses were performed to profile the vertical distribution of soil microbial communities and denitrification genes.

Results and discussion

The soil microbial community structure and diversity were strongly influenced by soil depth and N fertilization. The 250 cm depth was identified as a threshold depth, as dramatically different microbial communities were found below and above this depth. Quantitative PCR results showed that the absolute abundance of denitrification genes decreased with increasing soil depth.

Conclusion

This study elucidated the profound effects of long-term N input on the composition and diversity of the microbial communities and the abundance of denitrifiers in the deep vadose zone. Our results provide basic information for use in mitigating nitrate leaching by enhancing microbial denitrification in deep vadose zones in intensive agricultural areas.

  相似文献   

5.
Biodiesel Co-Product (BCP) amendment has been shown to decrease both nitrate leaching and nitrous oxide (N2O) emissions in acidic soil; however, the effects of BCP on the soil microbiome have not been investigated thoroughly. In this study, we investigated the response of prokaryotic and fungal communities in aspects of structure, diversity, and co-occurrence network to the BCP amendment following complete mixing application (0–18-cm depth) of 1.5 mg BCP-C g−1 and surface application (0–6-cm depth) of 4.5 mg BCP-C g−1 via high-throughput 16S rRNA and internal transcribed spacer (ITS) amplicon sequencing. The amendment altered microbial communities significantly by increasing the relative abundances of Proteobacteria (Burkholderia) and Ascomycota (Trichoderma) in prokaryotic and fungal communities, respectively. Only a higher rate application (4.5 mg BCP-C g−1) decreased prokaryotic alpha diversity, whereas all rates of amendment decreased fungal diversity. The co-occurrence network of prokaryotes had more nodes and links and a higher average degree and clustering coefficient than the fungal network with BCP addition. The majority of keystone species in prokaryotic and fungal networks were from Proteobacteria and Ascomycota taxa. Of note, the BCP amendment significantly increased the OTU numbers of potential biocontrol agents, including Trichoderma (T.) spirale, T. koningiopsis, and T. virens, etc., while decreased OTU numbers related to plant pathogens species, particularly in the complete mixing application. Our work highlights the potential for BCP amendments to promote the assembly of a healthy soil microbiome by enhancing the abundance of potential biocontrol microbes while reducing plant pathogens species, which may contribute to soil health.  相似文献   

6.
Huang  Xingran  Liu  Yanfei  Li  Yiyong  Guo  Pingping  Fang  Xiong  Yi  Zhigang 《Journal of Soils and Sediments》2019,19(1):221-231
Purpose

Many studies have shown the simulated effects of nitrogen (N) deposition on soil microbial community composition by adding N directly to the forest floor but have ignored the N retention process by the canopy. This study was conducted to compare the responses of soil microbial biomass and community composition between soil application of N (SAN) and foliage application of N (FAN).

Materials and methods

A pot experiment was designed with (1) two N application methods (SAN and FAN), (2) three N application levels (5.6, 15.6 and 20.6 g N m?2 year?1), and (3) two tree species (Schima superba Gardn. et Champ. and Pinus massoniana Lamb.) following a nested factorial design. Soil microbial biomass and community composition were determined using phospholipid fatty acids (PLFAs) techniques after 1 and 1.5 years of treatments.

Results and discussion

Nitrogen addition increased (P?<?0.05) soil NH4+-N content and soil NO3?-N content and decreased (P?<?0.05) soil pH and soil microbial (bacterial, fungal, and actinomycete) biomass for both N application methods. Compared with the SAN treatment, the FAN treatment had higher (P?<?0.05) pH and lower (P?<?0.05) contents of soil NH4+-N and soil NO3?-N. Soil microbial biomass and community composition were significantly different between the different N addition levels under the SAN treatment, but they showed no significant difference (P?<?0.05) between the different N addition levels under the FAN treatment. The soil microbial biomass in the S. superba soil was higher (P?<?0.05) than that in the P. massoniana soil for the FAN treatment, with the opposite trend observed under the SAN treatment. Moreover, redundancy analysis showed that soil microorganisms were significantly correlated with soil pH, soil water content, NH4+-N, and NO3?-N.

