首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight fertilization strategies were compared in a field trial on Alfisol in Belgium (humid temperate climate): cattle slurry (CSL); farmyard manure (FYM); vegetable, fruit and garden waste compost (VFG); high C/N farm compost (FCP1); low C/N farm compost (FCP2); exclusively mineral fertilizer (MIN N); no fertilization (NF+), no fertilization and no crop (NF?). After five growing seasons, VFG resulted in the highest soil organic C (1.46% SOC) and total N contents (0.117%TN). SOC and TN contents of the MIN N plots, on the other hand, remained unchanged and were even similar to those of NF+ plots, despite greater biomass production on the MIN N plots than on the NF+ plots. Application of organic matter mostly increased dehydrogenase, β-glucosidase and β-glucosaminidase activity, but only FYM raised the activity of all three enzymes significantly compared to MIN N. Of the five organic amendments tested, only VFG suppressed Rhizoctonia solani (65% suppressiveness). Plots treated with FCP1, on the other hand, were highly conducive to R. solani (28.3% suppressiveness). Suppressiveness against R. solani probably depended on the maturity and cellulose content of the organic amendments. Highest microbial biomass C contents were found in the VFG plots. PLFA 16:1ω5c contents sensitively reacted to the different treatments and were significantly higher in VFG than in MIN N plots (3.84 and 2.20 nmol g?1 dry soil, respectively). Finally, a soil quality index was developed using stepwise canonical discriminant analysis. β-glucosaminidase and β-glucosidase activity, and TN content were the most important parameters of the index. According to this index, FYM resulted in a significantly higher soil quality than the other treatments. We conclude that farmyard manure seems to be the preferred organic amendment for maintaining soil quality in arable fields under temperate climatic conditions.  相似文献   

2.
In this study, mineralization of digested pig slurry and compost from municipal organic wastes in burned soils was followed for 60 days. The effects of amendments on organic matter fractions and microbial community level physiological profiles (CLPP) were also investigated at the end of the incubation period. Soil from a forest 10 days after a fire had a greater basal respiration, and more organic matter that a nearby soil that was not affected by fire, presumably as a consequence of black ash addition following the wildfire. Nitrification was inhibited in soils treated at 105 and 250 °C in the laboratory, but amendment application allowed nitrification to take place in the latter soil, and led to significant flushes of mineralization. Slurry amendment resulted in greater increases in mineral N compared with compost. Soil treated at 250 °C had the greatest content of water-extractable compounds (WE) at the expense of acid-extractable compounds (AE), but during the incubation the variations in these two fractions had an opposite trend, i.e. soil gained AE and lost WE fractions. The variation in N-acetyl-glucosamine-induced respiration was different between compost- and slurry-amended soils, with the greater values in the former. The effect of amendments could be further differentiated by principal component (PCA) and cluster analyses based on the variations in organic matter fractions and CLPP between the beginning and the end of the incubation period. Amendment application led to shifts on the PCA maps that depended both on the amendment and soil treatment. In fresh soil and in that treated at 250 °C, the unamended, compost- and slurry-amended treatments remained relatively close on the PCA maps and had linkage distances <1.0. In contrast, amendment application to other soils led to large shifts on the PCA maps and to linkage distances >1.0. Pig slurry led to the greatest changes in burned soil, while compost induced the greatest shifts in soil treated at 105 °C.This study suggests that an application of organic amendments after a severe fire event may contribute to a faster recovery of soil functions.  相似文献   

