首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Abstract

Switchgrass (Panicum virgatum L.) has potential as a sustainable biofuel crop. Utilizing alternative sources of fertilizer nutrients could enhance production of switchgrass. However, alternative sources of fertilizer such as sewage sludge sometimes contain heavy metals such as cadmium (Cd) and the response of switchgrass to Cd is not known. Four switchgrass cultivars (Alamo, Blackwell, Cave‐in‐Rock, and Trailblazer) grown in sand culture were watered twice weekly with a nutrient solution containing Cd. Cadmium levels in solution were 0, 1, 2, 4, 8, and 16 mg Cd L‐1. Plants were harvested 63 d after planting and separated into leaf blade, stem (culm + leaf sheath), and root components. Tissue Cd concentrations were determined using atomic absorption spectrophotometry. Cultivars differed (P<0.05) by less than 15% for biomass accumulation and allocation among plant parts. Cadmium levels of 16 mg L‐1 reduced biomass yields by 31% for roots, 39% for leaf blades, and 47% for stems as compared to no added Cd. At 16 mg Cd L‐1, Cd concentration in leaf blades was 9.9 mg kg‐1. The highest levels of Cd (329 mg kg‐1) were found in roots of Blackwell and Trailblazer grown at the highest Cd level. Cadmium at 16 mg Cd L‐1 is phytotoxic to switchgrass and accumulates in all plant parts. The cultivars tested in this study did not differ in biomass accumulation in response to Cd; however, Cd accumulation in plant parts differed among cultivars. Consideration of Cd uptake should be a part of switchgrass cultivar selection when grown in the presence of Cd.  相似文献   

2.
ABSTRACT

The response of potted pear trees grafted on quince (Cydonia oblonga Mill.) Sydo stock to increasing concentrations (0, 50, 100, 200, 400, 600, 800, and 1000 mg kg?1) of copper (Cu) in sandy and clay-loam soils were evaluated and crop toxicity thresholds and symptoms were determined. Reductions of shoot growth and leaf area were observed only for pear grown in sandy soil with more than 400 mg Cu/kg. During the growing season, carbon assimilation and soil microbial biomass were reduced as concentration of soil Cu increased. However, the effect was always stronger in sandy than clay-loam soil. Copper accumulated in roots, with response to soil Cu additions described by a linear and a quadratic function for sandy and clay-loam soil, respectively. A possible antagonism was observed between Cu and zinc (Zn) in the roots. Root Zn concentration decreased as soil Cu concentration increased.  相似文献   

3.
Abstract

The effects of application of zinc fertilizer on dry matter yield, uptake and distribution of zinc and other nutrients by Amazon and Amelonado cocoa cultivars grown in a soil of low zinc content in the greenhouse were investigated.

There was a differential response to zinc fertilization by the two cocoa cultivars. Maximum dry matter yields of Amazon and Amelonado were attained with 10 ppm Zn and 50 ppm Zn, respectively. Under similar experimental conditions Amelonado seedlings expressed zinc deficiency symptoms whereas Amazon did not.

Zinc concentrations in the leaves, stem and roots of both cuitivars did not give a good index of the zinc status of the crops. This was because of the existence of the “Piper‐Steenbjerg”; effect in that nil zinc rates often gave higher leaf concentration of the zinc than next higher rate. In general, the relative content of zinc followed the pattern; leaves > roots > stem with the Amazon cultivar containing more zinc than the Amelonado.

The distribution of absorbed Cu in the leaves, stem and roots did not differ in both varieties. Whereas Fe uptake was mostly concentrated in the roots, Mn absorbed was largely concentrated in the leaves of both varieties and only Mn uptake in the leaves of Amazon consistently increased with Zn application.

The differences in the uptake and distribution of nutrients between the two cocoa cultivars was attributed to differences in their ability to extract nutrients from the soil and in their requirements for metabolic processes.  相似文献   

