首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
A rhizobox experiment was conducted to investigate the effects of phosphorus (P) sources on the rhizosphere soil characteristics of two wheat genotypes Xiaoyan54 (P-efficient) and Jing411 (P-inefficient), which were colonized with an arbuscular mycorrhizal fungus and grown in Cumulic Haplustoll. The four P sources included a control (no added P), OP [organic P: sodium (Na)-phytate], IP [inorganic P: monopotassium phosphate (KH2PO4)], and OPIP (Na-phytate plus KH2PO4). The results showed that when no exogenous P was added the shoot biomass of Xiaoyan54 was 28% significantly higher than Jing 411. The acid phosphatase activity (APA) in the rhizosphere soil was significantly depressed when inorganic P was added; the APA for Xiaoyan54 was higher than that of Jing411 in most of the layers regardless of the P source. Inorganic and organic P fertilizer conditions did not significantly impact the soil pH relative to the control, and the pH did not significantly differ between the two genotypes. In conclusion, when no exogenous P was added, shoot biomass of Xiaoyan54 was greater than Jing411. This increase was promoted by greater soil APA but not soil acidification. The rhizosphere soil pH was not altered across different wheat genotypes or P sources, but APA was increased in the soil of control and OP-treated plants compared with IP- and OPIP-treated plants. The APA of Xiaoyan54 was higher than Jing411 for all of the P sources. The response mechanism of rhizosphere soil acidification is different from acid phosphatase exudation in plants receiving different P sources under arbuscular mycorrhizal fungus inoculation.  相似文献   

3.
Abstract

White Rose potato plants (Solanum tuberosum, L.) were grown outdoors, without tuber formation, in a modified Hoagland's nutrient solution with 9 treatments of KH2PO4 ranging from 0 to 4.0 mmoles per liter. Deficiency symptoms ranged from very severe to none at harvest after 27 days of growth. Growth of the potato plants increased with increased P supply and was associated with an increased P content of the plant tissues. The critical H2PO4‐P concentration at a 10% reduction of top growth, based on a second leaf analysis, was about 1,000 ppm for the petiole and terminal bladelet and about 1,200 ppm for the lateral bladelet, dry weight basis.

Phosphorus nutrition had only a slight effect on the K, Na, Mg and NO3‐N concentrations of the root tissues but Ca increased as phosphate increased which suggests a calcium phosphate precipitation. Phosphorus stress lowered the K, Na, Ca, Mg and NO3‐N concentrations of the petiole tissues of the recently matured leaf which suggests that P increases salt accumulation. Phosphorus nutrition had only a slight effect on the concentrations of K, Na, Mg and Ca of the blade tissues of the recently matured leaf but NO3‐N increased greatly with P supply.  相似文献   

4.
Abstract

Bell pepper (Capsicum annuum cv. Urfa Isoto) and cucumber (Cucumis sativus cv. Beith Alpha F1) were grown in pots containing field soil to investigate the effects of supplementary potassium phosphate applied to the root zone of salt‐stressed plants. Treatments were (1) control: soil alone (C); (2) salt treatment: C plus 3.5 g NaCl kg?1 soil (C + S); and (3) supplementary potassium phosphate: C + S plus supplementary 136 or 272 mg KH2PO4 kg?1 soil (C + S + KP). Plants grown in saline treatment produced less dry matter, fruit yield, and chlorophyll than those in the control. Supplementary 136 or 272 mg KH2PO4 kg?1 soil resulted in increases in dry matter, fruit yield, and chlorophyll concentrations compared to salt‐stressed (C + S) treatment. Membrane permeability in leaf cells (as assessed by electrolyte leakage from leaves) was impaired by NaCl application. Supplementary KH2PO4 reduced electrolyte leakage especially at the higher rate. Sodium (Na) concentration in plant tissues increased in leaves and roots in the NaCl treatment. Concentrations of potassium (K) and Phosphorus (P) in leaves were lowered in salt treatment and almost fully restored by supplementary KH2PO4 at 272 mg kg?1 soil. These results clearly show that supplementary KH2PO4 can partly mitigate the adverse effects of high salinity on both fruit yield and whole plant biomass in pepper and cucumber plants.  相似文献   

