首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The objective of the present study was to evaluate the relationships between the quantity, toxicity, and compositional profile of dioxin/furan compounds (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in estuarine sediment and in the blue crab (Callinectes sapidus). Sediment and blue crab samples were collected in three small urban estuaries that are in relatively close proximity to each other. Results show that differences between PCDD/F and DL-PCB mass concentrations and total toxic equivalents (TEQ) toxicity in sediments of the three estuaries are reflected in those of the blue crab. TEQs are higher in the hepatopancreas of the crabs than in the sediment, but the concentration factor is inversely proportional to the TEQ in the sediments. Congener profiles in the crabs are systematically different from those in the sediments, and the difference is more pronounced for PCDD/Fs than for DL-PCBs, possibly due to differences in metabolization rates. Compared with sediment profiles, more lesser-chlorinated PCDD/Fs that have higher TEFs accumulate in crab hepatopancreas. This selective bioaccumulation of PCDD/Fs results in a TEQ augmentation in crab hepatopancreas compared with sediments. The bioaccumulation in the blue crab is also selective for PCDD/Fs over DL-PCBs.  相似文献   

2.
对长江三角洲地区某典型污染区农田生态系统和部分农产品中多氯代二苯并二嘿英(PCDDs)/呋喃(PCDFs)的污染特征、生物富集及潜在健康风险进行了初步研究。结果表明,该地区局部农田土壤中PCDD/Fs含量及毒性当量平均达556 pg g^-1dw和TEQ 20.2 pg g^-1dw,已在不同农产品中明显积累,其中稻米中PCDD/Fs含量及毒性当量为50.7 pg g^-1dw和TEQ6.4 pg g^-1dw,蔬菜茎叶中为35.2 pg g^-1dw和TEQ6.7 pg g^-1dw;当地家禽鸡肉中PCDD/Fs含量及毒性当量为30.9 pg g^-1ww和TEQ5.7 pg g^-1ww。日允许摄入量(TDI)计算结果表明,经稻米-蔬菜、稻米-蔬菜-鱼腥草、稻米-蔬菜-鱼腥草-鸡肉三种暴露途径至人体的PCDD/Fs日摄入量分别为TEQ67.4、72.1、83.5Pg kg^-1d^-1,均远远超过世界卫生组织(WHO)制定的TDI标准(TEQ 1-4pg ks^-1d^-1)。该地区局部农田生态系统及部分农产品中存在二嘿英类(PCDD/Fs)污染,已构成较大的人体健康风险。  相似文献   

3.
Purpose

Similar to fresh- and brackish water aquaculture ponds, commercial shrimp farming in degraded saline areas holds the potential to bury carbon (C) in the sediments. However, studies on the mechanisms of sediment C dynamics and C-flux in response to inland saline aquaculture management practices are still scarce. Therefore, the objectives of the present study are to quantify the C burial rate in inland saline aquaculture ponds and assess the impact of inland saline aquaculture on sensitive C fractions in the bottom sediment of the ponds.

Materials and methods

The sediment samples (n?=?12 from each pond) were collected from six shrimp farming ponds (1000 m2 area of each pond) of different ages. The sediment depth, sediment accumulation rate and the levels of total carbon (TC), total organic carbon (TOC) and sediment oxidizable organic carbon (SOC) and its different fractions were determined using standard procedures. The data were analysed by one-way analysis of variance (ANOVA), followed by the Duncan's multiple range test for comparing the means, and the Pearson correlation test was used to assess the relationship between the different pond sediment parameters and SOC content.

Results and discussion

The results revealed that the annual C accumulation rates varied from 902 to 1346 kg C ha?1 year?1 in 7-year-old earthen ponds (EPs) and bottom cemented ponds (BCPs), respectively. The sediment C fractions, including TC, TOC, SOC and its fractions (very labile, VLc; labile, Lc; less labile, LLc), and non-labile carbon (NLc)) were progressively increased over the pond age. The inland saline aquaculture practices over the years increased both active (AC) and passive carbon (PC) pools in the pond sediments, helped in the restoration and improvement of sediment quality and enhanced C sequestration potential of the sediments. Furthermore, a significant increase in the level of particulate organic carbon (POC) in BCPs justified that the non-ploughing practices at BCPs facilitated the formation of macro- and micro-aggregates, thereby increasing the C retention and stability of the pond sediments.

