首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice (Oryza sativa L. cv. Yamabiko) and tomato (Lycopersicon esculentum Mill cv. Saturn) plants subjected to Na-salinization (NA: 80 mmol( + ) kg-1 Na) in hydroponics were grown after the addition of K at five concentrations (K1: 10, K2: 20, K3: 30, K4: 40, K5: 50 mmol( + ) kg-1). The effect of K on their growth was analyzed in terms of transpiration, cation uptake, and transport. A similar tendency for the above parameters was obtained in both species. The addition of 10 mmol( + ) kg-1 K improved the growth by decreasing the content of Na and increasing the K content of the plants. The growth of the plants, however, was reduced along with the increase of the K concentration and became comparable to that of NA at K5. The total cation content increased with the increase of the K concentration, which was due to the increase of the K content.

A close relationship was observed among the osmotic potential of the solution, cumulative transpiration, and dry weight for both species among the K treatments.

Addition of K suppressed the uptake of other cations by rice and tomato in the order of Na>Mg>Ca, with a very small suppression for Ca and Mg. The depression of Na uptake by K could be due to the antagonism between the two cations.

In rice, the addition of K resulted in a decrease of the uptake concentration (UC) of Na and an increase of that of K, but did not bring about any changes in the UC of Ca and Mg. It was worth noting that K1 and K2 led to a higher UC of Na than NA in tomato, while the trend of the UC of K, Ca, and Mg was similar to that in rice. The transport of Na and Ca to the tops of rice was not affected by the addition of K, while that of Mg increased by K addition. In tomato, the transport of all the cations was promoted by the increase of the K concentration.  相似文献   

2.
Tomato plants were grown for 2 years at 4 different rates of Mg fertilization on a Princeton loamy sand at pH 4.8 with 29 kg exchangeable Mg/ha. Calcareous limestone was used to provide a pH treatment in the second year. Magnesium deficiency symptoms were observed on plants grown on plots having 38 kg/ha NH4OAC‐extractable Mg. Application of 56 kg Mg/ha corrected Mg deficiency and produced a significant increase in yield. Application of calcitic limestone also produced significant yield increases, but did not affect the development of Mg deficiency symptoms. Tomato yield was increased 27.9% by Mg application and 17.7% by lime application. Highest tomato yield was obtained with application of 112 kg Mg/ha. Symptoms of Mg deficiency were observed when the Mg concentration in recently mature leaf tissue was in the 0.30 to 0.32% range. Magnesium concentration in leaf tissue increased linearly with increasing Mg rate. Leaf Mg concentration at various growth stages of the tomato plant was variable depending on Mg treatment. Magnesium fertilization rate bad little effect on Ca or K leaf concentrations. Application of Calcltic limestone increased leaf tissue Ca and reduced leaf tissue Mg and Mn concentrations.  相似文献   

3.
Abstract

Response of field grown mature tea to the foliar application of Biozyme Crop Plus, a commercial plant growth regulator, applied at different concentrations ranging from 250 to 1000 ppm was evaluated. Tea shoots were analysed to determine their N, P, K, Ca, and Mg contents. The treated tea plant shoots contained significantly higher contents of N and K followed by Ca and Mg than the untreated control plant shoots. The total chlorophyll content of Biozyme treated tea shoots was also increased significantly. Yield response to Biozyme applied to tea bushes were also determined.  相似文献   

4.
Experiments were conducted to avaluate the K, Na, Ca, and P uptake by seedlings of two date palm (phoenix dactylifera L.) cultivars, Khedhri and Sekkeri as well as the effect of gibberellin (GA3) treatment, Khedhri cultivar showed a typical hyperbolic curve of absorption of K,N, end low concentration of Ca (up to 5mM) but at higher Ca concentration, there seems to be another phase of absorption. Sekkeri cultivar exhibited similar but lower absorption rate of K and Ca while Na seems to be extruded at lower substrate concentration. The rate of P uptake by Sekkeri was irregular. Applied GA3 slightly stimulate Na uptake by Sekkeri cultivar but at 10–4M GA3 enhancement of both Ca and P accummulation in both cultivars was observed.  相似文献   