Conclusions

The results showed that N addition affected soil properties, microbial biomass, and the composition of microbial communities; however, the FAN treatment had less influence on soil properties and soil microorganisms than did the SAN treatment over short time scales, and the extent of this effect was different between coniferous and broadleaf trees.

  相似文献   

7.
We used a combination of molecular, culture and biochemical methods to test the hypothesis that severe infection of pine by dwarf mistletoe (genus Arceuthobium) has significant effects on structure and function of soil fungal communities, and on carbon cycling in soils. PCR and DNA sequencing of the basidiomycete communities in paired blocks of uninfected and infected trees revealed: (1) that the top, organic soil layer in this system is inhabited almost exclusively by ectomycorrhizal fungi; (2) no difference in species richness (6 species core−1 in both) or Shannon-Wiener evenness (0.740 and 0.747 in uninfected and infected blocks respectively), however Shannon-Wiener diversity was significantly greater in infected blocks (1.19 vs 1.94 in uninfected and infected blocks respectively, P < 0.05); (3) significant differences in basidiomycete species composition, with nearly complete absence of two system co-dominant Russula species in infected blocks, and replacement of one co-dominant Piloderma species with another in infected plots, indicating physiological variability within the genus. Soil fungal physiological diversity measured using the Fungilog system was significantly greater in terms of both number of carbon substrates used by culturable soil fungi (both ascomycetes and basidiomycetes) in infected blocks, and the rate at which these substrates were used. Soil enzyme assays revealed greater laccase, peroxidase, and cellulase activities in soils associated with infected trees. Thus, event cascades associated with severe dwarf mistletoe infection not only significantly affected soil fungal species composition and increased species diversity, but also impacted on carbon-related function and functional diversity. Given the geographic range of this pathogen, and forecasts that epidemics of this disease will increase in range in severity with global climate change, these effects have the potential to significantly impact local and global carbon budgets.  相似文献   

8.
Increasing plant species richness generally enhances plant biomass production, which may enhance accumulation of carbon (C) in soil. However, the net change in soil C also depends on the effect of plant diversity on C loss through decomposition of organic matter. Plant diversity can affect organic matter decomposition via changes in litter species diversity and composition, and via alteration of abiotic and/or biotic attributes of the soil (soil legacy effect). Previous studies examined the two effects on decomposition rates separately, and do therefore not elucidate the relative importance of the two effects, and their potential interaction. Here we separated the effects of litter mixing and litter identity from the soil legacy effect by conducting a factorial laboratory experiment where two fresh single root litters and their mixture were mixed with soils previously cultivated with single plant species or mixtures of two or four species. We found no evidence for litter-mixing effects. In contrast, root litter-induced CO2 production was greater in soils from high diversity plots than in soils from monocultures, regardless of the type of root litter added. Soil microbial PLFA biomass and composition at the onset of the experiment was unaffected by plant species richness, whereas soil potential nitrogen (N) mineralization rate increased with plant species richness. Our results indicate that the soil legacy effect may be explained by changes in soil N availability. There was no effect of plant species richness on decomposition of a recalcitrant substrate (compost). This suggests that the soil legacy effect predominantly acted on the decomposition of labile organic matter. We thus demonstrated that plant species richness enhances root litter-induced soil respiration via a soil legacy effect but not via a litter-mixing effect. This implies that the positive impacts of species richness on soil C sequestration may be weakened by accelerated organic matter decomposition.  相似文献   

9.
Xiao  Lie  Liu  Guobin  Li  Peng  Xue  Sha 《Journal of Soils and Sediments》2019,19(11):3679-3687
Purpose

Elevated CO2 and nitrogen (N) addition both affect soil microbial communities, which significantly influence soil processes and plant growth. Here, we evaluated the combined effects of elevated CO2 and N addition on the soil–microbe–plant system of the Chinese Loess Plateau.