4.
Abstract

A pot experiment was conducted to investigate the effects of different cadmium (Cd) concentrations of phaeozem on growth and uptake of Cd and mineral nutrient copper (Cu) and zinc (Zn) by three maize genotypes in the mature stage. The results showed that the dry‐matter accumulation of shoots was inhibited by added Cd for Jidan209 and Jitian6, but this did not influence Chunyou30. The root biomasses decreased significantly for Jitian6 and stimulated Jidan209 and Chunyou30. Yields of three genotypes of maize were decreased by increasing soil Cd concentrations. Among them, Chunyou30 had a high tolerance and Jitian6 was most sensitive to Cd. The accumulation order of Cd in different parts of plants was root > leaf > stem > grain. The percentage of absorbed Cd by roots was 70–85% of total absorbed amount. Cadmium uptake by maize in the mature stage had a significant genetic variation: Jitian6 > Jidan209 > Chunyou30 for root, stem and leaf, and Jidan209 > Jitian6 > Chunyou30 for grain, respectively. Increase of soil Cd had no significant effect on Zn concentration of leaves, but there was a significant genetic variation: Chunyou30 > Jidan209 > Jitian6 (P=0.023). Cu concentration of leaves was increased significantly with increase of soil Cd (P<0.01), but no genetic variation was observed.  相似文献   

5.
Siratro (Macroptilium atropurpureum) and soybean (Glycine max) were grown in pots with or without irrigation for 3 weeks at the vegetative stage to examine the effect of water stress on plant biomass production, biological N2 fixation, CO2 assimilation rate, stomatal conductance, leaf water potential, and the partition of 14CO2 to plant parts. Biomass production decreased by water stress and the decrease was less conspicuous in siratro, mainly due to the maintenance of a relatively higher growth rate in stem plus petioles and roots. Siratro maintained a higher stomatal conductance and CO2 assimilation rate at a lower leaf water potential compared to soybean. Water stress decreased the biological N2 fixation in both species, and the decrease was more appreciable in siratro than in soybean under stress conditions. Water stress affected the export of photoassimilates from leaves in both species. The translocation of 14CO2 photoassimilates to nodules and roots was less substantial in siratro than in soybean under water stress conditions. Translocation of photoassimilates from leaves to stem plus petioles in siratro enables the maintenance of growth of stem and petioles under water stress conditions.  相似文献   

6.
Abstract

Response of Sesuvium portulacastrum L., to the elogenous addition of sodium chloride (NaCl), applied at different concentrations ranging from 100 to 900 mM was evaluated. Leaf area, shoot and root weight of the treated plants were increased significantly. Total nitrogen (N) content of leaves, stem and root was significantly increased up to 600 mM NaCl, and thereafter declined moderately. Accumulation of potassium (K), and calcium (Ca) were exponentially increased with NaCl treatment as also observed in the case of N. Sodium content of shoot and roots of S. portulacastrum increased significantly with increasing NaCl concentrations. Certain essential elements like copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were also accumulated in all plant parts significantly, up to 600 mM. However, due to high salinization, growth and development of plants inhibited markedly. Furthermore, elemental concentration decreased beyond 600 mM level of NaCl. Due to aging and senescence, marked changes in leaf area, shoot, root volume and mineral content were observed between sampling time.  相似文献   

7.
Apple (Malus hupehensis Rehd) seedlings were grown in sterilized and non‐sterilized soil with or without phosphorus (P) added and inoculated by VA mycorrhizal (VAM) fungi (Glomus versifome Daniels et Tappe and Glomus macrocarpum Tul et Tul). In sterilized soil, the VAM infection increased the transpiration rate (Tr.) of the leaves, reduced the stomatal resistance (Sr.) and the permanent wilting percentage (PWP) and enhanced the rate of recovery of the plant from the water stress and the plant growth (e.g. leaf number, stem diameter and dry weight). It also increased absorption of most minerals, especially Zn and Cu by the roots and weakened the P‐Cu and P‐Zn interactions. Phosphorus fertilization had some positive effects on the water status, P nutrition and growth, but it reduced the Cu concentration. VAM improved the water status and enhanced drought tolerance of the trees by enhancing absorption and translocation of water by the external hyphae. The efficiency of inoculation in nonsterile soil was not obvious.  相似文献   