5.
Abstract

White Rose potato plants (Solanum tuberosum, L.) were grown outdoors, without tuber formation, in a modified Hoagland's nutrient solution with 9 treatments of KH2PO4 ranging from 0 to 4.0 mmoles per liter. Deficiency symptoms ranged from very severe to none at harvest after 27 days of growth. Growth of the potato plants increased with increased P supply and was associated with an increased P content of the plant tissues. The critical H2PO4‐P concentration at a 10% reduction of top growth, based on a second leaf analysis, was about 1,000 ppm for the petiole and terminal bladelet and about 1,200 ppm for the lateral bladelet, dry weight basis.

Phosphorus nutrition had only a slight effect on the K, Na, Mg and NO3‐N concentrations of the root tissues but Ca increased as phosphate increased which suggests a calcium phosphate precipitation. Phosphorus stress lowered the K, Na, Ca, Mg and NO3‐N concentrations of the petiole tissues of the recently matured leaf which suggests that P increases salt accumulation. Phosphorus nutrition had only a slight effect on the concentrations of K, Na, Mg and Ca of the blade tissues of the recently matured leaf but NO3‐N increased greatly with P supply.  相似文献   

6.
Following 13‐year treatments of soil pH and nitrogen (N) source in a peach orchard of North Carolina, the concentration of calcium (Ca), magnesium (Mg), N, phosphorus (P), and potassium (K) in leaves, shoots, trunks and roots, as well as soil pH, soil exchangeable Ca, Mg, and K content, were determined. Through liming, higher soil pH treatment enhanced soil Ca and tissue Ca level. Among six N sources examined, the highest values of soil pH and soil Ca, Mg, and K were detected following poultry manure application. Compared to ammonium sulfate [(NH4)2SO4], calcium nitrate [Ca(NO3)2] increased soil pH and soil Ca and K content, but reduced soil Mg. For most of macronutrients examined in peach tissues, the highest levels were found in manure treatment. Mineral N sources containing Ca(NO3)2 resulted in high tissue Ca and low tissue N. In the above‐ground tissues, Mg concentration was relatively low following application of mineral N materials containing Ca, K, or sodium (Na). Acid‐ forming N, especially (NH4)2SO4, reduced tissue Ca and P. The magnitude of impact of liming and N source on macronutrients was tissue‐type dependent, with leaves and other new growth the most sensitive ones while trunks seldom responded to the treatments.  相似文献   

7.
Abstract

The effects of liming (7 500 kg CaCO3/ha) and rate of urea application (0,50,100, and 200 kg N/ha) and its placement at the surface or at 5 cm depth on grain yield and nutrient uptake by corn grown on an acidic tropical soil (Fluventic Eutropept) were studied. Liming significantly increased grain yield, N uptake, and P and K uptake although Ca and Mg uptake, generally, were unaffected. Sub‐surface application of urea increased N uptake only. Yield response to applied N was observed up to 50 kg N/ha when limed but at all rates in the absence of liming. It therefore, reduced the fertilizer N requirement for optimum grain yield. Liming the acidic soil also reduced exchangeable Al but increased nitrification rate and available P in the soil profile (at least up to 0.6 m depth).  相似文献   

8.
Abstract

Magnesium (Mg) deficiency In corn (Zea mays L.) is a major problem in many parts of the world because of widespread soil Mg deficiency. One approach to growing corn on infertile soils is to develop hybrids by breeding for better mineral element efficiency. This study was conducted on two soils low and medium in available Mg with corn planted on different dates to determine if hybrids were consistent for differences in mineral element efficiency. Hybrids did not differ in yield at each location but differed between soils. Yield decreased from late plantings. Ear leaf concentrations were greatly affected by soils and planting dates for most elements. Hybrids differed In efficiency of all elements but P, Zn, and Mn efficiency was not consistent between soils. Iron, K, Ca, and Mg concentrations in the ear leaf were genetically consistent in relative efficiencies among hybrids on both soils. Concentrations of K, Ca, and Mg In leaf tissue appeared to be positively related to soil test. Cation sums and ratios were different among hybrids and were rather consistent between soils. Data indicate that hybrids do differ in Mg efficiency as well as other elements and cation balance. The use of genetics to manipulate hybrids for efficiency on low Mg Infertile soils should be feasible.  相似文献   