Materials and methods

A pot cultivation experiment with two CO2 treatment levels (400 and 800 μmol mol?1) and three N addition levels (0, 2.5, and 5 g N m?2 year?1) was conducted in climate-controlled chambers to evaluate the effects of elevated CO2 and N addition on microbial community structure in the rhizosphere of Bothriochloa ischaemum using phospholipid fatty acid (PLFA) profiles and associated soil and plant properties. Structural equation modeling (SEM) was used to identify the direct and indirect effects of the experimental treatments on the structure of microbial communities.

Results and discussion

Elevated CO2 and N addition both increased total and fungal PLFAs. N addition alone increased bacterial, Gram-positive, and Gram-negative PLFAs. However, elevated CO2 interacting with N addition had no significant effects on the microbial community. The SEM indicated that N addition directly affected the soil microbial community structure. Elevated CO2 and N addition both indirectly affected the microbial communities by affecting plant and soil variables. N addition exerted a stronger total effect than elevated CO2.

Conclusions

The results highlighted the importance of comprehensively studying soil–microbe–plant systems to deeply reveal how characteristics of terrestrial ecosystems may respond under global change.

  相似文献   

10.
Soil respiration is comprised primarily of root and microbial respiration, and accounts for nearly half of the total CO2 efflux from terrestrial ecosystems. Soil acidification resulting from acid deposition significantly affects soil respiration. Yet, the mechanisms that underlie the effects of acidification on soil respiration and its two components remain unclear. We collected data on sources of soil CO2 efflux (microbial and root respiration), above- and belowground biotic communities, and soil properties in a 4-year field experiment with seven levels of acid in a semi-arid Inner Mongolian grassland. Here, we show that soil acidification has contrasting effects on root and microbial respiration in a typical steppe grassland. Soil acidification increases root respiration mainly by an increase in root biomass and a shift to plant species with greater specific root respiration rates. The shift of plant community from perennial bunchgrasses to perennial rhizome grasses was in turn regulated by the decreases in soil base cations and N status. In contrast, soil acidification suppresses microbial respiration by reducing total microbial biomass and enzymatic activities, which appear to result from increases in soil H+ ions and decreases in soil base cations. Our results suggest that shifts in both plant and microbial communities dominate the responses of soil respiration and its components to soil acidification. These results also indicate that carbon cycling models concerned with future climate change should consider soil acidification as well as shifts in biotic communities.  相似文献   

11.
This investigation examines the effect of manipulating soil microbial community composition and species richness on the development of soil structure over a seven month period in planted (with or without mycorrhizal fungi) and in unplanted macrocosms. The dilution method effectively resulted in soil communities with consistently contrasting levels of species (TRF) richness. In particular, the 10?6 dilution of field soil resulted in less rich communities in bare unplanted soil than did the 10?1 soil dilution. However, this was not the case in planted soils where root activity was a powerful influence on species richness. After seven months, principal components analysis (PCA) separated bacterial community composition primarily on planting regime; planted mycorrhizal, planted non-mycorrhizal and bare soil treatments all contained different bacterial community compositions. A consistent finding in planted and unplanted soils was that aggregate stability was positively correlated with small pore sizes. Mycorrhizal colonisation decreased plant biomass and also resulted in reduced soil bacterial species richness, lower percentage organic matter and smaller pore sizes relative to planted but non-mycorrhizal soils. However, soil aggregate stability and water repellency were increased in these (mycorrhizal) soils probably due to AMF hyphal activities including enmeshment and/or glomalin production. In contrast, bacterial TRF richness was positively correlated with aggregate stability in the bare and non-mycorrhizal planted soils. Soil organic carbon was an important factor in all treatments, but in the bare soil where there was no additional input of labile C from roots, the percentage C could be directly related to fungal TRF richness. The less species rich bare soil contained more organic C than the more species rich bare soil. This suggests a degree of redundancy with regard to mineralisation of organic matter when additional, more utilisable C sources are unavailable. Understanding the effects of microbial diversity on functional parameters is important for advancing sustainable soil management techniques, but it is clear that soil is a dynamic ecosystem.  相似文献   