8.
《Journal of plant nutrition》2013,36(12):2067-2083
Abstract

Information is desired on plant species that have a great potential in phytoremediation of copper (Cu) contaminated soils. Two contrasting ecotypes of Elsholtzia argyi were comparatively studied using nutrient solution culture for their growth response and uptake, distribution, and translocation of Cu. The results show that the ecotype from an old mined area (Sanmen-ecotype) had greater tolerance to Cu than that from the nonmined area (Jiuxi-ecotype) based on dry matter yield at different Cu supply levels. Inhibited root and leaf growth was noted at the external Cu levels > 50 µmol L?1 for the Sanmen-ecotype, and at the Cu supply levels > 5 µmol L?1 for the Jiuxi-ecotype. Stem growth was most sensitive to Cu toxicity in E. argyi, and was inhibited at the Cu levels ≥ 2.5 µmol L?1 for Jiuxi-ecotype and ≥ 25 µmol L?1 for Sanmen-ecotype. Root Cu concentrations were higher in Sanmen-ecotype than in Jiuxi-ecotype, but leaf, especially stem Cu concentrations were much lower in the former than in the latter. Furthermore, Jiuxi-ecotype was much more efficient than Sanmen-ecotype in the translocation of Cu from root to the shoot, and it had higher ratios of stem/root and leaf/root Cu concentration. At the Cu supply levels higher than 10 µmol L?1, root concentrations of potassium (K), calcium (Ca), magnesium (Mg), manganese (Mn), and zinc (Zn) considerably decreased in Jiuxi-ecotype, but were not affected or even increased in Sanmen-ecotype. Zinc concentrations in the stems, particularly in the leaves of Sanmen-ecotype increased by 3 folds, but were hardly changed in Juixi-ecotype when grown at the Cu levels higher than 10 µmol L?1. These results indicate that the Sanmen-ecotype of E. argyi is a Cu-tolerant ecotype, and its tolerance to high Cu levels was mainly related to its extraordinary capability to restrict Cu uptake, especially Cu translocation from root to the shoot, probably by competitive uptake and translocation of Zn.  相似文献   

9.
ABSTRACT

Greenhouse experiments were conducted to assess the effects of salinization of soil on emergence, seedling growth, and mineral accumulation of Prosopis cineraria (Linn.) Druce (Mimosaceae). A mixture of chlorides and sulfates of sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg) was added to the soil and salinity was maintained at 5.1, 7.2, 9.3, 11.5, and 13.3 dS m?1. A negative relationship between seedling emergence and salt concentration was obtained. Seedlings did not emerge when soil salinity exceeded 11.5 dS m?1. Results suggested that this tree species is salt tolerant at seed germination and seedling stages. Elongation of stem and root was retarded by increasing salt stress. Young roots and stem were most tolerant to salt stress, followed by old roots and leaves. Leaf tissue exhibited maximum reduction in dry-mass production in response to increasing salt stress. However, production of young roots and death of old roots were found to be continuous and plants apparently use this process as an avoidance mechanism to remove excess ions and delay onset of ion accumulation in this tissue. Plants accumulated Na in roots and were able to regulate transfer of Na ions to leaves. Stem tissues were a barrier for translocation of Na from root to leaf. Moreover, K decreased in root tissues with increased salinization. Nitrogen (N) content significantly (P < 0.01) decreased in all tissues (leaf, stem, and root) in response to low water treatment and salinization of soil. Phosphorus (P) content significantly (P < 0.01) decreased while Ca increased in leaves as soil salinity increased. Changes in elements-accumulation patterns and the possible mechanisms for avoidance of Na toxicity in tissues and organism level are discussed.  相似文献   

10.
Abstract

The mobility of 45Ca applied to several of the aboveground parts of the broad bean plant (Vicia faba L.) was investigated to determine the effect of foliar application of calcium (Ca). Calcium applied to the top or the underside surface of a leaf scarcely moved from the leaf. A small amount of Ca applied to a pod moved to the inner seeds, but the majority remained on the pod wall. Calcium applied to the stem was the most mobile. Most of the Ca applied to the axillary side of the stem moved to the leaves and pod on the applied nodes. By contrast, more of the Ca applied to the side opposite the axillary side of the stem moved to the upper nodes. Thus, Ca solution should be sprayed onto the stem rather than the leaves for effective foliar application of Ca.  相似文献   