3.
Abstract

The effect of organic amendment on the resistance and resilience of the organic matter decomposing activity was compared between soils amended with compost and with chemical fertilizers. The impact of metam sodium disinfection on cellulose-decomposing activity and on the number of nematodes in three types of soils was periodically measured. In an andosol, cellulose-decomposing activity was significantly suppressed by soil disinfection only in the chemically fertilized soil (CF-soil) and not in the soils to which cow manure compost and okara (the residue in tofu production)/coffee compost was added. In a brown lowland soil, cellulose-decomposing activity was significantly suppressed by soil disinfection in the CF-soil, but not in the soils to which higher amounts of cow manure compost and pig manure compost had been added. In a red-yellow soil, cellulose-decomposing activity was significantly suppressed by soil disinfection in all soils, but its resilience was higher in the soils to which cow manure compost or coffee compost was added compared with the CF-soil. Total numbers of nematodes were markedly decreased by soil disinfection in all soils. These results may suggest that the resistance and resilience of cellulose-decomposing activity against soil disinfection were enhanced by organic amendments, while disinfection had fatal effects on soil nematodes. In most of the organically amended soils, the mean weight diameters of aggregates were larger compared with the CF-soils, suggesting that highly structured soil pore networks may provide shelters for the soil microbes responsible for cellulose decomposition against disinfection. This hypothesis was supported by the result that the resistance of cellulose-decomposing activity against soil disinfection decreased when the soil structure was destroyed by grinding in a mortal and pestle.  相似文献   

4.
采用15N示踪技术,选用水稻土和灰潮土在宜兴进行小麦盆栽试验,研究了稻草、猪粪及其堆肥与化肥配施对作物生长及氮素吸收的影响。结果表明,在水稻土和灰潮土上,不同有机物及其堆肥与化肥配施分别比单施化肥增产4.46%~24.82%和1.01%~20.53%,稻草堆肥和猪粪堆肥配施化肥处理籽粒产量分别高于稻草和猪粪直接与化肥配施处理。稻草和猪粪堆肥后更利于作物吸收氮素,增加植物体内15N累积。两种土壤上15N回收率表现为相同配比的堆肥处理未堆肥处理单施化肥处理。随着小麦生育期的推进,土壤微生物量氮和矿质态氮含量均呈下降趋势,稻草和猪粪处理的微生量氮含量始终高于稻草堆肥和猪粪堆肥处理。有机无机肥配施处理土壤矿质态氮在小麦生育前期低于单施化肥,成熟期则高于单施化肥。整个生育期中,稻草堆肥和猪粪堆肥处理土壤矿质态氮含量分别高于稻草和猪粪处理。因此,有机物堆肥后与化肥配施更有利于提高产量,促进作物对氮素的吸收利用。  相似文献   

5.
《Applied soil ecology》2002,19(2):147-160
Field experiments were conducted to examine the effects of organic and synthetic soil fertility amendments on soil microbial communities and soil physical and chemical properties at three organic and three conventional vegetable farms in Virginia and Maryland in 1996 and 1997. Two treatments, including either an alternative organic soil amendment (composted cotton-gin trash, composted yard waste, or cattle manure) or synthetic soil amendment (fertilizer) were applied to three replicated plots at each grower field location. Production history and time affected propagule densities of Trichoderma species which remained higher in soils from organic farms. Propagule densities of Trichoderma species, thermophilic microorganisms, and enteric bacteria were also detected in greater numbers in soils amended with alternative than synthetic amendments, whereas propagule densities of Phytophthora and Pythium species were lower in soils amended with alternative than synthetic fertility amendments. Concentrations of Ca, K, Mg, and Mn were higher in soils amended with alternative than synthetic fertility amendments. Canonical correlations and principle component analyses indicated significant correlation between these soil chemical factors and the biological communities. First-order canonical correlations were more negative in fields with a conventional history, and use of synthetic fertilizers, whereas canonical correlations were more positive in fields with a history of organic production and alternative soil amendments. In the first year, yields of corn or melon were not different in soil amended with either synthetic or organic amendments at four of six farms. In the second year, when all growers planted tomatoes, yields were higher on farms with a history of organic production, regardless of soil amendment type. Alternative fertility amendments, enhanced beneficial soil microorganisms reduced pathogen populations, increased soil organic matter, total carbon, and cation exchange capacity (CEC), and lowered bulk density thus improving soil quality.  相似文献   