5.
Some formulations of phosphite (Phi) have been recommended as a source of P nutrition for several crops including citrus even though there are known negative effects of Phi on plant growth. Changes in plant growth and metabolism after Phi application should be reflected in altered nutrient‐use efficiency and leaf photosynthesis. We carried out a greenhouse study using seedlings of two contrasting citrus (Citrus spp.) rootstocks, Carrizo citrange (CC) and Smooth Flat Seville (SFS), growing in either aerated hydroponic culture or sterilized native sandy soil. Plants were subjected to four P treatments: No P (control, P0); 0.5 mM Pi (PO4‐P); 0.25 mM Pi + 0.25 mM Phi (Pi + Phi), or 0.5 mM Phi (Phi). Photosynthetic characteristics, concentrations of total P (Pt) and soluble PO4‐P or PO3‐P in leaves and roots, and plant growth were evaluated after 80–83 d P treatments. Overall, the Pi plants had the highest Pt (total P) and total plant dry weight while the P0 plants had the lowest Pt but highest total root length and root‐to‐shoot ratio. Leaf chlorophyll (SPAD readings) and net assimilation of CO2 (ACO2) of the P0 and Phi plants were similarly lower than those of Pi and Pi + Phi plants. Growth responses of the Pi + Phi treatment were intermediate between the Pi and Phi treatments. Although Phi increased Pt and soluble‐PO4‐P concentration in leaves and roots above the P0 treatment, this did not translate into increased plant growth. In fact, the Phi treatment had some phytotoxic symptoms, impaired P‐ and N‐utilization efficiency for biomass production as well as lower nutrient‐use efficiency in the photosynthetic process. Thus, these two rootstocks could not use Phi as a nutritional source of P.  相似文献   

6.
A greenhouse experiment was conducted to examine whether foliarly applied potassium + phosphorus (K + P) in the form of monopotassium phosphate (KH2PO4) could mitigate the adverse effects of salt stress on sunflower plants. There were two levels of root-applied salt [0 and 150 mM of sodium chloride (NaCl)], and varying levels of KH2PO4 [(NS (no spray), WS (spray of water), 5 + 4, 10 + 8, 15 + 12, and 20 + 16 mg g?1 K + P, pH 6.5] applied foliarly to 18-day old non-stressed and salt stressed sunflower plants. Salt stress adversely affected the growth, yield, photosynthetic capacity, and accumulation of mineral nutrients in the sunflower plants. However, varying levels of foliar applied KH2PO4 proved to be effective in improving growth and yield of sunflower under salt stress. The KH2PO4 induced growth in sunflower was found to be associated with enhanced photosynthetic capacity, water use efficiency and relative water contents.  相似文献   

7.

Purpose

The aim of this study was to evaluate the role of phosphine in the mobilization of phosphorus in the rhizosphere soil of rice seedlings and to determine the relative efficiency of phosphine in plant P acquisition.

Materials and methods

An indoor simulation experiment was conducted and the matrix-bound phosphine (MBP), phosphorus fractions, and phosphatase activity in the rhizosphere soil samples from rice cultivation, biomass, the plant P, and the root system activity were measured under different phosphine concentrations (0, 1.4, 4.2, and 7.0 mg m?3) for a period of 30 days.

Results and discussion

The results indicated that phosphine treatments enhanced MBP, inorganic P (resin–Pi, NaHCO3–Pi, and NaOH–Pi), and phosphatase activity, as well as the root system activity, and the content of P in the rice seedlings was stimulated with increasing phosphine concentrations. However, organic P (NaHCO3–Po and NaOH–Po) accumulation occurred in the rhizosphere of the rice seedlings. In addition, the content of organic P in the soil samples decreased with increased phosphine concentration.