Conclusion

This study suggested that the shrimp farming ponds in semi-arid saline soils represented considerable C burial hotspots, enhanced the stable passive C pools and improved the sediment quality.

  相似文献   

4.
通过同位素稀释高分辨率气相色谱-质谱方法(HRGC/HRMS)对长江三角洲地区某典型污染区农田土壤中多氯代二苯并二英(PCDDs)/呋喃(PCDFs)组成、含量及毒性当量进行了初步研究。结果表明,该地区农田土壤中PCDD/Fs总含量的平均值达2639·1pgg-1dw,并检测出PCDD/Fs的四氯~八氯多种异构体。根据世界卫生组织毒性当量(TEQ,哺乳动物)计算结果显示,农田土壤中PCDD/Fs的毒性当量为TEQ20·8~21·3pgg-1dw,超过加拿大国家居住环境土壤二英含量控制标准的5倍多,其中2,3,4,7,8-PCDF和1,2,3,7,8-PCDD对PCDD/Fs的TEQ值贡献最大。该地区农田土壤中已经出现一定程度的二英/呋喃污染。  相似文献   

5.
A surveillance program on polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) in 29 foodstuff samples produced all over the four provinces in Catalonia (Spain) is presented. The study included the analyses of milk, egg, meat (beef, chicken, and pork), mussel, and olive oil samples. A previously developed method for the simultaneous analysis of the 2,3,7,8-substituted PCDDs/PCDFs and the dioxin-like PCBs, as well as the indicator PCBs, was employed. Total toxicity equivalent (TEQ) values were calculated using the toxicity equivalent factors (TEFs) proposed by the World Health Organization (WHO) for dioxin-like PCBs, PCDDs, and PCDFs. The TEQ(PCDD/F) levels were below the limits proposed in the draft of the EC regulation for food commercialization in the European countries. These limits are the following: 2 pg WHO-TEQ/g fat for pork, 3 pg WHO-TEQ/g fat for milk and chicken, 5 pg WHO-TEQ/g fat for egg and beef, and 3 pg WHO-TEQ/g whole product for fish. The contributions of PCDDs/Fs and dioxin-like PCBs in the total toxicity of the samples were calculated for each matrix. The results showed that the TEQ(PCB) contribution varied from 27% in olive oil samples to 81% in mussel samples. These findings suggest that the regulation of TEQ contents in food should include not only the TEQ(PCDD/F), but also the TEQ(PCB).  相似文献   

6.
The objective of this study was to evaluate the influence of the soil parameters (particle size, initial contamination level, etc.) on the performances of an attrition process to remove As, Cr, Cu, pentachlorophenol (PCP) and dioxins and furans (PCDD/F). Five different contaminated soils were wet-sieved to isolate five soil fractions (<?0.250, 0.250–1, 1–4, 4–12 and >?12 mm). Five attrition steps of 20 min each, carried out in the presence of a biodegradable surfactant ([BW]?=?2%, w w?1) at room temperature with a pulp density fixed at 40% (w w?1), were applied to the coarse soil fractions (>?0.250 mm) of different soils. The results showed good performances of the attrition process to simultaneously remove PCP and PCDD/F from contaminated soil fractions initially containing between 1.1 and 13 mg of PCP kg?1 (dry basis) and between 1795 and 5720 ng TEQ of PCDD/F kg?1. It appeared that the amounts of contaminants removed were significantly correlated (p value?<?0.05, R 2?=?0.96) with the initial amounts of PCP and PCDD/F, regardless of the particle size of the soils studied. The nature of the soil (granulometric distribution, pH, total organic carbon (TOC) (organic matter) and diverse industrial origin) slightly and negatively influenced the efficiency of organic contaminants removals using attrition. However, the attrition treatment allowed an efficient removal of both PCP and PCDD/F from the coarse fraction of contaminated soil, despite the nature of the soil.  相似文献   

7.
Li  Kun  Wang  Peifang  Qian  Jin  Wang  Chao  Xing  Linghang  Liu  Jingjing  Tian  Xin  Lu  Bianhe  Tang  Wenyi 《Journal of Soils and Sediments》2019,19(4):2034-2047
Purpose

Here, the roles of sediment components in perfluorooctane sulfonate (PFOS) adsorption onto aquatic sediments and relevant adsorption mechanisms were investigated in terms of adsorption isotherms and influences of TiO2 nanoparticles (NPs) contamination.