6.
《Applied soil ecology》2007,37(2-3):136-146
The effect of temperature changes on soil communities is an important aspect when estimating the effects of a predicted climate change. The aim of this investigation was to increase knowledge on how freeze-thaw cycles alter the soil microarthropod community in the sub-arctic. The abundance of springtails and mites was investigated after three seasons of prolonged periods of freeze-thaw cycles in the field, and the presence or absence of migration barriers, at two different field sites. Dome shaped transparent plastic greenhouses were successfully used as a novel method to increase freeze-thaw cycle frequencies in the soil. At a fellfield site, freeze-thaw treatment did not lead to significant differences in the five main soil faunal groups, but increased abundance were seen in a number of separate taxa. There was no freeze-thaw treatment effect on soil microbial biomass or soil nutrients, although treatments interacted as inorganic N increased in the separate freeze-thaw and migration barrier treatments. By contrast, at a glade site responses were strong due to more pronounced increases in the number of freeze-thaw cycles. The highest numbers of Collembola after 2 years of treatment were found in the freeze-thaw plots, in combination with migration barriers. The freeze-thaw treatment here also resulted in more Oribatida, microbial biomass C and dissolved organic C. A common hypothesis is that an increased number of freeze-thaw cycles would result in elevated winter mortality in microarthropods due to increased risk of inoculative freezing. However, we observed no increased mortality due to freeze-thaw events. Rather, there was a stimulation of soil microarthropods and microbial biomass, perhaps due to a prolonged period of microbial and faunal activity when the soil is repeatedly frozen and thawed compared to a constantly frozen soil.  相似文献   

7.
Low phosphorus availability in cultivated soils limits sustainable crop production in sub‐Saharan Africa. This study aimed at evaluating the effect of long‐term application of different types of organic amendments on soil P forms, P use efficiency and sorghum yields. A long term experiment established in 1980 at Saria in Burkina Faso, comparing the effects of manure, compost and sorghum straw was used. Manure and compost significantly increased organic P and resin‐P by about 35% and 64%, respectively after 10 and 32 years of sorghum cultivation, and HCl‐P after 32 years of cultivation compared to the control. Manure significantly increased NaHCO3-Pi and NaOH-Pi by 63% and 26%, respectively compared to the control. Sorghum straw had little effect on measured soil P forms. Manure and compost were the best in increasing sorghum grain yield, which effect were strongly correlated to soil pH, carbon and nitrogen. The partial factors productivities of P resulting from the application of studied organic amendments were similar and low, but significantly higher than that of the control treatment. Organic amendments with high P content, maintaining soil carbon and pH could be used to improve soil P availability, sorghum yield and reduce the demand for mineral phosphorus fertilizers.  相似文献   

8.
Microbial biomass carbon (MBC), a small fraction of soil organic matter, has a rapid turnover rate and is a reservoir of labile nutrients. The water-extractable carbon pools provide a fairly good estimate of labile C present in soil and can be easily quantified. Changes in soil MBC and water-extractable organic carbon pools were studied in a 14-year long-term experiment in plots of rice-wheat rotation irrigated with canal water (CW), sodic water (SW, 10-12.5 mmol c L-1 residual sodium carbonate), and SW amended with gypsum with or without application of organic amendments including farmyard manure (FYM), green manure (GM), and wheat straw (WS). Irrigation with SW increased soil exchangeable sodium percentage by more than 13 times compared to irrigation with CW. Sodic water irrigation significantly decreased hot water-extractable organic carbon (HWOC) from 330 to 286 mg kg-1 soil and cold water-extractable organic carbon (CWOC) from 53 to 22 mg kg-1 soil in the top 0-7.5 cm soil layer. In the lower soil layer (7.5-15 cm), reduction in HWOC was not significant. Application of gypsum alone resulted in a decrease in HWOC in the SW plots, whereas an increase was recorded in the SW plots with application of both gypsum and organic amendments in both the soil layers. Nevertheless, application of gypsum and organic amendments increased the mean CWOC as compared with application of gypsum alone. CWOC was significantly correlated with MBC but did not truly reflect the changes in MBC in the treatments with gypsum and organic amendments applied. For the treatments without organic amendments, HWOC was negatively correlated with MBC (r = 0.57*) in the 0-7.5 cm soil layer, whereas for the treatments with organic amendments, both were positively correlated. Irrigation with SW significantly reduced the rice yield by 3 t ha-1 and the yield of rice and wheat by 5 t ha-1 as compared to irrigation with canal water. Application of amendments significantly increased rice and wheat yields. Both the rice yield and the yield of rice and wheat were significantly correlated with MBC (r = 0.49**-0.56**, n = 60). HWOC did not exhibit any relation with the crop yields under the treatments without organic amendments; however, CWOC showed a positive but weak correlation with the crop yields. Therefore, we found that under sodic water irrigation, HWOC or CWOC in the soils was not related to MBC.  相似文献   