12.
As part of the restoration of biodiversity on former agricultural land there has been focused on methods to enhance the rate of transition from agricultural land towards natural grasslands or forest ecosystems. Management practices such as sowing seed mixtures and inoculating soil of later successional stages have been used. The aim of this study was to determine the effects of a managed plant community on the diversity of soil fungi in a newly abandoned agricultural land. A field site was set up consisting of 20 plots where the plant diversity was managed by either sowing 15 plant species, or natural colonization was allowed to occur. The plant mixture contained five species each of grasses, legumes and forbs that all were expected to occur at the site. A subset of the plots (five from each treatment) was inoculated with soil cores from a late successional stage. The plant community composition was subject to a principal component analysis based on the coverage of each species. Five years after abandonment, soil samples were taken from the plots, DNA was extracted and the ITS region of the rDNA gene was amplified using fluorescently labelled fungal specific primers (ITS 1F/ITS 4). The PCR products were digested using HinfI and TaqI and sequenced. Results from both restriction enzymes were combined and a principal component analysis performed on the presence/absence of fragments. Also the fungal diversity expressed as number of restriction fragments were analysed. There was significantly higher fungal species richness in the experimental plots compared to the forest and field soils, but no differences between sown and naturally colonized plots. The different plant treatments did not influence the below ground fungal community composition. Soil water content on the other hand had an impact on the fungal community composition.  相似文献   

13.
Arbuscular mycorrhizal fungi (AMF) community composition and species richness are affected by several factors including soil attributes and plant host. In this paper we tested the hypothesis that conversion of tropical Amazon forest to pasture changes taxonomic composition of AMF community but not community species abundance and richness. Soil samples were obtained in 300 m × 300 m plots from forest (n = 11) and pasture (n = 13) and fungal spores extracted, counted and identified. A total of 36 species were recovered from both systems, with 83% of them pertaining to Acaulosporaceae and Glomeraceae. Only 12 species were shared between systems and spore abundance of the majority of fungal species did not differ between pasture and forest. Spore abundance was significantly higher in pasture compared to forest but both systems did not differ on mean species richness, Shannon diversity and Pielou equitability. Species abundance distribution depicted by species rank log abundance plots was not statistically different between both systems. We concluded that conversion of pristine tropical forest to pasture influences the taxonomic composition of AMF communities while not affecting species richness and abundance distribution.  相似文献   

14.
Abstract

The study of plant diversity and its role in ecosystem functioning is becoming a central issue in ecology. The relationships between carbon storage and tree diversity of natural forest at small scale are still unclear. This research investigated these relationships in an old‐growth forest at Changbai Mountain, Northeast China. It was found that at small scale, tree carbon storage generally increases with increasing tree species richness, but for stands with same species richness, tree carbon storage varies dramatically. At the small scale, tree species evenness has a significantly linear relationship with nature logarithm of total tree carbon storage. The stand carbon storage of trees is mainly controlled by stand tree composition. Fraxinus mandshurica, Pinus koraiensis, Quercus mongolica, Tilia amurensis, and Acer mono contribute more than 85% of stand carbon storage of trees. Stands with similar tree composition at small scale have different soil organic carbon storage and nutrient contents. Tree species evenness has great impact on soil N content at the soil horizon less than 30 cm deep, but its impacts on C/N, P, K, and S contents are small. Tree density has a negative linear relationship with soil organic C and C∶N ratio at the soil horizon is less than 30 cm deep. The implication of our findings here for carbon sequestration in the Kyoto Protocol is also discussed.  相似文献   