Materials and methods

Due to the complexity of the sediments, instead of randomly selecting different component sediments, the selective dissolution method was used to better explore the effects of sediment compositions, such as sediment organic matter (SOM) and ferric oxides (dithionite–citrate–bicarbonate [DCB] Fe), and TiO2 NPs pollution on PFOS adsorption. Mathematical equations (Freundlich, Langmuir, and Temkin) were used to describe the adsorption behavior of PFOS on different sediments and adsorption mechanisms of multiple pollutant interactions. Moreover, the characterization methods of zeta potential, nitrogen (N2) adsorption–desorption, and scanning electron microscopy (SEM) analysis, as well as Fourier transform infrared (FT-IR) spectroscopy, explained effects of the sediment components and TiO2 NPs on PFOS adsorption properties in view of physicochemical theories.

Results and discussion

The adsorption isotherms of PFOS on six tested sediments were all nonlinear (Freundlich model, R2 = 0.992~1.000). The Freundlich sorption affinities (KF) of PFOS on S (original sediments), S1 (sediment organic matter (SOM)-removed S), and S2 (ferric oxides (DCB Fe)-removed S1) were 0.232, 0.179, and 0.120, respectively. Both SOM and DCB Fe influenced the physicochemical properties of the sediments, e.g., zeta potential, specific surface area, and permanent negative charge. The addition of TiO2 NPs increased the KF of PFOS for S, S1, and S2 by approximately 9.9%, 14.5%, and 26.7%, respectively, by increasing the zeta potential and specific surface area (SBET, Sext, and Smicro) and by changing the water and oil properties of the three sediments. However, the addition of TiO2 NPs decreased the linearity of the sorption isotherm (1/n). FT-IR spectroscopy showed that hydrophobicity, ion exchange, surface complexation, and hydrogen bonding interactions (non-fingerprint region) could all play a role in PFOS sorption onto tested sediments. However, the hypothesis of hydrogen bonding to promote PFOS adsorption on sediment layer silicates (fingerprint region) should be studied further.

Conclusions

The content of both SOM and DCB Fe affected the physicochemical properties of sediment. Both SOM and DCB Fe showed a positive relationship with sorption of PFOS on sediment. The addition of TiO2 NPs increased PFOS sorption by altering the sediment surface properties. Hydrophobic interactions certainly impelled and ligand and ion exchange and hydrogen bonding (non-fingerprint region) could promote PFOS sorption on the sediments.

  相似文献   

8.
Purpose

Suspended matter (SM) in streams is usually considered of minor importance in Danish environmental management. However, SM has some ecological effects as it may (1) clog fish spawning grounds and (2) act as an important agent for transport and exposure of biota to chemical substances, such as phosphorus and toxic inorganic (e.g. heavy metals) and organic (e.g. pesticides) substances.

Materials and methods

A large national data set of >?100,000 water samples analysed for SM and loss on ignition was investigated for spatial concentration patterns, sediment yields and temporal trends. Moreover, the importance of SM as a transport agent for phosphorus and heavy metals in streams was investigated through a correlation analysis.

Results and discussion

The mean suspended matter concentration (SMC) (including organic matter) amounted to 12 mg l?1, with an organic content of 4.9 mg l?1 (41%). A clear difference in SMC temporal trends over the sampling period was found between geographical regions. Sediment yields were calculated for all major catchments revealing low sediment yields (1–15 t km?2 year?1) compared to neighbouring countries and showed clear geographical patterns. Statistically significant relationships were established between SMCs, suspended sediment concentrations (SSCs) (excluding organic matter) and organic matter concentrations (OMCs) and particulate phosphorus (PP) concentrations, and again spatial patterns appeared. However, it was clearly shown that SMC/SSC/OMC could not be used as a robust, nationwide, indicator for PP concentrations. Analyses of the relationship between SMC and particle-bound heavy metal concentrations generally revealed weak correlations except for Pb and Ni (median R2?>?0.3).

Conclusions

Relatively low SM concentrations and sediment yields were found. SM is, in some geographical regions, an important transport agent for PP. Clear geographical patterns occurred in the relationships between SMC/SSC/OMC and both river water discharge and PP, as well as for sediment yields and for temporal trends in SMC.