9.
This study investigated the long-term effects of different composts (urban organic waste compost (OWC), green waste compost (GWC), cattle manure compost (MC) and sewage sludge compost (SSC)) compared to mineral fertilisation on a loamy silt Cambisol, after a 7-year start-up period. The compost application rate was 175 kg N ha?1, with 80 kg mineral N ha?1 and without. Soil characteristics (soil organic carbon (SOC), carbon-to-nitrogen (C/N) ratio and soil pH), nutrients (nitrogen (N), phosphorous (P) and potassium (K)) and crop yields were investigated between 1998 and 2012. SOC concentrations were increased by compost applications, being highest in the SSC treatments, as for soil pH. N contents were significantly higher with compost amendments compared to mineral fertilisation. The highest calcium-acetate-lactate (CAL)-extractable P concentrations were measured in the SSC treatments, and the highest CAL-extractable K concentrations in the MC treatments. Yields after compost amendment for winter barley and spring wheat were similar to 40 kg mineral N ha?1 alone, whereas maize had comparable yields to 80 kg mineral N ha?1 alone. We conclude that compost amendment improves soil quality, but that the overall carbon (C) and N cycling merits more detailed investigation.  相似文献   

10.
The capability of organic wastes to release available N in soil varies largely, depending on their source and form of production, or rather on their composition and biodegradability. Our purpose was to predict mineralization rates of different materials using their analyses joined with a simulation model, and to evaluate the influence of soil type and application rate of the organic materials on N and C transformations in soil. Four organic materials, sewage sludge (SS), sewage sludge compost (SSC), cattle manure compost (CMC), hen and cattle manure compost (HCMC), were applied to two soils at rates of 2 and/or 4%. The soils were incubated aerobically for 168 days at 30°C, during which CO2 evolution rates and mineral-N concentrations were measured periodically. Hot water extractable C and N of all organic amendments correlated well with short term C and N mineralization, except HCMC that immobilized N although its soluble N content was large. NCSOIL, a computer model that simulates C and N cycling in soil with organic amendments, predicted well C and N mineralization of SS, SSC and CMC when considered as three-pool materials that decomposed at specific rates of 0.4, 0.024 and 10?4 d?1, using hot water soluble C and N as the labile pool. N immobilization by HCMC could be simulated only if the distribution of N between the labile and resistant pools was derived by optimization of NCSOIL, while hot water soluble C was labile. Laboratory methods to determine an intermediate pool or components that contribute to immobilization are required for improving the predictions of C and N mineralization from organic amendments.  相似文献   

11.
The effect of organic amendment on the resistance and resilience of the organic matter decomposing activity was compared between soils amended with compost and with chemical fertilizers. The impact of metam sodium disinfection on cellulose-decomposing activity and on the number of nematodes in three types of soils was periodically measured. In an andosol, cellulose-decomposing activity was significantly suppressed by soil disinfection only in the chemically fertilized soil (CF-soil) and not in the soils to which cow manure compost and okara (the residue in tofu production)/coffee compost was added. In a brown lowland soil, cellulose-decomposing activity was significantly suppressed by soil disinfection in the CF-soil, but not in the soils to which higher amounts of cow manure compost and pig manure compost had been added. In a red-yellow soil, cellulose-decomposing activity was significantly suppressed by soil disinfection in all soils, but its resilience was higher in the soils to which cow manure compost or coffee compost was added compared with the CF-soil. Total numbers of nematodes were markedly decreased by soil disinfection in all soils. These results may suggest that the resistance and resilience of cellulose-decomposing activity against soil disinfection were enhanced by organic amendments, while disinfection had fatal effects on soil nematodes. In most of the organically amended soils, the mean weight diameters of aggregates were larger compared with the CF-soils, suggesting that highly structured soil pore networks may provide shelters for the soil microbes responsible for cellulose decomposition against disinfection. This hypothesis was supported by the result that the resistance of cellulose-decomposing activity against soil disinfection decreased when the soil structure was destroyed by grinding in a mortal and pestle.  相似文献   