Conclusions

Therefore, relatively high concentrations of phosphine in paddy field could have a positive impact on the effectiveness of phosphorus in rice plants via influencing the rhizosphere properties.
  相似文献   

8.
The geochemical reactivity of single superphosphate (SSP), triple superphosphate (TSP), phosphate rock (PR), partially acidulated phosphate rock (PAPR) and potassium dihydrogen phosphate (KH2PO4) was evaluated in an incubation trial. The soil was Anthrosols, Ap horizon (Sandy loam). Solubility equilibrium of phosphates was calculated by phosphate (PPot = logH2PO4 – pH) and calcium (CaPot = logCa + 2pH) potentials. Next, activity ratio (AR°) and Woodruff potential (ΔF) were considered for estimating phosphate dynamics in the soil. Data showed that phosphate potentials stressed on significant solubility process and varied accordingly to the rates of the fertilizers: ?5.50, ?4.81, ?4.47 and ?4.09 for 0, 50, 100 and 150 kg P ha?1. The values of the Woodruff potential (ΔF) varied widely from ?1929 to 8573 cal mol?1, i.e., from marginal supplying power in the case of the control treatment to very high supplying power for the TSP (Triple superphosphate). These findings are of practical value for the following reasons: TSP and KH2PO4 are recommended for quick and high P supply to plants; SSP and PAPR for moderate supply and finally PR for slow and low supply. Phosphorus efficiency should be treated with priority particularly for areas with intensive cropping and susceptibility to runoffs.  相似文献   

9.
Aluminum (Al) has many detrimental effects on plant growth, and shoots and roots are normally affected differently. A study was conducted to determine differences among sorghum [Sorghum bicolor (L.) Moench] genotypes with broad genetic backgrounds for growth traits of plants grown at 0,200,400,600, and 800 μM Al in nutrient solutions (pH 4.0). Genotypes were categorized into “Al‐sensitive”, “intermediate Al‐tolerant”, “Al‐tolerant”, and SC 283 (an Al‐tolerant standard). As Al increased, shoot and root dry matter (DM), net main axis root length (NMARL), and total root length (TRL) became lower than controls (0 Al). Aluminum toxicity and/or nutrient deficiency symptoms become more severe, and shoot to root DM ratios and specific RL (TRL/root DM) values also changed as Al in solution increased. Root DM had greater changes among genotypes than shoot DM, and NMARL at 400 μM Al, and TRL at 200 μM Al had greater differences among genotypes than root DM, ratings for toxicity and/or deficiency symptoms, and other DM and RL traits. The wide differences among genotypes for NMARL and TRL could be used more effectively to evaluate sorghum genotypes for tolerance to Al toxicity than the other growth traits.  相似文献   

10.
Potassium phosphate (KH2PO4) is applied commonly in dilute foliar sprays to wheat (Triticum aestivum L.) in China. Yield responses to foliar P sources have also been reported for several crop species in other countries. Experiments were conducted to determine efficacy of four P sources and four rates of KH2PO4 as foliar treatments on wheat under field conditions and KH2PO4 under two controlled temperature regimes. Grain yields were increased most by KH2PO4 followed by β‐glycerophosphate and tripolyphosphate; only phytic acid was ineffective. All rates of 1 to 4 kg ha‐1 KH2PO4 increased grain yields. Foliar KH2PO4 applications increased grain weight early under low controlled temperatures, but did not affect final grain weight under either temperature regime. Beneficial effects of foliar P treatments were associated with increased plant P content, which may have increased cell sugar content and protected membranes. Although preliminary results are favorable, additional research is needed to determine optimum methods and conditions for treating wheat with foliar P sources.  相似文献   

11.
A pot experiment was conducted to study the effect of phosphorus (P) nutrition on mungbean and urdbean genotypes and to determine the critical concentration of tissue phosphorus at different growth stages for plant diagonostic and P management. There were eight treatments consisting of different levels of P added in the form of monopotassium phosphate (KH2PO4). Destructive plant samples were taken to determine tissue P concentration and plant dry matter at different growth stages. Plant tissue P concentration was found highly correlated with dry matter production in mungbean (r2 = 0.84–0.98) and urdbean (r2 = 0.98–0.998) at corresponding sampling period throughout the growth stages. Considerable variation was observed in critical P concentration with genotypes and leaf position in mungbean and urdbean. Critical P concentration varied between 0.45–0.49 in mungbean and 0.45 to 0.57 in urdbean at early stages of crop growth, and these values declined sharply with advancement in crop growth.  相似文献   