  相似文献   

9.
Purpose

The pollution of marine sediments by heavy metals is still a major concern, especially in zones affected by industry or mariculture. Toxicity of sediment heavy metal contents may be assessed using sequential extraction (SE) procedures, minding inherent constraints of such approaches. In this study, we investigated heavy metal speciation and toxicity in anoxic marine sediments in Zhelin Bay, a mariculture bay in Southern China, using an SE and acid volatile sulfur-simultaneously extracted metals (AVS-SEM) approach.

Materials and methods

Speciation of Cd, Cu, Ni, Pb, and Zn were studied by a modified SE of five fractions, adapted to separate organic and sulfidic metal fractions in anoxic sediments: F1 weak acid soluble (readily available), F2 reducible fraction, F3 organic matter-bound fraction, F4 sulfide-bound fraction, and F5 residually bound fraction. Toxicity predictions based on the sum of non-residual (NR) metal fractions from sequential extraction were compared to predictions based on AVS-SEM.

Results and discussion

Results showed that Cd, Ni, and Pb predominantly occurred in the weak acid soluble fraction (F1), residual fraction (F5), and sulfide-bound fraction (F4), respectively; Cu and Zn were mainly obtained in F4 and F5. Based on the distribution of indicator elements for metal fractions, the SEM from AVS extraction included different yields of non-residual and residual fractions besides the sulfidic fraction. Estimates for potential heavy metal toxicity based on NR metals of the SE procedure were thus based on a better-defined speciation compared to the simplistic approach of the AVS-SEM method.

Conclusions

Based on the contents of NR metals and normalizing them by organic matter content, toxic effects are not expected for any of the sampling sites, irrespective of the presence or absence of mariculture. Using Pearson correlation analysis to identify predominant fractions influencing toxicity, we conclude that toxicity of heavy metals in anoxic sediments can be well predicted by their non-residual heavy metal contents.

  相似文献   

10.
Purpose

Run-off from industrial and agricultural activities has continued to be a major source of organohalogenated contaminants (OHCs) in the environment. Swartkops (SWE) and Sundays Estuaries (SDE) located in the city of Port Elizabeth, South Africa, were selected for this study because of their proximity to industrial and agricultural activities.

Materials and methods

In this study, we determined the levels, seasonal occurrence as well as the ecological risk monitoring of 18 organochlorine pesticides (OCPs), 17 polychlorinated biphenyls (PCBs) and six polybrominated diphenyl ethers (PBDEs) in the sediments of SWE and SDE using a gas chromatograph coupled with a micro electron capture detector.

Results and discussion

HCHs, BDE-17, tri- and tetra-CBs dominated the OHC profiles in sediments of both estuaries. The respective concentration ranges of OCPs, PCBs and PBDEs in SDE sediment were 0.06–0.93 μg g?1 dw, 0.08–1.71 μg g?1 dw and 0.08–32.41 ng g?1 dw while that of SWE in that order were 0.10–4.70 μg g?1 dw, 0.07–3.80 μg g?1 dw and 0.11–130.21 ng g?1 dw. The high concentrations of OHCs in SWE may be due to the high usage of its surrounding area for industrial activities. The concentrations of all OHCs with exception of PCBs were higher in spring for both estuaries probably due to the heavy rain experienced during spring season. Cluster analysis and spatial distribution of OHCs indicated that samples around the Motherwell Canal in the SWE were more polluted. Total organic carbon (TOC) was strongly correlated with most OHCs in SWE revealing that TOC controls the sorption of OHCs in this estuary. Risk analysis showed that most sampling points had PCBs and HCHs concentration greater than their respective sediment quality guideline (SQGL) indicating a high risk to benthic species in SDE and SWE.

Conclusions

Samples collected from the SWE were more polluted than those collected from the SDE probably due to the extensive use of the catchment of SWE for industrial activities. In comparison with SQGL, most sampling points had PCBs and HCHs concentrations greater than their respective ERL and TEL values, indicating the potential risk to biota in SDE and SWE. Thus, an urgent need to manage and mitigate the OHCs concentrations in these estuaries is recommended.