15.
Most studies on the interactions between aboveground vegetation and belowground soil diversity have been carried out in microcosms or manipulated field plots. In the current study, we investigated the relationship between forest vegetation diversity and soil functional diversity (calculated from the activity of soil enzymes) in naturally developed plant communities of native mixed-oak forests without imposing any disturbances to already existing plant–soil relationships. In order to do so, five different vegetation types, i.e., herbaceous plants, climbing plants, trees, shrubs, and ferns, were considered. Correlations between plant diversity, soil physicochemical properties, and soil enzyme activities were determined. Soil physicochemical parameters appeared strongly correlated with both enzyme activities (e.g., pH was positively correlated with amidase and arylsulphatase, and negatively with acid phosphatase; OM content was positively correlated with β-glucosidase, acid and alkaline phosphatase and urease, and negatively with amidase; total N was positively correlated with β-glucosidase, and acid and alkaline phosphatase, and negatively with amidase) and soil functional diversity. For ferns, strong correlations between enzyme activities and plant diversity indexes were found (i.e., dehydrogenase was positively correlated with species richness and Shannon's diversity; acid and alkaline phosphatase were negatively correlated with Shannon's diversity; acid phosphatase was also negatively correlated with species richness). Most interestingly, herbaceous plants and ferns showed a strong positive correlation between Shannon's plant diversity and soil functional diversity. Furthermore, herbaceous plants showed a strong positive correlation between species richness and soil functional diversity. Although these correlations between plant diversity and soil functional diversity might possibly be due to the fact that higher values of plant richness and diversity result in a greater habitat heterogeneity in the soil, current knowledge on the topic is mixed and very incomplete and, then, one must be extremely cautious when interpreting such correlations.  相似文献   

16.
[目的] 研究宁东矿区天然植物群落特征与土壤理化性质的关系,为宁东矿区植被重建过程中植物种的选择提供科学依据。[方法] 以宁东矿区6种典型的天然植物群落和土壤为研究对象,采用野外调查结合室内试验的方法,对比分析不同群落的植物群落特征及其与土壤理化性质的关系。[结果] 宁东矿区6种天然植物群落共调查到植物55种,隶属于15科48属,集中分布于菊科、豆科、藜科和禾本科4科。细枝岩黄耆(Hedysarum scoparium)+柠条锦鸡儿(Caragana korshinskii)—白莲蒿(Artemisia sacrorum)群落灌木层植被盖度和高度在6个群落中均最高,其数值分别为48%和202.54 cm,灌木物种柠条锦鸡儿在其中5个群落中均有分布且生长良好。灌木层Patrick丰富度指数与土壤碱解氮、砾石含量、速效钾和有机质呈正相关,与pH值呈负相关;草本层植物种Patrick丰富度指数与土壤有机质、田间持水量和速效磷呈正相关关系。[结论] 宁东矿区煤矸石山植被重建时,对于覆土土质为壤质砂土或砂质壤土,优先选择柠条锦鸡儿、细枝岩黄耆、黑沙蒿(Artemisia ordosica)和沙拐枣(Calligonum mongolicum)等灌木树种;覆土土质为少砾质砂土时选沙冬青(Ammopiptanthus mongolicus)和柠条锦鸡儿;覆土土质为多砾质砂土时可选藏锦鸡儿(Caragana tibetica)、裸果木(Gymnocarpos przewalskii)和胡枝子(Lespedeza bicolor)等灌木物种。土壤容重对灌木物种多样性贡献率较大,土壤田间持水量和有机质对草本植物多样性贡献率较大。  相似文献   

17.
《Applied soil ecology》2003,22(1):67-77
The Grand Staircase—Escalante National Monument (GSENM) contains a rich diversity of native plant communities. However, many exotic plant species have become established, potentially threatening native plant diversity. We sought to quantify patterns of native and exotic plant species and cryptobiotic crusts (mats of lichens, algae, and mosses on the soil surface), and to examine soil characteristics that may indicate or predict exotic species establishment and success. We established 97 modified-Whittaker vegetation plots in 11 vegetation types over a 29,000 ha area in the Monument. Canonical correspondence analysis (CCA) and multiple linear regressions were used to quantify relationships between soil characteristics and associated native and exotic plant species richness and cover. CCA showed that exotic species richness was significantly (P<0.05) associated with soil P (r=0.84), percentage bare ground (r=0.71), and elevation (r=0.67). Soil characteristics alone were able to predict 41 and 46% of the variation in exotic species richness and cover, respectively. In general, exotic species invasions tend to occur in fertile soils relatively high in C, N and P. These areas are represented by rare mesic high-elevation habitats that are rich in native plant diversity. This suggests that management should focus on the protection of the rare but important vegetation types with fertile soils.  相似文献   

18.