12.
Narrow-leafed lupin (Lupinus angustifolius L.) is widely planted in infertile acidic soils where phosphorus (P) deficiency is one of the major limiting factors for plant growth. A hydroponic experiment was conducted to examine the morphological and physiological responses of roots of narrow-leafed lupin in response to altered P supply at 0, 1, 10, 25 or 75 μ M P as monopotassium phosphate (KH2PO4). Low P (P0 and P1) significantly decreased the plant biomass, but the supply of 10 μ M P was sufficient to produce similar plant biomass as the maximal P supply (P75), indicating an efficient P acquisition by narrow-leafed lupin. Phosphorus deficiency did not enhance rates of carboxylate exudation and proton release by plant roots, indicating that carboxylate exudation and proton release are not the mechanisms for efficient P acquisition. In contrast, low P supply evidently modified the root morphology by increasing the primary root elongation, and developing a large number of cluster-like first-order lateral roots with dense root hairs, thus allowing efficient P acquisition by narrow-leafed lupin under low P supply.  相似文献   

13.
The use of phosphorus (P) to reduce lead (Pb)bioavailability is being proposed as an alternative to excavationand disposal as a remedial technology for Pb-contaminated soilsin residential areas. The objective of this study was todetermine the influence of P sources and rates andCaCO3additions on the bioavailabilities of Pb, cadmium (Cd), and zinc(Zn) in a contaminated soil material using plants, a sequentialextraction procedure, and ion activities in equilibrium solutionas indicators. A contaminated soil containing 370 mg kg-1 Cd, 2800 mg kg-1 Pb and 29100 mg kg-1 Zn was amended ina factorial arrangement of CaCO3 (0 or 2000 mg kg-1) and P as rock phosphate or KH2PO4 at 0:1, 2:1 or 4:1P:Pb mole ratios. A pot study was conducted using sorghum-sudangrass (Sorghum bicolor L. Moench). The addition of P did not influence Pb concentrations in plant tissue and had little effect on Cd concentrations. An interaction between P source and level of P addition was found for Zn concentrations in plant tissue; concentrations increased with increasing amounts of P from KH2PO4 anddecreased with increasing amounts of P from rock phosphate. Sequential extraction results suggested a much greater reduction in Pb bioavailability from treatment withKH2PO4 than with rock phosphate and that P influencedthe fractionations of Cd and Zn. Activities of Cd2+,Pb2+, and Zn2+ in equilibrium solutions generally weredecreased by rock phosphate and increased by KH2PO4. Saturation indices suggested the addition ofKH2PO4shifted the soil equilibrium from octavite to hydroxypyromorphite, whereas solid-phase control of Cd2+ andZn2+ was not influenced by soil amendments. A soluble Psource was more effective in reducing Pb bioavailability thanrock phosphate but had variable effects on Cd and Znbioavailabilities.  相似文献   

14.
磷是植物生长和发育中最重要的必须元素之一。尽管土壤中磷资源很丰富,但大部分磷是以植物不能吸收利用的固定态和有机态存在,特别是以酸性土壤为主的南方稻田,水稻缺磷现象非常严重。理解和掌握水稻对低磷的适应机制有助于利用分子手段培育磷高效利用水稻品种。为阐明蔗糖提高水稻耐低磷的机制,本研究对水稻幼苗进行不同磷、糖处理,分析水稻幼苗在不同磷糖配比培养基中的根系结构、无机磷、酸性磷酸酶活性的变化,并利用定量RT-PCR技术分析水稻磷酸转运蛋白基因(OsPT)和酸性磷酸酶基因(OsSAP1)的表达。试验设2个磷浓度:无磷和85 mg·L?1KH2PO4,2个蔗糖浓度:无糖和3%蔗糖,正交设计。结果表明,在低磷胁迫时添加蔗糖,能使水稻幼苗的根总长度、总根数、根冠比显著增加,根分泌的酸性磷酸酶活性降低,但水稻体内的磷酸转运酶活性提高。11个与磷具有高度亲和力的磷酸转运酶的表达发生了改变,其中根优势表达的4个基因OsPT2、OsPT3、OsPT4、OsPT6对磷、糖的影响最为敏感,暗示了蔗糖是通过调节磷转运蛋白维持磷的吸收和平衡。增加根系的蔗糖分配能够提高水稻幼苗对磷胁迫的耐受性。  相似文献   