  相似文献   

11.
Zhang  Min  Li  Cai  Ma  Xin  Yang  Liyuan  Ding  Shiming 《Journal of Soils and Sediments》2021,21(10):3466-3478
Purpose

Mercury (Hg) and methylmercury (MeHg) are easily released from sediments to overlying water and cause secondary contamination. In general, Hg concentrations are low in natural aquatic environments, but Hg toxicity is high. Therefore, it is important to assess the mobility and release risks of Hg and MeHg from surface sediment using in situ high-resolution sampling techniques.

Methods

The profile distribution of Hg and MeHg was obtained for samples from Weishan sub-lake (WL) and Dushan sub-lake (DL) of Nansi Lake, China, by high-resolution dialysis (HR-Peeper probes) and the diffusive gradients in thin films (DGT) technique at mm-resolution. Furthermore, Hg mobility and release risks in sediments were evaluated by combining BCR (European Community Reference Bureau) extraction and DGT-measured data.

Results

The soluble concentrations of Hg in surface sediments in WL and DL were 21.70 and 19.38 ng L?1 and the DGT-labile concentration of Hg were 8.21 and 10.30 ng L?1, respectively. The soluble and labile Hg and MeHg concentrations were higher in the surface sediments (from??40 to 0 mm) than in deep sediments. The distribution of the labile-Hg was controlled by the ferrimanganic (hydr)oxide and total nitrogen rather than organic carbon content. The non-residual components accounted for a greater proportion of the interface, which further confirmed Hg was more active on the surface layer of the sediment. The resupply ability indicated that the release of Hg from sediment was insufficient to maintain the initial concentration in the porewater before consumption. The MeHg fluxes in WL (6.18 ng m?2 day?1) were twice those in DL (2.89 ng m?2 day?1), and the risk assessment code revealed a higher risk in the surface layer (25.21–61.88%) than in the deep layer (0–27.75%).

Conclusions

Dissolved Hg and MeHg accumulated on the surface of the sediments and were more active than in the deeper sediments. The DGT-labile state can be used for a better understanding of the bioavailability and mobility of Hg. The diffusion direction of Hg and MeHg was from sediment to the overlying water. The release risks of Hg and MeHg from surface sediments (especially in WL) were found to be worthy of concern.

  相似文献   

12.
Purpose

Fluvial sediments can act as archives for lipophilic pollutants. However, their distribution within the highly dynamic regime of the river corridor is scarcely investigated. Herein, a novel approach combining geochemical investigations of sediment bodies in the river corridor of the Wurm River (catchment < 400 km2) and aerial photograph evaluation provide information about the history of river course change and the distribution of pollution by selected persistent organic compounds (POPs) and selected heavy metals.

Materials and methods

The study is based on nine sediment cores and a total number of 45 subsamples. The sediment samples were analyzed for trace element inventory (X-ray fluorescence), grain size composition (laser diffraction particle size analyzer), and organic compounds (chromatography-mass spectrometry). On the basis of quantitative data of persistent organic substances as well as three heavy metals (Cu, Pb, and Zn) and morphological changes from 1953 until 2016 of the area of investigation provided by eight aerial photographs, analyzed sediments were assigned to different decades, and lateral migration rates as well as deposition rates were calculated.

Results and discussion

High morphodynamics within the river corridor limits the explanatory power of single approaches (for example, geochronology and radiometric dating). However, a combination enables further insight into floodplains such as the pollution history, spatial pollutant dispersal, hotspot localization, meander migration rates (0.2–0.5 m year?1), sedimentation rates (0.5–5.2 cm year?1) and estimation of hotspot remobilization. Quantitative data for the analyzed heavy metals (Cu, Pb, and Zn) show a decreasing trend for locations with younger sediment bodies, whereas quantitative data for the synthetic organic pollutants reflect the corresponding history of emissions with increasing concentrations until a climax followed by decreasing concentrations due to restrictions regarding their application.

Conclusions

Results reveal hotspot areas for POPs and their degree of remobilization. This study demonstrates that by knowing the history of emissions of a lipophilic substance, potential hotspots can be localized solely based on a sufficient number of aerial photographs documenting the river channel migration and sediment body formation in the corresponding period of time.

  相似文献   

13.

Purpose

Marine mangrove sediments in the Manche-à-Eau lagoon (Guadeloupe, Caribbean Sea) harbor locally extensive, white microbial mats. These mats cover the surface of reduced sediments near the roots of red mangrove trees, Rhizophora mangle, and are mainly composed of sulfur-oxidizing bacteria belonging to the Beggiatoaceae family, with some filamentous cyanobacteria. The goal of this study was to investigate the possible influence of sediment characteristics on the presence of these microbial mats.