11.
ABSTRACT

Greenhouse tomato plants were grown hydroponically during the period of lower temperatures of winter (LT) versus the period of higher temperatures of summer (HT). In these plants, the effect of season on fruit load was dramatic. In order to study the alterations season introduces to the developmental allocation of nutrients within the various organs, concentrations of total nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined during each season at weekly intervals in the dry mass of leaves and roots and in the extract of upper, middle, and lower parts of the stem. The level of N/P ratio was always higher in the leaves than in the roots, and these differences were more intense during HT. The short-term changes of ratio in the leaves during HT and LT were positively related with the changes in temperature (r = 0.59 and 0.51 for HT and LT, respectively). In contrast, such correlations in the root were negative (r = ?0.54 and r = ?0.33 for HT and LT, respectively). The increase of temperature increased P uptake but not its translocation to upper plant parts. HT affected the translocation of N, K, Mg, and Ca more and their uptake less. Fruit load differentially affected the concentration of nutrients. In contrast to total N and K, Ca concentration in plant parts presented a positive relation with the increase of fruit load. Calcium and total N concentration (as opposed to P and micronutrient concentrations) were always higher in the leaves than in the roots. Under HT conditions, P was accumulated in roots in combination with high concentrations of Fe, Zn, and Mn. On the other hand, K and N were accumulated in the roots during the period of low temperature in winter. Calcium and K compared with other nutrients presented a pronounced tendency to be transported toward the top of the stem during HT, and their extractable concentration in the upper part of stem presented a significant increase during summer. Extractable K concentration was two to nine times higher than that of the other macronutrients. Our data suggest that the extractable concentration of nutrients of the stem is a good index for the diagnosis of the mineral nutritional status of the plant.  相似文献   

12.
为探究干旱和重金属双重胁迫对土壤-小麦-蚜虫系统内Cd转移规律的影响,为小麦蚜虫的生态调节提供理论依据,本研究以麦长管蚜[Sitobionavenae(Fabricius)]为研究对象,用原子吸收分光光度法分别测定不同土壤Cd含量(100 mg?kg-1、200 mg?kg-1)及不同程度干旱胁迫(无胁迫、中度胁迫、重度胁迫)处理下小麦根茎叶及蚜虫体内的Cd含量。结果表明:土壤Cd含量及干旱单一胁迫均对小麦及蚜虫体内的Cd含量造成了显著影响(P0.05)。两者交互作用对小麦根部及叶部的Cd含量影响显著,而对小麦茎部及蚜虫体内Cd含量影响不显著。在相同胁迫条件下, Cd在小麦中的积累分布为根茎叶。随着干旱胁迫程度增大,小麦根部Cd含量及土壤-根转移系数降低,茎部Cd含量及根-茎转移系数升高,麦长管蚜Cd含量在土壤Cd含量100mg?kg-1下高于土壤Cd含量200 mg?kg-1;中度干旱胁迫增加了麦长管蚜体内Cd累积量,而重度干旱胁迫则降低了其体内Cd累积量。叶-蚜虫的Cd转移系数明显大于土壤-根、根-茎和茎-叶转移系数且大于1,说明Cd在麦长管蚜体内产生了生物富集作用。综上所述,干旱胁迫促进了Cd从土壤向小麦茎部转移和根部Cd累积,但抑制了Cd从根部到茎部转移和茎部Cd累积;中度干旱胁迫促进了麦长管蚜体内Cd的积累,而重度干旱胁迫抑制了麦长管蚜体内Cd的积累。  相似文献   

13.
Abstract

Deposition of iron (Fe) plaque on roots of rice before exposure to excess of copper (Cu) was found to lessen the toxic effects of Cu. In the excess of Cu, plants with Fe plaque had significantly greater dry weight of roots and leaves, longer leaves, and roots, and higher concentration of Fe in leaves than plants without plaque. In the excess of Cu, plants without Fe plaque had more leaves showing chlorosis than plants with plaque. Iron plaque on roots appeared to be beneficial for seed formation, since plants with plaque grown without exposure to excess Cu had highest seed weight, although differences were not significant. In the excess Cu solution, plants with plaque had significantly more Fe in seeds and more Cu in roots and in the DCB (dithionite‐citrate‐bicarbonate) wash than plants without plaque.  相似文献   

14.
Abstract

The effect of plant age on the development of bacterial wilt of forage grasses was studied by dipping cut roots of Lolinm perenne L. cv. ‘Svea’ in a suspension of Xanthomonas campestris pv. graminis. The effect of humidity on disease development was studied by cutting leaves with scissors dipped in inoculum, and by spraying inoculum onto unwounded leaves. Young plants were more susceptible to the pathogen than old ones. X.c.graminis was easily isolated from young leaves and tillers, especially from the leaf bases. Disease symptoms were most severe at low humidity. However, high humidity is necessary for infection to take place through stomata and hydathodes.  相似文献   