15.
Glasshouse experiments were conducted at the Newe Ya'ar Research Center in the winter seasons of 1992/93 and 1993/94 to examine a phosphorus/ potassium (PK) fertilizer for cucurbit crops. Monopotassium phosphate [(MKP), KH2PO4] was found to be very effective as a P and K source for cucumber (Cucumis sativus L.) and muskmelon (Cucumis melo L.) plants grown in soilless container conditions. The efficiency of MKP was essentially not different from that of the combination of phosphoric acid (H3PO4) and potassium chloride (KCl) which is widely used in the commercial production of vegetables. Appropriate fertilization of cucumbers with MKP in 1992/93 affected late‐season yield more than early‐season yield. Deficiency of P and K in Gala muskmelon inhibited vegetative growth and decreased yield. The reduced yield resulted from both less fruit‐setting and smaller fruit size. The MKP rates required by cucumber plants in 1993/94 depended primarily on growth medium composition. Generally, plants grown in inert tuff (volcanic gravel) and sandy media responded more significantly to MKP than did those grown in media rich in organic matter. There are at least three reasons for preferring the use of MKP, first it is much safer to handle than is H3PO4, second it is highly soluble and can be easily incorporated in fertigation systems, and third it has a high PK content.  相似文献   

16.
Soil P availability has been identified as one of the key factors controlling wetland productivity, structure, and function. Soil P fractions at different depths in newly formed wetlands along a salinity gradient in Yellow River Delta (China) were studied using a modified Hedley fraction method. The total P (Pt) content ranged from 471.1 to 694.9 mg kg–1, and diluted HCl‐extractable inorganic P (Dil‐HCl‐Pi) ranged from 324 to 524.2 mg kg–1. The Dil‐HCl‐Pi is the predominant P form in all profiles, with on average 70% of the Pt extracted as Pi. Organic P (Po) comprised (4.2 ± 2.0)% (mean ± SD) of the Pt, due to low organic‐matter content in coastal salt marsh ecosystems. The labile P (resin‐P, NaHCO3‐Pi, and NaHCO3‐Po) and moderately labile P (NaOH‐Pi and NaOH‐Po) concentrations were both low, ranged from 11.6 to 38.1 and 2.8 to 21.3 mg kg–1, respectively, constituting (3.7 ± 1.1)% and (2.0 ± 0.7)%, respectively, of Pt, suggesting low availability of P to plants in these soils. Our results suggested that vegetation cover significantly influenced soil P dynamics and availability. In particular, the labile P content under Tamarix chinensis increased significantly by 23.2%–145.5% compared with adjacent soils. These findings have important implications for wetland conservation or restoration and long‐term sustainable management of newly formed wetland ecosystems in the Yellow River Delta.  相似文献   

17.
Reducing the environmental risk of soluble P loss from sludge-amended soils is essential for increasing soils capacity to utilize sewage sludge beneficially. Fresh dewatered anaerobically digested sewage sludge (FSS), stabilized with ferrous sulphate (FeSul–SS), calcium oxide (CaO–SS) and aluminum sulphate (alum–SS), each at three chemical-to-FSS ratios, or by composting (BSC), was applied to alluvial soil at rates of 150 and 300 mg P kg? 1 soil. Changes in P phytoavailability in comparison to KH2PO4-amended soil were probed during 100 days of incubation by a P-bioassay and were compared to the concentration of water-soluble P (WSP) and Olsen-P. P phytoavailability was notably linked to the incubation duration and the stabilization process. In general, P phytoavailability at equal P-addition rates was KH2PO4 > > alum–SS > BSC  FSS > CaO–SS > > FeSul–SS; and it was positively related to the added P rates, although with quite different patterns among the various sludge products. The concentration of inorganic WSP (WSPi) extracted from the soil increased following the application of FSS or BSC, and additional P mineralization further increased its concentration during incubation. In contrast, in most cases the chemically stabilized sludges, especially the FeSul–SS, showed considerably reduced inorganic WSP concentrations relative to the untreated soil. The total WSP, Olsen-P and organic WSP (WSPo) positively correlated to P phytoavailability, indicating that WSPo plays a role in plant P utilization in these soils. It is concluded that all the chemically stabilized sewage sludge studied effectively controlled WSPi in soil while still supplying P to support plant growth.  相似文献   

