首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To estimate net ecosystem production (NEP), ecosystem respiration (R E), and gross primary production (GPP), and to elucidate the interannual variability of NEP in a cool temperate broadleaf deciduous forest in Sapporo, northern Japan, we measured net ecosystem exchange (NEE) using an eddy covariance technique with a closed-path infrared gas analyzer from 2000 to 2003. NEP, R E, and GPP were derived from NEE, and data gaps were filled using empirical regression models with meteorological variables such as photosynthetic active radiation and soil temperature. In general, NEP was positive (CO2 uptake) from May to September, either positive or negative in October, and negative (CO2 release) from November to the following April. NEP rapidly increased during leaf expansion in May and reached its maximum in June or July. The four-year averages (±?standard deviation) of annual NEP, GPP, and R E were 443?±?45, 1,374?±?39, and 931?±?11?g?C?m?2?year?1, respectively. The lower annual NEP and GPP in 2000 may have been caused by lower solar radiation in the foliated season. During the foliated season, monthly GPP varied from year to year more than monthly R E. Variations in the amount of incoming solar radiation may have caused the interannual variations in the monthly GPP. Additionally, in May, the timing of leaf expansion had a large impact on GPP. Variations in GPP affected the interannual variation in NEP at our site. Thus, interannual variation in NEP was affected by the incoming solar radiation and the timing of leaf expansion.  相似文献   

2.
We monitored variation in seasonal and annual net ecosystem production (NEP), gross primary production (GPP), and ecosystem respiration (R E) based on 7-year eddy covariance measurements above a cool?Ctemperate deciduous broad-leaved forest (Japanese beech forest). The 7-year means (±SD) of annual NEP, GPP, and R E were 312?±?64, 1250?±?62, and 938?±?36?g?C?m?2?year?1, respectively. Variation in NEP was much larger than variation in GPP and R E. During the growing season, the main factor controlling carbon balance was air temperature; variation in seasonal integrated NEP was regulated by accumulated air temperature (degree-day) with a significant negative correlation, whereas the seasonal ratio of R E to GPP was correlated positively with accumulated air temperature. Because the deviation of seasonal NEP was also significantly correlated with seasonal R E/GPP, NEP was controlled by R E/GPP, depending on air temperature during the growing season. Seasonal R E in the defoliation and snow seasons was also important for evaluating the annual carbon balance, because the total number of days in the two seasons was quite large owing to a long snowy winter. In the defoliation and snow seasons, we found defoliation season length was a major factor determining seasonal integrated R E, illustrating the positive correlation between R E and defoliation season length. The major factors controlling interannual variations in forest carbon balance are discussed.  相似文献   

3.
A number of continuous eddy covariance measurements and long-term biomass inventories had proved that old-growth forests are carbon sinks worldwide. The present study estimated the net ecosystem productivity (NEP) for an old-growth subtropical forest at the Dinghushan Biosphere Reserve in South China to investigate the temporal pattern of carbon sequestration, both seasonally and annually. The measured NEP over 7 years (from 2003 to 2009) showed that this forest was a net carbon sink, ranging from 230 (in 2008) to 489 g C m?2 year?1 (in 2004). The greatest value of NEP was found in the driest year and the lowest value in the wettest year during the study period. Within a year, NEP during the dry season was about 81.4 % higher than for the wet season. Accordingly, the dry season at seasonal scale and dry years at interannual scale are key periods for carbon sequestration in this forest. The strong seasonality of ecosystem or soil respiration (ER or SR) compared with gross primary productivity (GPP) resulted in substantial amounts of carbon being sequestered during dry seasons. A decrease of GPP and an increase of ER or SR demonstrated the lower carbon uptake in rainy years. From this study, we conclude that GPP and living biomass carbon increment are not overriding parameters controlling NEP. The variations in ER or SR driven by the rainfall scheme were the dominant factor determining the magnitude of NEP in this forest in South China.  相似文献   

4.
Forest management influences several ecosystem processes, including carbon exchange between forest ecosystem and atmosphere. The aim of this paper was to study the carbon cycle over different age classes of two managed forests in the Italian Alps through direct measurements and modelling. For this purpose, ecosystem carbon dynamics of a beech forest (Fagus sylvatica L.) and of a spruce forest (Picea abies (L.) Karst.) were investigated using a chronosequence approach. In both forests, five forest development stages were identified (thicket, pole wood, young forest, mature forest and the regeneration phase) with an age spanning from 42 to 163?years for the beech forest and from 35 to 161?years for the spruce forest. Measured total ecosystem carbon stock increased up to 80–100?years, with a mean of 232?MgC?ha?1 in the beech forest and of 299?MgC?ha?1 in the spruce forest. Calculated net ecosystem production (NEP) was found to decrease linearly with age and had an average value of 2.2 and 4.4?MgC?ha?1?year?1 for beech and spruce forest, respectively. Model simulations reported an increase in NEP till 50–60?years followed by a decrease thereafter. The model also predicted a negative NEP for a short period (8–11?years) after the seed cut. Aboveground biomass was the main driver of carbon accumulation while soil carbon was not significantly influenced by both age and management system. Moreover, measured data and model showed that the applied shelterwood system allowed for a rapid recovery of the ecosystem after the disturbance (i.e. seed cut), bringing back forest to act as C sink in few years.  相似文献   