15.
Abstract

This study was to determine the concentration, accumulation, redistribution, and export of nutrients by Rubi grape. Ten branches with leaves and fruit were collected; the vegetable matter (stem, leaf, and fruit) was washed, dried, weighed, and analyzed so as to determine the concentration of nutrients in the plant. The nutrients most absorbed were nitrogen (N), potassium (K), and calcium (Ca), and the best absorption time started after the berry ripening. Phosphorus (P), magnesium (Mg), and sulfur (S) were less demanded by the grape although they had the same behavior in relation to the period of greater absorption. The best absorbed nutrient was manganese (Mn), and its absorption increased gradually and steadily, according to the plant growing phases. The absorption of copper (Cu), zinc (Zn), and boron (B) was minimal up to the ripening of berries, but increased from then on. The greatest absorption and accumulation of nutrients occurred during the ripening of the fruits. The leaves had greater absorption of Ca, Mg, S, Mn, and Cu, whereas the fruit absorbed more K (61%), P (56%), N (38%), and B (56%). The stem presented similarly in the proportion of all macronutrients, and it accumulated more Zn.  相似文献   

16.
Tailings of a Pb and Zn mine as a metal-contaminated area (Zone 1) with two pioneer plant species, Peganum harmala and Zygophyllum fabago, were investigated and compared with a non-contaminated area (Zone 2) in the vicinity. Total concentrations of Pb, Zn, and Cu in the soil of Zone 1 were 1 416, 2 217, and 426 mg kg-1 , respectively, and all exceeded their ranges in the normal soils. The soil pH was in the neutral range and most of the physical and chemical characteristics of the soils from both zones were almost similar. The species Z. fabago accumulated higher Cu and Zn in its aerial part and roots than the normal plants. On the other hand, their concentrations did not reach the criteria that the species could be considered as a metal hyperaccumulator. The species P. harmala did not absorb metals in its roots; accordingly, the accumulation factor values of these metals were lower than 1. The contents of chlorophyll, biomass, malondialdehyde, and dityrosine in these two species did not vary significantly between the two zones studied. In Zone 1, leaf vacuoles of Z. fabago stored 35.6% and 43.2% of the total leaf Cu and Zn, respectively. However, in this species, the levels of phytochelatins (PCs) and glutathione (GSH) and antioxidant enzyme activities were significantly higher in Zone 1 than in Zone 2. In conclusion, metal exclusion in P. harmala and metal accumulation in Z. fabago were the basic strategies in the two studied pioneer species growing on the metal-contaminated zone. In response to metal stress, elevation in antioxidant enzyme activities, increases in the PCs and GSH levels in the aerial parts, and metal storage within vacuoles counteracted each other in the invasion mechanism of Z. fabago.  相似文献   

17.
One‐year‐old Red Haven’ peach (Prunus Persica) trees grown in pots in the greenhouse were used to study the time course mobility and pattern of distribution of boron (B). Enriched‐10B boric acid solution was evenly spread onto the abaxial side of the fifth leaf (numbered acropetally). After harvesting at different time intervals, selected plant parts were analyzed for 10B using an ICP‐MASS spectrometer. The results showed that within 4 hours, B could be taken up and translocated bidirectionally to all plant parts, except for the fine roots. Treated leaf, green stem, and fine root were the tissues having high 10B concentrations in comparison to the other tissues. The highest 10B concentrations in the fed leaf, green stem, and fine root were reached in 12 hours, at the 4th week, and in 72 hours, respectively. The total 10B absorbed averaged 0.3% of the total 10B applied, with the highest total percent recovery of 0.43%, which was reached in 72 hours. The total amount of 10B exported from the fed leaf was more than 50% of the 10B absorbed. A comparison of the 10B/11B ratio and the 10B content was used as the parameter of B movement. The method of data expression is also discussed.  相似文献   