Materials and methods

Four push cores were collected in April 2013, two from zones with microbial mats and two from zones without mats. Sediment characteristics (grain-size distribution, mineralogy, total organic carbon (TOC) and total nitrogen (TN) contents, atomic TOC/TN ratios, and organic matter (OM) δ13C values) were compared for all four cores.

Results and discussion

Significant differences were observed between sediments below microbial mats and those without mats. Sediments with microbial mats contained greater amounts of clay, and higher TOC, TN, and TOC/TN ratios, with lower total carbonate content and δ13C values. The higher clay content most likely results from lower fluid flow velocity near to mangrove roots, while higher TOC/TN ratios and lower δ13C values indicate higher inputs of OM from mangrove trees. These results are consistent with the fact that microbial mats were observed near the roots of mangrove trees, which trap OM from terrestrial vegetation and fine sediments.

Conclusions

The grain-size distribution of sediment particles, the total carbonate content, and the δ13C values are the main parameters discriminating between zones with microbial mats and those without mats. Variations in total carbonate content, which is mainly of biogenic origin, result from conditions that are more favorable for benthic organisms in zones without microbial mats. Variations of the TOC/TN ratios are controlled by the presence of a non-negligible amount of inorganic nitrogen bound to surface clay mineral particles and/or by microbial processes.
  相似文献   

14.
Background  Adult sea lampreys, a delicate food species catch from Baltic Sea rivers, migrate from sea and spawn to sediments of still river water areas. Their larva live there four years before return to sea. The few published studies of toxicity of the sediment contaminants to the lamprey larva, however, do not include chlorinated persistent organic pollutants (POPs), thus far. Kymijoki River in southeast Finland is known for high polychlorinated POP contamination which has been measured to accumulate in several bottom fauna and fish species. Goal of the Study  To obtain the first screening results of the bioaccumulation power of POPs from sediment to lamprey larva during their life stage in the contaminated sediment. The accumulated dioxin-type of toxic load (TEQ) was also studied as a possible human hazard. Methods  Surface sediment and lamprey larva were sampled from four localities of the lower Kymijoki River and analysed for MeO-PBDEs, PBDEs, PCBs, PCDDs, PCDEs, PCDFs, and PCDTs by solvent extraction, column clean up and GC/MS procedures. The larva were sorted to seven composites according to locality and (for one place) size of the specimens (to classes of small, medium and large individuals). From the analysis results, TEQ values for composites and the bioaccumulation factors from dry sediment to fresh larva (BSAF), from dry sediment to larva lipid (BSAFlw) and from sediment organic carbon to larva lipid (BSAFoc) were calculated. Results and Discussion  TEQ load was highest (about 500 pg g-1 ww) in large larva composite due to high bioaccumulation of PCB 118, 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin (D66) and toxic penta- to octa-CDFs. A high positive significant correlation was found between weight and length of larva. Instead, lipid content had no significant correlations with weight and length of larva. Larva lipid or sediment organic carbon did not correlate significantly with any of the calculated BSAF, BSAFlw and BSAFoc values. Therefore, statistical comparisons between substance properties and bioaccumulation rate were possible for BSAF alone. These comparisons indicated a slightly significant increase of PCBs, but very significant decrease of PCDF bioaccumulation from sediment to larva by increase of the number of chlorine atoms (NCI) in the molecule. This property of highly chlorinated PCDFs indicates, as found earlier for local fish, a kinetic control of bioaccumulation by slow release from sediment back to water and the food chain. Recommendation and Outlook  The results obtained point out that bioaccumulation of POPs in lamprey larva is a possible source of toxic hazard to human food consumption and to development of lamprey species. Therefore, both larva and adult lampreys should be studied further for significance of their POP contamination compared with other experiences on impact of POPs to human and wildlife.  相似文献   

15.
Purpose

The microbial turnover of sediment organic matter (OM) in ports and waterways impacts water quality, sonic depth finding and presumably also rheological properties as well as greenhouse gas emissions, especially if organic carbon is released as methane. As a consequence, sediment management practices as a whole are affected. This study aimed to discern spatial OM degradability patterns in the Port of Hamburg and investigated correlations with standard analytical properties as a basis for future predictive modelling.