9.
Abstract

Sudangrass (Sorghum sudanense, ‘Piper’ Stapf) was grown in the greenhouse in a slightly calcareous sample of Shano silt loam. The purpose of the study was to evaluate plant response to Mg and to determine any changes in Mg nutrition following individual or composite application of Mg, Ca, K and Na as nitrate compounds. The concentration of Mg in plant tissue decreased following K application and increased with each increment of Mg applied irrespective of variations in the proportions of Ca and Na included in the treatments. A base treatment including Ca, Na, and K applied with or without Mg showed a significant yield response to Mg. The Mg response was attributed to a more favorable ionic balance in the growth medium with respect to Mg because the soil was not particularly Mg deficient. Application of Mg in this case lowered the plant K concentration significantly, increased the concentration of Mg, and gave a lower K/(Ca+Mg) ratio in the foliage than was obtained without Mg. Results suggest that high levels of other nutrient cations may adversely affect the Mg nutrition of crops growing on alkaline soils not abundantly supplied with available Mg.  相似文献   

10.
ABSTRACT

Saline irrigation water has a tremendous impact on the yield potential of crops. Distribution of mineral elements in the parts of maize plant in response to saline water and nitrogen (N) nutrition was studied in a pot experiment for six weeks. Plants were irrigated either with tap water or saline water (ECw: 3.2 dSm?1). Nitrogen was applied at the rate of 0, 50, 100 and 200-kg ha?1 denoted as N0, N1, N2, and N3, respectively. Plants were separated into leaf, stem and root and analyzed for N, calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K) concentrations. Dry matter production of leaf, stem and root was significantly reduced with saline water. The partitioning of elements in plants was the function of nitrogen and saline water. The N concentration of plant parts varied in the order of leaf > stem > root. A significant decrease in the N content was noted in plants under saline water. The root contained the highest Na content, Ca and Mg were higher in the leaf, whereas K was highest in the stem under saline water. Sodium was highest in the root and the remainder elements were greatest in the stem under tap water. Potassium and Cl were significantly reduced by N level whereas the reverse was true for Ca, Mg and Na content. The Na/K, Na/Ca, and Na/Mg ratios were also higher in salt stressed plant parts due to higher accumulation of Na ion. Among N-fertilizer treatments the Na/Ca and Na/Mg ratios were highest in control whereas Na/K increased with the addition of N. This study indicated that interaction of saline water and nitrogen has mixed effects on the partitioning of mineral elements in maize.  相似文献   

11.
Four greenhouse sand culture experiments were conducted with Kenhy tall fescue, a Lolium multiflorum X Festuca arundinacea hybrid derivative. These experiments were conducted to characterize mg accumulation and the chemical composition of Kenhy under various combinations of Mg, K, and N solution concentrations. Of primary interest was the shape and magnitude of response of tissue Mg concentration to solution K levels and potential for Mg accumulation that exists in Kenhy under low solution K levels. Analyses were made for Mg, K, Ca, Na, N, and nitrate.

Increased Kg concentrations were observed with increased solution Mg. Increased solution K was in all cases associated with lower concentrations of Mg. Under conditions of low solution K (0.125 mM) and adequate Mg (0.25 mM), Mg accumulation exceeded 1.0%. Increased solution N was associated with decreased Mg concentrations. Both the linear and quadratic components of Mg solution concentration contributed significantly to increased tissue Mg. Hawever, the linear component of K solution concentration was sufficient to account for decreased tissue Mg. The reduction of tissue Mg to solution K was greater at higher concentrations of K.

Potassium accumulation significantly increased with increased solution K. Increased solution Mg was associated with lower tissue K in which the greatest reduction in K accumulation occurred with the first Mg addition.