5.
Abstract

The National Forest Inventory (NFI) is an important resource for estimating the national carbon (C) balance. Based on the volume, biomass, annual biomass increment and litterfall of different forest types and the 6th NFI in China, the hyperbolic relationships between them were established and net primary production (NPP) and net ecosystem production (NEP) were estimated accordingly. The results showed that the total biomass, NPP and NEP of China's forests were 5.06 Pg C, 0.68 Pg C year?1 and 0.21 Pg C year?1, respectively. The area-weighted mean biomass, NPP and NEP were 35.43 Mg C ha?1, 4.76 Mg C ha?1 year?1 and 1.47 Mg C ha?1 year?1 and varied from 13.36 to 79.89 Mg C ha?1, from 2.13 to 9.15 Mg C ha?1 year?1 and from ?0.16 to 5.80 Mg C ha?1 year?1, respectively. The carbon sequestration was composed mainly of Betula and Populus forest, subtropical evergreen broadleaved forest and subtropical mixed evergreen–deciduous broadleaved forest, whereas Pinus massoniana forest and P. tabulaeformis forest were carbon sources. This study provides a method to calculate the biomass, NPP and NEP of forest ecosystems using the NFI, and may be useful for evaluating terrestrial carbon balance at regional and global levels.  相似文献   

6.
A typhoon event catastrophically destroyed a 45-year-old Japanese larch plantation in southern Hokkaido, northern Japan in September 2004, and about 90% of trees were blown down. Vegetation was measured to investigate its regeneration process and CO2 flux, or net ecosystem production (NEP), was measured in 2006–2008 using an automated chamber system to investigate the effects of typhoon disturbance on the ecosystem carbon balance. Annual maximum aboveground biomass (AGB) increased from 2.7 Mg ha−1 in 2006 to 4.0 Mg ha−1 in 2007, whereas no change occurred in annual maximum leaf area index (LAI), which was 3.7 m2 m−2 in 2006 and 3.9 m2 m−2 in 2007. Red raspberry (Rubus idaeus) had become dominant within 2 years after the typhoon disturbance, and came to account for about 60% and 50% of AGB and LAI, respectively. In comparison with CO2 fluxes measured by the eddy covariance technique in 2001–2003, for 4.5 months during the growing season, the sum of gross primary production (GPP) decreased on average by 739 gC m−2 (64%) after the disturbance, whereas ecosystem respiration (RE) decreased by 501 gC m−2 (51%). As a result, NEP decreased from 159 ± 57 gC m−2 to −80 ± 30 gC m−2, which shows that the ecosystem shifted from a carbon sink to a source. Seasonal variation in RE was strongly correlated to soil temperature. The interannual variation in the seasonal trend of RE was small. Light-saturated GPP (Pmax) decreased from 30–45 μmol m−2 s−1 to 8–12 μmol m−2 s−1 during the summer season through the disturbance because of large reduction in LAI.  相似文献   

7.
With this study we investigated the effective factors on annual amount of total litterfall and needle litterfall in Pinus brutia forests and estimated them with a regression model based on certain stand parameters. We studied 27 permanent plots representing different stand structure and environmental conditions in South-Western Turkey. Litterfall was collected in three month intervals corresponding to each of four seasons for a three-year period. We found a significant relationship between litterfall and stand properties such as crown closure (%), basal area (m2?ha?1), stand stem volume (m3?ha?1), above-ground biomass (t?ha?1), mean annual volume increment (m3?ha?1?yr?1) and site index (T?=?75). Similar relationships also hold true between litterfall and each of such climatic factors as seasonal mean temperature (°C), relative humidity (%) and temperature/precipitation ratio (dimensionless). The mean annual litterfall considerably varied depending on stand characteristics and certain environmental factors. Both needle litterfall and total litterfall may be predicted for long term by regression models using certain stand parameters. Models developed for litterfall of P. brutia forests in this study may be used for national C inventory in Turkey.  相似文献   