Materials and methods

Sediments in the Port of Hamburg were repeatedly sampled at nine locations along an east-west transect using a 1-m corer. In a stratified sampling approach, layers of suspended particulate matter (SPM), fluid mud (FM), pre-consolidated sediment (PS) and consolidated sediment (CS) were identified and individually analysed for long-term aerobic and anaerobic degradation of organic matter, DNA concentration, stable carbon isotope signature, density fractions and standard solids and pore water properties.

Results and discussion

The investigation area was characterised by a distinct gradient with a 10-fold higher OM degradability in upstream areas and lower degradability in downstream areas. Concomitantly, upstream locations showed higher DNA concentrations and more negative δ13C values. The share of bulk sediment in the heavy density fraction as well as the proportion and absolute amount of organic carbon were significantly larger at downstream locations. A depth and hence age-related gradient was found at individual locations, showing higher degradability of the upper, younger material, concomitant with higher DNA concentration, and lower OM turnover in the deeper, older and more consolidated material. Deeper layers were also characterised by higher concentrations of pore water ammonium, indicative of anaerobic nitrogen mineralisation.

Conclusions

Organic matter lability is inversely linked to its stabilisation in organo-mineral complexes. The observed degradability gradient is likely due to the different OM quality in relation to its origin. Downstream OM enters the system with the tidal flood current from the direction of the North Sea whereas upstream locations receive OM originating from the catchment, containing more autochthonous, plankton-derived and more easily degradable components. At individual sampling points, depth-related degradability gradients reflect an age gradient, with easily degradable material in top layers and increasing stabilisation of OM in organo-mineral compounds with depth.

  相似文献   

16.
Purpose

The purpose of this work is to study the dynamics between the matrix of a contaminated marine sediment, its contaminants and various desorbing solutions by means of equilibrium tests, sedimentation trials and zeta potential, with the focus on assessing optimum enhancing solutions for decontamination purposes.

Materials and methods

The sediment samples were analysed to determine their physico-chemical characteristics: particle size distribution, solids concentration, total organic carbon (TOC), content of heavy metals, organic contaminants, mineralogical phases, zeta potential and buffer capacity. Twelve extracting solutions of different nature were used for equilibrium tests, in which the dynamic behaviour of the sediment was evaluated. Elemental analysis was carried out for the sediment samples and the solutions before and after the tests.

Results and discussion

The sediment was mainly composed of clay and lime, with a high content of iron, which has a strong influence on sorption-desorption processes. The sediment had a considerable buffer capacity at low and high pH values. The desorption of the metals was not proportional to pH. The highest decrease in the concentration of metals from the sediment was obtained with 0.2 M ethylenediaminetetra-acetic acid (EDTA) and 1 M nitric acid, while the lowest degree of metal extraction occurred in pure water and potassium iodide (KI).

Conclusions

The most important parameters for contaminant release were complexation ability of the solution for the sediment components and pH of the solution. A promising design for the remediation treatment for the investigated sediment includes complexation and strong acid agents.

  相似文献   

17.
Purpose

In contaminated streams, understanding the role of streambank and streambed source contributions is essential to developing robust remedial solutions. However, identifying relationships can be difficult because of the lack of identifying signatures in source and receptor pools. East Fork Poplar Creek (EFPC) in Oak Ridge, TN, USA received historical industrial releases of mercury that contaminated streambank soils and sediments. Here, we determined relationships between the contaminated streambank soils and sand-sized streambed sediments.

Materials and methods

Field surveys revealed the spatial trends of the concentrations of inorganic total mercury (Hg) and methyl mercury (MeHg), Hg lability as inferred by sequential extraction, particle size distribution, and total organic carbon. Statistical tests were applied to determine relationships between streambank soil and streambed sediment properties.

Results and discussion

Concentrations of Hg in streambank soils in the upper reaches averaged 206 mg kg?1 (all as dry weight) (n?=?457), and 13 mg kg?1 in lower reaches (n?=?321), while sand-sized streambed sediments were approximately 16 mg kg?1 (n?=?57). Two areas of much higher Hg and MeHg concentrations in streambank soils were identified and related to localized higher Hg concentrations in the streambed sediments; however, most of the streambank soils have similar Hg concentrations to the streambed sediments. The molar ratio of Hg to organic carbon, correlation between MeHg and Hg, and particle size distributions suggested similarity between the streambank soils and the fine sand-sized fraction (125–250 μm) collected from the streambed sediments. Mercury in the fine sand-sized streambed sediments, however, was more labile than Hg in the streambank soils, suggesting an in-stream environment that altered the geochemistry of sediment-bound Hg.