Calcium accumulation decreased with increased solution K. Higher solution Mg was associated with lower tissue Ca levels while higher levels of N were associated with increased tissue Ca. Sodium accumulation was significantly reduced by increased K concentrations but neither Mg nor N was effective in consistently altering tissue Na concentrations.

From these experiments it is evident that Kenhy tall fescue has the absorptive capability for high levels of Mg under conditions of low levels of solution K. However, even small increments of solution K were shown to be capable of substantially reducing the Mg content, Thus, the selection of forage grasses for Mg absorptive capability must be conducted under conditions of high solution K, if large improvements on present forage materials are to be obtained. In addition, the inverse relationship between Mg and K present in Kenhy seedlings confirms the need to consider K fertilization recommendations in attempting to increase forage Mg durirg the grass tetany period.  相似文献   


12.
Abstract

The effect of Turnip Mosaic Virus (TuMV) infection on the elemental composition of rutabaga (Brassica napus ssp. rapifera (Metzg) Sinsk) at maturity was examined in the greenhouse. TuMV infection markedly reduced dry weight and dry matter percentage of leaves‐plus‐petioles but did not affect storage root development. Virus‐infected plants exhibited higher N, P, Mg and Zn, but lower K levels in leaf tissues. Nitrogen, Ca, Mg and Mn accumulated in storage root tissues as a result of TuMV infection.  相似文献   

13.
Abstract

Magnesium (Mg) is a nutrient that affects the development of plants and is mainly supplied through liming performed to correct soil acidity. By acting on photosynthesis and influencing carbohydrate partitioning in the plant, supplementary Mg supplied through soil or foliar application can increase the yield and quality of potato (Solanum tuberosum L.) tubers. The aim of this study was to evaluate the effect of supplemental Mg fertilization by soil or foliar application on plant nutritional status, tuber yield, and carbohydrate partitioning in potato crops in soil corrected with calcitic and dolomitic limestones. The experiment was carried out in pots under greenhouse conditions with a randomized block design in a 2?×?3 factorial scheme with four replications. Dolomitic limestone application and supplemental Mg fertilization via soil increased the concentrations of this nutrient in potato leaves. Liming with dolomitic limestone reduced the uptake of Ca and K by plants, but supplemental Mg fertilization did not alter the uptake of Ca, Mg or K. Supplemental Mg fertilization did not increase plant growth and tuber yield, even when calcitic limestone was used to elevate the base saturation to 60%; the exchangeable Mg concentration in soil was 9?mmolc dm?3, and the Ca:Mg relationship was 3.7. Liming with dolomitic limestone or providing supplemental Mg fertilization did not increase sugar and starch partitioning to the tubers.  相似文献   

14.
The mineral compositions of the fruit and tree parts of common guava, Psidium guajava L., and strawberry guava, Psidium cattleianum var. lucidum, were determined. The study occurred during three seasons at six locations in Hawaii to assess guava as feed for livestock. Guava bark contained the greatest concentrations of calcium (Ca) and ash; leaves the greatest concentrations of magnesium (Mg), sulfur (S), sodium (Na), boron (B), and manganese (Mn); and the shoots had the greatest concentrations of nitrogen (N), phosphorus (P), and potassium (K). The leaves and the shoots had the greatest concentrations of copper (Cu) and iron (Fe). Between guava and waiwi, guava had greater concentrations of most minerals except for Na in all plant parts, and Mg and ash in the leaves. Guava leaves and shoots meet the macromineral requirements for various phases of sheep, goat, and beef cattle life cycles with the exception of P and Na. Guava shoots do not meet Mn requirements for lactating cows.  相似文献   