12.
Municipal solid waste (MSW) composts have been frequently used as N and C amendments to improve soil quality and to support plant growth, with the additional benefit of reducing waste disposal costs. However, attention has been paid to the risks of MSW use for the soil environment. The presence of heavy metals in MSW composts can affect some microbiological characteristics of soil such as the structure of the soil microbiota, which are responsible for the transformations making nutrients available to plants. The effects of MSW compost and mineral-N amendments in a 2-year field trial on some physical-chemical properties, some enzyme activities and the genetic diversity of cropped plots (sugar beet-wheat rotation) and uncropped plots were investigated. Variations of pH were not statistically related to MSW compost and mineral-N amendments, or to the presence of the crop. Amendment with MSW compost increased the organic C and total N contents, and dehydrogenase and nitrate reductase activities of soil. In cropped plots amended with MSW compost, dehydrogenase activity was positively correlated with #-glucosidase activity, and both enzyme activities with organic C content. No MSW compost dosage effect was detected. No effects were observed on denaturing gradient gel electrophoresis and amplified rDNA restriction analysis patterns, indicating that no significant change in the bacterial community occurred as a consequence of MSW amendment.  相似文献   

13.
Application of organic waste to saline alkaline soils is considered to be a good practice for soil remediation. The effects of applying different organic amendments (e.g., cattle dung, vermicompost, biofertilizer) and earthworm inoculations (Eisenia fetida) on saline soils and cotton growth were investigated during 1 year of cotton cultivation. Compared to the control (applied with inorganic NPK fertilizer), applying organic amendments improved soil physicochemical properties. Biofertilizer application improved available nutrient content, reduced short-term soil electrical conductivity, and produced the highest cotton yield, whereas cattle dung and vermicompost applications resulted in higher soil organic matter content. Application of organic amendments significantly increased soil microbial biomass carbon during the flowering period, which sharply declined at harvest. This was especially true for the biofertilizer treatment, which also exhibited lower nematode abundance compared with the other organic materials. Earthworm inoculation following cattle dung application failed to significantly change soil physicochemical properties when compared to the treatments without earthworm inoculation. Results suggest that biofertilizer application to saline soil would improve soil nutrient status in the short-term, whereas cattle dung application would improve soil organic matter content and increase soil organism abundance to a greater extent. However, different strategies might be required for long-term saline soil remediation.  相似文献   

14.
Biological indicators based on abundances of soil organisms are powerful tools for inferring functional and diversity changes in soils affected by agricultural perturbations. Field plots, combining organic and conventional practices with no tillage, conservation tillage and standard tillage maintained different nematode assemblages and soil food webs. Soil food web indices based on nematode assemblages were reliable predictors of the trophic composition of functional characteristics of soil mite assemblages. Bacterial-feeding and predatory nematodes, together with predatory mites, were abundant in the organic-no till treatments and were associated with high values of the Enrichment and the Structure Index based on nematode assemblages. Conventional-Standard tillage treatments had high abundances of fungal- and plant-feeding nematodes and algivorous mites, associated with high values of the Basal and Channel Index. This study validates the hypothesis that nematode-based soil food web indices are useful indicators of other soil organisms such as mites, with similar functional roles and environmental sensitivities.  相似文献   