Conclusions

This study revealed major source areas of Hg in streambank soils, identified possible depositional locations in streambed sediments, and highlighted potential differences in the stability of Hg bound to streambank soils and sediments. This work will guide future remedial decision making in EFPC and will aid other researchers in identifying source–sink linkages in contaminated fluvial systems.

  相似文献   

18.
太湖流域农村黑臭河流表层沉积物营养盐的污染特征   总被引:1,自引:0,他引:1  
[目的]分析农村黑臭河道沉积物中营养盐的空间分布情况和形态构成特征并给予分析与评价,为认识河流污染现状、黑臭河流治理和太湖富营养化防治提供基础数据。[方法]以江苏省宜兴市周铁镇掌下浜(北段)为例,沿河流从上游到入河河口共采集了13个沉积物表层样,分析其总氮(TN)、总磷(TP)、氨氮(NH_4~+-N)、硝氮(NO_3~--N)、有机氮(Org-N)、有机碳(TOC)的空间分布特征,并对表层沉积物中碳(C)、氮(N)、磷(P)的组分分布进行耦合分析以及污染状况评价。[结果]Org-N是河流表层沉积物中氮素的主要成分,平均值为2 193.69mg/kg,占TN质量分数的90.86%;各采样点处TN,Org-N,TP和TOC含量从上游到下游总体呈现波动中上升趋势,最高值分别是最低值的2.98,3.46,6.29和1.59倍;NH_4~+-N含量的变化趋势是缓慢上升而后急速下降,而NO_3~--N含量呈现出缓慢下降而后急速上升;各采样点C/N均值为12.07,有机物以外源输入为主,TOC与TN含量具有极显著正相关(p0.01,n=13);C/P均值为2.04,TOC与TP具有显著正相关(p0.05,n=13);N/P均值为2.04,TN与TP具有极显著正相关(p0.01,n=13),N,P污染具有同源性。[结论]太湖流域农村黑臭河流沉积物环境状况属有机污染,其中氮污染程度属有机氮污染状态。  相似文献   

19.
In this paper, the contamination degree of the Rybnik Reservoir with cadmium, copper and nickel was analyzed. Quality of the water from the reservoir was determined by drawing comparisons between the metal content in the water and both the officially permitted levels (contamination factor) and levels of metals occurring in the water of non-contaminated areas (enrichment factor). Contamination of bottom sediment with chosen metals was analyzed with reference to the metal content in mudstone (geoaccumulation index, enrichment factor, contamination factor). Trends towards changing the metal content in the bottom sediment was analyzed by determining the enrichment factor of the surface layer of the bottom sediments in relation to a deeper layer. Enrichment of the bottom sediments with metals coming from the water was also determined.  相似文献   

20.
基于渭河陕西段及其支流河道16个采样点中沉积物的总氮(TN)、总磷(TP)和总有机碳(TOC)含量,运用C/N和N/P比值法研究沉积物中营养元素的可能来源,并采用有机污染指数法评价沉积物污染状况。结果表明,沉积物中TN含量为0.069~3.839g/kg,66.1%的样品含量低于平均值0.639g/kg;TP含量为0.453~1.841g/kg,62.7%的样品含量低于平均值0.713g/kg;TOC含量为0.772~25.221g/kg,62.3%的样品含量低于平均值5.609g/kg。渭河陕西段沉积物中有机质主要受内源影响,以藻类和浮游动植物为主;沉积物中磷的来源主要为外源输入。2014—2016年所有采样点的N/P值均小于Redfield比,这可能与沉积物中碳氮磷的生物地球化学过程有关。2016年11月,在局部河道如林家村、卧龙寺桥、常兴桥、兴平、草滩、清姜河入渭处可能受到外源有机质的影响。2015年内有机指数与有机氮指数变化一致,即汛前<汛中<汛后。在2014—2016年,渭河陕西段沉积物中有机氮污染和有机污染整体上得到有效控制,但在局部河道如咸阳铁桥、草滩、黑河入渭和灞河入渭处等距离城市较近区域存在污染反弹可能,需引起注意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号