8.
Information about the uncertainties associated with eddy covariance observations of surface-atmosphere CO2 exchange is of importance for model-data fusion in carbon cycling studies and the accurate evaluation of ecosystem carbon budgeting. In this paper, a comprehensive analysis was conducted to investigate the influence of data processing procedures, focusing especially on the nocturnal data correction and three procedures in nonlinear regression method of gap filling [i.e., the selection of respiration model (REM), light-response model (LRM) and parameter optimization criteria (POC)], on the annual net ecosystem CO2 exchange estimation at three forest ecosystems in ChinaFLUX with three yearly datasets for each site. The results showed that uncertainties caused from four methodological uncertainties were between 61 and 108?g?C?m?2?year?1, with 61?C93?g?C?m?2?year?1 (21?C30%) in a temperate mixed forest, 80?C107?g?C?m?2?year?1 (19?C21%) in a subtropical evergreen coniferous plantation and 77?C108?g?C?m?2?year?1 (16?C19%) in a subtropical evergreen broad-leaved forest. Factorial analysis indicated that the largest uncertainty was associated with the choice of POC in the regression method across all sites in all years, while the influences of the choice of models (i.e., REM and LRM) varied with climate conditions at the measurement station. Furthermore, the uncertainty caused by data processing procedures was of approximately the same magnitude as the interannual variability in the three sites. This result stressed the importance to understand the uncertainty caused by data processing to avoid the introduction of artificial between-year and between-site variability that hampers comparative analysis.  相似文献   

9.
Forest succession contributes to the global terrestrial carbon (C) sink, but changes in C sequestration in response to varied harvest intensities have been debated. The forests of the Central Appalachian region have been aggrading over the past 100 years following widespread clear-cutting that occurred in the early 1900s and these forests are now valuable timberlands. This study compared the history of ecosystem C storage in four watersheds that have been harvested at different frequencies and intensities since 1958. We compared NPP, NEP, and component ecosystem C fluxes (g C m−2 year−1) in response to the four different harvest histories (no harvest, clear-cutting, single tree selection cutting, and 43 cm diameter-limit cutting). Clear-cutting had short-term negative effects on NEP but harvest did not significantly impact long-term average annual C sequestration rates. Average plant C (g C m−2) since 1950 was about 33% lower in response to a clear-cut event than plant C in an un-harvested forest, suggesting that the C sequestration associated with clear-cutting practices would decline over time and result in lower C storage than diameter-limit cut, selective cut, or un-harvested forests. Total C stored over a 55-year period was stimulated ∼37% with diameter-limit cutting and selective cutting relative to un-harvested forests.  相似文献   

10.
  • ? Water and carbon fluxes, as measured by eddy covariance, climate, soil water content, leaf area index, tree biomass, biomass increment (BI), litter fall and mortality were monitored for 10 successive years in a young beech stand in Hesse forest (north-eastern France) under contrasting climatic and management conditions.
  • ? Large year-to-year variability of net carbon fluxes (NEE) and to a lesser extent, of tree growth was observed. The variability in NEE (coefficient of variation, CV = 44%) was related to both gross primary production (GPP) and to variations in total ecosystem respiration (TER), each term showing similar and lower interannual variability (CV = 14%) than NEE. Variation in the annual GPP was related to: (i) the water deficit duration and intensity cumulated over the growing season, and (ii) the growing season length, i.e. the period of carbon uptake by the stand. Two thinnings occurring during the observation period did not provoke a reduction in either GPP, water fluxes, or in tree growth. Interannual variation of TER could not be explained by any annual climatic variables, or LAI, and only water deficit duration showed a poor correlation. Annual biomass increment was well correlated to water shortage duration and was significantly influenced by drought in the previous year.
  • ? The relationship between annual NEE and biomass increment (BI) was poor: in some years, the annual carbon uptake was much higher and in others much lower than tree growth. However this relationship was much stronger and linear (r 2 = 0.93) on a weekly to monthly time-scale from budburst to the date of radial growth cessation, indicating a strong link between net carbon uptake and tree growth, while carbon losses by respiration occurring after this date upset this relationship.
  • ? Despite the lack of correlation between annual data, the NEE and BI cumulated over the 10 years of observations were very close.
  • ? On the annual time-scale, net primary productivity calculated from eddy fluxes and from biological measurements showed a good correlation.
  •   相似文献   