15.
Compost is widely used to increase soil fertility, usually practiced by incorporating the compost into the upper soil layer. This study questions the rationale behind this practice. Compost was applied as a mulch and compared with compost worked into the soil in a growth experiment with leek (Allium porrum L. Var. ‘Siegfried Frost’). The compost used was made of source separated organic waste from either gardens and parks, or households. Garden-park compost was applied in 2.5 times greater volumes than household compost to compensate for its lower content of nutrients. The soil was either sandy loam or clay loam. Each of the eight combinations of variables (application method, compost type, and soil type) was repeated three times with 20 leeks in each replicate. Significantly higher yields were obtained with compost applied as a mulch. Here, the yield averaged 78 g fresh weight per leek, compared to 59 g per leek from plots with compost incorporated. Compost mulching also resulted in a significantly higher quality leeks, including more first class leeks, longer and thicker shafts, and a generally better appearance. The advantage of placing the compost on the soil surface rather than thoroughly mixing it with the soil can be attributed to a higher availability of plant nutrients. No significant effect of compost type on leek yield was observed, indicating that the 2.5 times higher volumetric dose of garden-park compost provided the same amount of available nutrients as a single dose of household compost. The soil type did not significantly influence the yields either, which is attributable to both soils being well structured prior to compost amendment.  相似文献   

16.
For two consecutive years, one-inch (50 T/A) of leaf compost was applied to plots on a sandy terrace soil (Windsor, Connecticut) and a loamy upland soil (Mt. Carmel, Connecticut). These compost-amended plots were fertilized with 10-10-10 (N-P2O5-K2O) at three rates: 0, 650 (half), 1300 (full) lb/A and cottonseed meal at a rate of 2166 lb/A. Tomato (Lycopersicon esculentum Miller) yield from compost-amended plots were compared to yield from unamended control plots fertilized with 1300 lb 10-10-10/A. In both years, at both sites, plots only amended with compost had yields equivalent to the fertilized control plots. In both years, the greatest yields at Mt. Carmel were from plots amended with compost and the full rate of inorganic fertilizer. In the second year, yields from compost-amended plots fertilized at half the rate were equivalent to compost-amended plots fertilized at full rate. The yields from the organic plots were similar to the control plots the first year and to plots amended with compost and half the rate of fertilizer the second year. At Windsor, the greatest yields for both years were from plots amended with compost and the full rate of fertilizer. The compost-amended plots fertilized with cottonseed meal produced the lowest yields, both years. Cumulative effects of compost on soils were measured by increases in pH and organic matter percentage at both sites. Tomato fruit in plots amended with compost and no fertilizer developed less blossom-end rot than fruit in all other treatments.  相似文献   

17.
Soil fauna are a key component of soil biodiversity and a driver of soil functioning. While the importance of soil fauna is well recognized, quantitative estimates of the role of soil fauna on soil biogeochemical processes, such as plant litter decomposition, are limited by methodological constraints. The addition of naphthalene, a polycyclic aromatic hydrocarbon (C10H8), to suppress soil fauna has been used for decades in decomposition experiments, but its efficacy remains questioned. In fact, we lack a rigorous field assessment of the efficacy of naphthalene additions for soil fauna suppression and potential non-target effects on the soil microbial community and carbon cycling. We added naphthalene at a high rate (477 g m−2) monthly for 23 months on the bare soil surface of a tallgrass prairie. We determined the effect of such additions on the abundance of nematodes and micro-arthropods along the soil profile to a depth of 20 cm at 11, 16 and 23 months after initiating naphthalene application. We used the variation in the natural 13C abundance of the naphthalene (δ13C – 25.5‰) as compared to the native soil (δ13C  −17‰) to quantify naphthalene contribution to soil CO2 efflux and microbial biomarkers (PLFA). Naphthalene addition significantly reduced the abundance of oribatid mites (−45%), predatory mites (−52%) and springtails (−49%), but did not affect nematode abundance. The 13C abundance of a few Gram-negative (cy17:0, 18:1ω7c, 16:1ω7c), Gram-positive (a15:0, i15:0) and Actinobacteria (10Me-16:0, 10Me-18:0) PLFA markers decreased significantly in naphthalene treated plots, indicating bacterial utilization of naphthalene-derived C. Mixing models showed this contribution to be highly variable, with the highest naphthalene-C incorporation for Gram negative bacteria. Naphthalene-C was not incorporated in fungal PLFAs. This microbial utilization did not affect overall microbial abundance, community structure or activity, estimated as soil respiration. This experiment proves that naphthalene addition is a feasible method to reduce soil micro-arthropods in the field, with negligible direct effects on soil nematodes, microbial abundance and C dynamics.  相似文献   