18.
ABSTRACT

Elsholtzia splendens Naki has been identified as a copper (Cu) geobotanical indicator. In this study, the effects of Cu supply levels (control, 100, 200, 400, 600, 800, 1000, 1200 mg kg1) on the growth and Cu accumulation in E. splendens were studied in one pot experiment. The results showed that no reduction in shoot height and dry weight was noted when the plants were grown at Cu supply levels up to 1000 mg kg?1 in soil. Slight stimulation on shoot growth was noted at Cu levels ≥ 100 mg kg?1. Copper concentration in shoots and roots increased with increasing Cu levels, and reached a maximum of 1751 and 9.45 mg kg?1 (DW) at 1200 mg Cu kg?1. The amount of Cu accumulated in the roots and shoots were 313 and 22 μ g plant?1 at external Cu levels of 1000 and 800 mg kg?1, respectively. The shoot/root Cu ratios ranged from 0.005 to 0.008 and more than 92% of the total Cu taken up by E. splendens was accumulated in roots. Furthermore, Cu concentrations in roots and shoots were significant and positively correlated with total soil Cu, water, ammonium nitrate (NH4NO3), ammonium (NH4)-acetate, and ethylenediaminetetraacetic acid (EDTA) extractable Cu. These results indicate that E. splendens can considered as a Cu tolerant and accumulated plant, and root is the major part for accumulation of Cu in E. splendens.  相似文献   

19.
Soybean (Glycine max L. Merr.) cv. Bragg and its supernodulating mutant nts 1007 were grown in pots containing vermiculite with a N-free nutrient solution in order to examine the effect of elevated CO2 concentration (100+20 Pa CO2 ) on biomass production, photosynthesis, and biological nitrogen fixation. The whole plant weight increase in Bragg was higher than in the mutant at a high CO2 concentration. Apparent photosynthetic activities of the upper leaves in both Bragg and the mutant increased up to 14 d after treatment initiation by the CO2 enrichment and thereafter decreased to some extent. Both leaf area and leaf thickness of Bragg increased more than in nts 1007. With the elevated CO2 concentration, biological nitrogen fixation (BNF) also responded in the same manner as biomass production in both Bragg and nts 1007. The increase of BNF in Bragg was largely due to an increase in nodule weight. Starch contents in the leaves of both Bragg and the mutant increased significantly by CO2 enrichment, with a higher increase in Bragg than in its mutant. Sugar content in leaf differed only slightly in both Bragg and the mutant. N content in leaf decreased in both Bragg and its mutant, with the decrease being more pronounced in Bragg. However, in other plant parts (roots, stem, and petiole + pods), N content increased in the mutant while in Bragg, it decreased in the pod. N accumulation rate was higher in Bragg than in the mutant and increased more in Bragg than in the mutant by CO2 enrichment. The ureide content in leaf decreased in Bragg but increased in the mutant by elevated CO2 concentration. In the nodules, ureide content increased in both Bragg and the mutant by CO2 enrichment. Based on these results, it is suggested that in terms of biomass production and photosynthetic rate, Bragg responded more to elevated CO2 concentration than its mutant nts 1007. The alleviation of the stunted vegetative growth of the mutant by CO2 enrichment was limited despite the significant increase in the photosynthetic activity, presumably due to the limitation of sink activity in the growing parts and not to insufficient supply of N through BNF.  相似文献   

20.
ABSTRACT

This study investigated the effect of liquid fertilizer treatments on growth, flowering, leaf mineral content, and rhizome production during forcing of Curcuma alismatifolia ‘Chiang Mai Pink’ and C. thorelii ‘Chiang Mai Snow’. Plants were irrigated with 200 mL of 1.3 g L?1 of 15 nitrogen (N) -7 phosphorus (P) -14 potassium (K) water soluble fertilizer at 0, 1.3, 2.7, 4.0, 5.3, or 6.6 g L?1 weekly. Days to flower, flower stem length, and leaf length were recorded, the mineral contents in leaves were analyzed, and the number of rhizomes with tuberous roots were recorded at harvest. Flowering of the first inflorescence in both C. alismatifolia ‘Chiang Mai Pink’ and C. thorelii ‘Chiang Mai Snow’ was significantly delayed when plants received 6.6 g L?1 fertilizer as compared to the control plants. The number of rhizomes with more than 4 tuberous roots was highest when plants received 2.7 g L?1 fertilizer. No medium-sized rhizomes with more than seven tuberous roots were produced when ‘Chiang Mai Pink’ plants received 0, 4.0, 5.3, and 6.6 g L?1 fertilizer. Based on the production of rhizomes with four to six tuberous roots, optimum concentration of 15N -7P -14K water soluble fertilizer is 2.7 g L?1 for C. alismatifolia ‘Chiang Mai Pink’ and 1.3 to 4.0 g L?1 for C. thorelii ‘Chiang Mai Snow’. Although high boron content occurred only in the outer part of the second leaf when fertilizer concentrations were increased, leaf-margin burn (LMB) symptoms were not observed in both species and this could not be related to the production of rhizomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号