15.
Abstract

A compost of high copper (Cu) and zinc (Zn) content was added to soil, and the growth of barley (Hordeum vulgare L.) was evaluated. Four treatments were established, based on the addition of increasing quantities of compost (0, 2, 5, and 10% w/w). Germination, plant growth, biomass production, and element [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), iron (Fe), Cu, manganese (Mn), and Zn] contents of soil and barley were determined following a 16‐week growing period. Following harvesting of the barley, analysis of the different mixtures of soil and compost was performed. Micronutrient contents in soils as affected by compost additions were determined with diethylene–triamine–pentaacetic acid (DTPA) (Cu, Mn, Fe, and Zn) or ammonium acetate [Ca, Na, Mg, K, cation exchange capacity (CEC)] extractions, and soils levels were compared to plant uptake where appropriate. Increasing rates of compost had no affect on Ca, Mg, or K concentration in barley. Levels of Cu, Zn, Mn, and Na, however, increased with compost application. High correlations were found for DTPA‐extractable Cu and Zn with barley head and shoot content and for Mn‐DTPA and shoot Mn content. Ammonium acetate–extractable Na was highly correlated with Na content in the shoot. High levels of electrical conductivity (EC), Cu, Zn, and Na may limit utilization of the compost.  相似文献   

16.
The effects of two olive mill wastewater (OMW) dilutions upon physiological function and metabolic components of three mint species grown in hydroponic culture were studied. Visible symptoms, chlorosis and stunted growth, were pronounced in peppermint and spearmint; toxicity symptoms in menthe douce were few. Peppermint and spearmint displayed loss of calcium (Ca), magnesium (Mg), and potassium (K); menthe douce revealed accumulation of Ca, sodium (Na), and iron (Fe), under OMW. The loss of Ca negatively affected the development and stability of cell wall and membrane; the Mg deficiency negatively affected the photosynthetic apparatus and carbon fixation. Fv′/ Fm′ was slightly affected under OMW, whereas, ΦPSII, q P and Rfd displayed significant reductions. No clear effect of OMW on phenols and carbohydrates among the species were found. Ascorbic acid content in peppermint dropped dramatically; the reduction was lower for spearmint and menthe douce. The OMW resistant species, menthe douce, developed a mechanism to control the physiological and the biochemical status.  相似文献   

17.
Abstract

The nutrition and mobility of B, and its relation to the elemental composition of two cultivars of rutabaga (Brassica napus ssp. rapifera cv. Laurentian and Wilhelmsberger) plants were investigated in greenhouse experiments. Laurentian exhibited a greater response than Wilhelmsberger to continuing B deficiency as indicated by the severity in the roots of brown heart, of external roughness and elongation and of the decrease in B concentration. Signs of B deficiency were not found when the B contents of the root and young leaves were 27 and 56 ug g‐1 DM respectively. Root B levels of 14 and 17–20 μg g‐1 gave moderate and slight internal signs of brown discoloration. Foliar applications of B partially restored the B concentrations of the roots; however, the mechanism of movement was unclear. The Mg, Mn and Zn contents of roots were the only elements that consistently increased and accumulated under B deficiency. The relative element composition of the root compared to the mature leaves is consistent with the root being supplied predominantly with nutrients by the phloem. Nutrient retranslocation was assessed from the ratio of element concentration in the roots or young leaves to that in the mature leaves. Although Mg, Mn and B exhibited limited mobility under adequate B nutrition they were translocated from mature leaves to younger tissues under B starvation. It is concluded that Wilheimsberger is by virtue of its greater capacity for the retranslocation of B to roots, less sensitive to B deficiency and the brown heart disorder.  相似文献   

18.
Abstract

Different rates of K, Ca, and Mg were applied to bulklots of Decatur clay loam (pH 5.8) which had been collected from an area under natural vegetation. Nitrogen and P were each applied at the rate of 100 ppm. Soybean (Glycine max L.) and corn (Zea mays L.) were planted to pots in four replications of each treatment. Plants were grown for 6 weeks and subsequently all the pots were re‐planted to soybeans. This crop rotation was repeated until six crops had been harvested from each pot.