18.
为评价沼液作为堆肥含氮添加剂的应用效果,开发沼液的处理应用技术,以牛粪树叶堆肥为对照,将沼液和树叶混合堆制发酵,探讨其发酵特性与腐熟进程。研究结果表明,环境温度一直在10℃以下,沼液堆肥化和牛粪堆肥化均能经历35d以上的堆温超过50℃的高温发酵;而沼液堆肥化超过50℃的高温期持续时间比牛粪堆肥化少8d;经60d的发酵沼液堆肥化的半纤维素含量从发酵初期的12.14%下降到6.53%,纤维素含量由20.5%下降到9.8%;而牛粪堆肥化的半纤维素含量从12.8%下降到9.56%,纤维素含量由21.5%下降到15.9%。可见沼液堆肥化的分解更彻底。从C/N、温度、可溶性糖含量、含水量、种子发芽指数综合评价两种堆肥的腐熟度,沼液堆肥化进入腐熟状态约经30d,而牛粪堆肥化进入腐熟约需45d。  相似文献   

19.
农田土壤螨群落变化与环境因素关系的研究   总被引:1,自引:0,他引:1  
对中国农业大学实验站农田土壤螨群落变化与环境因素的关系研究结果表明,土壤螨种类与数量随土壤养分的增加而增加,随土壤容重和pH值的增大而减少;长期施用EM堆肥,土壤孔隙多,通气性好,土壤耕层增厚,有机质含量提高,土壤螨种类与数量最多。  相似文献   

20.
《Applied soil ecology》2008,38(3):256-266
Dynamics of soil bulk density, organic matter, microbial biomass, nitrogen, and nematode communities were assessed for a period of 4 years in field plots transitioning from conventional to organic farming practices. A rotation of soybeans, corn, oats and hay was used as an organic transitioning strategy and the conventional farming system had a corn and soybean rotation for comparison. Organic corn received raw straw pack beef manure and poultry compost at the rate of 27 and 28 Mg/h, respectively, and organic oats received raw straw pack beef manure and poultry compost at the rate of 18 and 1.8 Mg/h, respectively, while conventional plots received synthetic fertilizers. All crops in the organic system received primary tillage (chisel plow, disked and tined) whereas only corn received primary tillage in the conventional system but soybeans were no-till. Weed control was mechanical (twice diskings, rotary hoeings and row cultivation) in the organic system whereas herbicides were used in the conventional system. Soil bulk density did not differ in the two systems over a 4-year period but organic farming had slightly higher organic matter, mineral associated organic matter and particulate organic matter. Conventional system had more N in the mineral pools as indicated by higher NO3-N whereas organic system had higher N in the microbial biomass indicating shifts in nitrogen pools between the two systems. Bacterivore nematodes were more abundant in the organic than the conventional system for most of the study period. In contrast, the conventional system had significantly higher populations of the root lesion nematode, Pratylenchus crenatus, than the organic system after completion of the rotation cycle (transition period) in spring 2004. The organic hay plots had the lowest populations of P. crenatus compared to corn, soybeans and oats. Nematode faunal profile estimates showed that the food webs were highly enriched and moderately to highly structured and the decomposition channels were bacterial in both systems. The lack of differences in structure index between the organic and conventional systems is probably due to the excessive tillage in the organic farming system, which may have prevented the build up of tillage-sensitive omnivorous and predatory nematodes that contribute to the structure index. We conclude that transition from conventional to organic farming can increase soil microbial biomass-N and populations of beneficial bacterivore nematodes while simultaneously reducing the populations of predominant plant-parasitic nematode, P. crenatus. Our findings also underscore the potential benefits of reducing tillage for the development of a more mature soil food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号