Purpose

There have been a number of studies on the succession of vegetation; however, the succession of soil microbes and the collaborative relationships between microbes and vegetation during land restoration remain poorly understood. The objectives of this study were to characterize soil microbial succession and to explore the collaborative mechanisms between microbes and vegetation during the restoration of abandoned land through quantitative ecology methods.

Materials and methods

The present research was carried out in the succession of a 5-year abandoned land and its conversion to Hippophae rhamnoides shrubs, Larix principis-rupprechtii plantation, and a naturally regenerated forest (mixed forest). Soil bacterial, archaeal and fungal characteristics were tested by real-time quantitative PCR assays and terminal restriction fragment length polymorphism. The richness, diversity, and evenness indices were employed to analyze plant and microbial communities’ structure. The stability of plant and microbial communities was tested using Spearman’s rank correlation. The relationships between the regeneration scenarios and environmental factors were determined through canonical correspondence analysis.

Results and discussion

The aboveground biomass was significantly different among the sites. Soil bacterial, archaeal, and fungal rRNA gene abundances did not increase significantly with increasing soil organic carbon content. There were higher correlation coefficients between plant and total microbial communities on the richness, diversity, and evenness indices and ratios of positive to negative association compared to ones between plant and individual bacteria, archaea, and fungi. Soil bulk density, clay, pH, and litter were the primary significant environmental factors affecting the structure of plant and microbial communities. The positive relationships between plant and soil bacteria, fungi, and total microbe communities, as well as the negative relationships between plant and archaea, were demonstrated.

Conclusions

The results suggested that plants promote the growth of soil bacteria and fungi during the process of community succession on a small scale; however, plants inhibit the growth of soil archaea.  相似文献   

19.
The relationship between total and metabolically active soil microbial communities can provide insight into how these communities are impacted by environmental change, which may impact the flow of energy and cycling of nutrients in the future. For example, the anthropogenic release of biologically available N has dramatically increased over the last 150 years, which can alter the processes controlling C storage in terrestrial ecosystems. In a northern hardwood forest ecosystem located in Michigan, USA, nearly 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. A microbial mechanism underlies this response, as compositional changes in the soil microbial community have been concomitantly documented with these biogeochemical changes. Here, we co-extracted DNA and RNA from decaying leaf litter to determine if experimental atmospheric N deposition has lowered the diversity and altered the composition of the whole communities of bacteria and fungi (i.e., DNA-based) and well as its active members (i.e., RNA-based). In our experiment, experimental N deposition did not affect the composition, diversity, or richness of the total forest floor fungal community, but did lower the diversity (−8%), as well as altered the composition of the active fungal community. In contrast, neither the total nor active forest floor bacterial community was significantly affected by experimental N deposition. Our results suggest that future rates of atmospheric N deposition can fundamentally alter the organization of the saprotrophic soil fungal community, key mediators of C cycling in terrestrial environments.  相似文献   

20.
Soil micro-organisms play a vital role in grassland ecosystem functioning but little is known about the effects of grassland management on spatial patterns of soil microbial communities. We compared plant species composition with terminal restriction fragment length polymorphism (T-RFLP) fingerprints of soil bacterial and fungal communities in unimproved, restored and improved wet grasslands. We assessed community composition of soil micro-organisms at distances ranging from 0.01 m to 100 m and determined taxa–area relationships from field- to landscape level. We show that land management type influenced bacterial but not fungal community composition. However, extensive grassland management to restore aboveground diversity affected spatial patterns of soil fungi. We found distinct distance–decay and small-scale aggregation of fungal populations in extensively managed grasslands restored from former arable use. There were no clear spatial patterns in bacterial communities at the field-scale. However, at the landscape level there was a moderate increase in bacterial taxa and a strong increase in fungal taxa with the number of sites sampled. Our results suggest that grassland management affects soil microbial communities at multiple scales; the observed small-scale variation may facilitate plant species coexistence and should be taken into account in field studies of soil microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号