Potassium fertilization did not affect soybean growth but increased the dry matter of corn plants. Calcium application affected the growth of neither crop, but Mg addition to the soil reduced the growth of both crops. The composition of the plants generally reflected the available amounts of each nutrient. Additionally, Mg consistently decreased K in soybeans but increased Mn in the two crops. The inclusion of corn in rotation with soybeans resulted in the following effects on the succeeding soybean harvests: more tolerance to high Mg, greater reduction of plant Ca and Mg caused by K application, and lower levels of available K and Ma in soils and soybeans. However, the greater rate of depletion of soil K and Mn under corn rotation did not appear Co affect the dry matter yields of the following soybean plants relative to the plants under the continuous soybean cropping system.  相似文献   

19.
Abstract

Greenhouse experiment was conducted to evaluate the effect of arbuscular mycorrhizal fungi (AMF) on plant growth, and nutrient uptake in saline soils with different salt and phosphorus (P) levels. The following treatments were included in this experiment: (i) Soil A, with salt level of 16.6 dS m?1 and P level of 8.4 mg kg?1; (ii) Soil B, with salt level of 6.2 dS m?1 and P level of 17.5 mg kg?1; and (iii) Soil C, with salt level of 2.4 dS m?1 and P level of 6.5 mg kg?1. Soils received no (control) or 25 mg P kg?1 soil as triple super phosphate and were either not inoculated (control) or inoculated with a mixture of AM (AM1) and/or with Glomus intraradices (AM2). All pots were amended with 125 mg N kg?1 soil as ammonium sulfate. Barley (Hordeum vulgar L., cv. “ACSAD 6”) was grown for five weeks. Plants grown on highly saline soils were severely affected where the dry weight was significantly lower than plants growing on moderately and low saline soils. The tiller number and the plant height were also lower under highly saline condition. The reduced plant growth under highly saline soils is mainly attributed to the negative effect of the high osmotic potential of the soil solution of the highly saline soils which tend to reduce the nutrient and water uptake as well as reduce the plant root growth. Both the application of P fertilizers and the soil inoculation with either inoculum mixture or G. intraradices increased the dry weight and the height of the plants but not the tiller number. The positive effect of P application on plant growth was similar to the effect of AM inoculation. Phosphorus concentration in the plants was higher in the mycorrhizal plant compared to the non mycorrhizal ones when P was not added. On the other hand, the addition of P increased the P concentration in the plants of the non mycorrhizal plants to as high as that of the mycorrhizal plants. Iron (Fe) and zinc (Zn) uptake increased with AM inoculation. The addition of P had a positive effect on micronutrient uptake in soil with low level of soil P, but had a negative effect in soil with high level of soil P. Micronutrient uptake decreases with increasing soil salinity level. Inoculation with AMF decreases sodium (Na) concentration in plants grown in soil of the highest salinity level but had no effect when plants were grown in soil with moderate or low salinity level. The potassium (K) concentration was not affected by any treatment while the K/Na ratio was increased by AM inoculation only when plant were grown in soil of the highest salinity level.  相似文献   

20.
The mineral composition of Hevea brasiliensis shoots was analyzed at different stages of the microcutting procedure from mother plants grown in greenhouses to rooted microcuttings at the acclimatization stage. Compared to the mineral status of the mother plants, a mineral imbalance was noticed in shoots right from the in vitro establishment phase. Phosphorus (P), potassium (K), sodium (Na), chloride (Cl), and zinc (Zn) contents increased, while calcium (Ca), magnesium (Mg), iron (Fe), and copper (Cu) diminished, resulting in a substantial modification to the mineral balance. The N: P, N: K, Mg: P and K: Na ratios were very low, whereas the K: Mg, K: P, and K: Ca ratios were very high. During the multiplication phase, the N: P ratio returned virtually to its initial value but the other ratios remained modified. A mineral analysis of shoots after three years multiplication in vitro revealed a very low N: P ratio, a very high K: Ca ratio and a normal K: Na ratio. The same results were obtained right from the initial culture cycles on shoots developed in vitro from mother plants with a high multiplication potential. These results are discussed and lead us to consider the N: P, K: Ca, and K: Na ratios as potential markers of Hevea brasiliensis multiplication ability in vitro. During the rooting phase, the Mg: P and K: Ca ratios returned to their normal values, whereas the other ratios returned to normal values on formation of the second leaf flush ex‐vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号