18.
In order to assess the effectiveness of foliar‐applied potassium (K+, 1.25%) using different salts (KCl, KOH, K2CO3, KNO3, KH2PO4, and K2SO4) in ameliorating the inhibitory effect of salt stress on sunflower plants, a greenhouse experiment was conducted. Sodium chloride (150 mM) was applied through the rooting medium to 18 d–old plants and after 1 week of salt treatment; different K+‐containing salts were applied twice in 1‐week interval as a foliar spray. Salt stress adversely affected the growth, yield components, gas exchange, and water relations, and also caused nutrient imbalance in sunflower plants. However, foliar‐applied different sources of potassium improved shoot and root fresh and shoot dry weights, achene yield, 100‐achene weight, photosynthetic rate, transpiration rate, stomatal conductance, water‐use efficiency, relative water content, and leaf and root K+ concentrations of sunflower plants grown under saline conditions. Under nonsaline conditions, improvement in shoot fresh weight, achene yield, 100‐achene weight, photosynthetic and transpiration rates, and root Na+ concentration was observed due to foliar‐applied different K sources. Of the different salts, K2SO4, KH2PO4, KNO3, and K2CO3 were more effective than KCl and KOH in improving growth and some key physiological processes of sunflower plants.  相似文献   

19.
Field and pot experiments showed that the P demand of wheat is highest in early stages of growth (up to 1.67 μg P per cm2 root surface and day). The needed orthophosphate ions H2PO4? and HPO42-move from soil to the root by diffusion. This process is controlled by the concentration gradient of the diffusible phosphate and the effective diffusion coefficient according to Pick's first law. Root excretions (rhizodeposition) are able to affect both characteristics. The water soluble portion of rhizodeposition contains more than 50% of up to 8 different sugars, 10–40% carboxylic acids and 10–15 amino acids and amides. The composition varies in dependence on the age of the root parts and on nutrition (Zea mays L., Brassica napus L., Pisum sativum L.). Diffusion experiments using small soil blocks showed that 50–75% of the root exudates were decomposed by respiration within 3 days. The rest was largely chemically converted. Originally present sugars disappeared. Due to the biosynthesis of different organic acids from the individual sugars the mobilisation of Ca3(PO4)2 by Pantoea agglomerans increased when the sugar mixture was derived from the rhizodeposition of P deficient plants with more pentoses instead of glucose and fructose (mainly effect of anions). In the rhizosphere therefore a mixture of rhizodeposition and its conversion products exists which affects the binding of phosphorus in soil and the P transport to the root. This should be considered both for the development of new soil extractants and for modelling the P supply to plants.  相似文献   

20.
Primary determinants of crop production in arid/semiarid regions are lack of moisture and infertility, especially phosphorus (P) deficiency or unavailability. The effects of P and water stress (WS) levels on shoot and root dry matter (DM), leaf area, root volume, total root length, and shoot and root P concentrations and contents were determined in two bean [Phaseolus acutifolius Gray, cv ‘Tepary #21’ ("drought‐resistant") and P. vulgaris L., cv “Emerson’ ("drought‐sensitive")] and two sorghum [Sorghum bicolor (L.) Moench, cv SA7078 ("drought‐resistant") and ‘Redlan’ ("drought‐sensitive")] cultivars grown in nutrient solution. Plants were grown with different levels of P (20 and 100 μM for bean and 20, 80, and 160 μM for sorghum) when seedlings were transferred to nutrient solution, and WS levels of 0, 13.8, and 1 6.4% polyethylene glycol (PEG‐8000) introduced after plants had grown in solution 23 days (bean) and 31 days (sorghum). All growth traits were lower when bean and sorghum plants were grown with WS and low P. Growth traits were higher in cultivars grown with high compared to low P regardless of WS. Root P concentration and content and shoot content, but not shoot P concentration, were lower when bean plants were grown with WS compared to without WS. Tepary #21 bean had higher shoot DM, leaf area, total root length, and shoot P concentration than Emerson when plants were grown with WS at each level of P. Sorghum shoot and root P concentrations were higher as P level increased regardless of WS, and WS had little effect on shoot P concentration, but root P concentration was higher. Contents of P were similar for SA7078 and Redlan regardless of P or WS treatment, but SA7078 had greater P contents than Redlan over all P and WS treatments. “Drought‐resistant”; cultivars generally had better growth traits, especially total and specific root lengths, than “drought‐sensitive”; cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号