    11.
  • ? In the 1940s–1950s, large limba (Terminalia superba Engl. & Diels) plantations were established in the Democratic Republic of Congo to reduce the pressure on the natural forests.
  • ? The objective of this study was to evaluate the potential of these long-rotation plantations as production forests (timber) and carbon sinks.
  • ? Five different plantations, between 50 and 58 years old, were sampled. Over a sample surface of more than 73 ha, the diameter above buttresses of 2 680 trees, bole height of 265 trees and tree height of 128 trees was measured.
  • ? To estimate the commercial volume, a nonlinear power law regression was used (R 2 = 0.95). A power law variance function was applied to counter heteroscedasticity of the residual plot. Estimates of commercial tree and stand volume at 50 to 58 y were 5.6 ± 4.1 m3 and 183.9 ± 135.0 m3 ha?1. Stand volumes appear low but are explained by a large decrease in tree density. However, the mean volume increment of 3.2–3.7 m3 ha?1 y?1 corresponds well with teak plantations of a similar age. For limba, aboveground biomass and carbon estimates of this study (resp. 108.4 and 54.2 Mg ha?1) differ significantly from those of existing aboveground biomass models (resp. 135.7–143.9 Mg ha?1 biomass and 67.9–72.0 Mg ha?1 C). All aboveground biomass and carbon estimates for T. superba stands were lower than for the estimates of young fast-growing plantations like Tectona grandis L. f., Eucalyptus spp. and Acacia spp. (≤ 30 y).
  •   相似文献   

    12.
  • ? Carbon sequestration in forest ecosystems is an important though still uncertain process in the global greenhouse gas balance.
  • ? We computed biomass organic carbon (BOC) stocks of spatially explicit forested landscape units (LSU) in Belgium based on data collected in the regional forest inventories of 1984 (Wallonia region only) and 2000 (Wallonia and Flanders). C stock changes between 1984 and 2000 were estimated for Wallonia.
  • ? The total BOC pool stored in Belgian forests in 2000 amounts to 57.8 Mt C in 6222 km2, or 10.0 kg C m?2 in broadleaf, 9.5 kg C m?2 in coniferous and 8.7 kg C m?2 in mixed forest. Based on previous soil organic carbon (SOC) analysis for the same LSU, BOC and SOC stock per LSU appeared only weakly correlated. The total BOC sequestration between 1984 and 2000 equals 5.7 Mt C over an area of 5 107 km2, resulting in a flux of 0.07 kg C m?2 y?1. The BOC content of broadleaf forest in Wallonia increased with 6%, of coniferous forest with 32% and of mixed forest with 11%.
  • ? The observed regional differences in BOC stocks and in BOC sequestration rates are explained by the forest age-class distribution and site productivity. The strength of the spatially explicit approach lies in the fact that BOC and SOC data originating from diverse sampling strategies can be combined for spatial or temporal comparison of C stocks.
  •   相似文献   

    13.
    Soil loss rates currently recorded in forests are very low. Nevertheless, that may not be the case during stand installation and early tree growth stage, when soil is disturbed and scarcely covered. Site preparation techniques, performed to improve soil conditions for plant growth, should help reducing this erosion potential. In this study, several site preparation techniques were applied prior to installing a mixed stand (Pseudotsuga mensiezii and Castanea sativa) and a subsequent monitoring scheme of run-off and soil loss ran for 2?years in order to compare their effectiveness for erosion control. The experimental area, near Macedo de Cavaleiros, NE Portugal, at 700?m elevation, with annual means of 656?mm rainfall and 12°C temperature, has Mediterranean climatic conditions. Experimental design comprised three blocks, corresponding to different topographical positions (near flat plateau, moderate slope shoulder and steep mid-slope), where eight treatments were randomly distributed in plots with 375?m2 area: (1) Original soil control (no intervention on the original abandoned field); (2) No subsoiling, no ploughing, plantation with hole digger; (3) Subsoiling over the whole area, with covering shovel; (4) No subsoiling, contour bunds shaped by two plough passes; (5) Subsoiling in future plantation rows, contour bunds shaped by two plough passes; (6) Subsoiling over the whole area, contour bunds shaped by two plough passes; (7) Subsoiling over the whole area, contour ploughing over the whole area; and (8) Potential erosion (subsoiling over the whole area, ploughing downhill). Sediment and water exported from small plots (2.5?m2 average area), two replicates per treatment and block, were collected after each rainfall erosion event, in a total of 21, summing 1,876-mm precipitation in 2?years. Mean annual run-off and soil loss in the original soil were 3.4?mm and 11.6?g?m?2, respectively. In treatments 2–7, values were higher 3–7 times, for run-off, and 5–12 times, for soil loss. Potential erosion averages 2.3 t ha?1 year?1. Soil loss and run-off tend to increase with tillage intensity associated with site preparation technique, even though average two-year losses, in all cases, are below tolerable rates. Soil loss and run-off rates decreased with time, becoming globally negligible after 2?years. Slight and moderate soil disturbance intensity site preparation techniques reduce erosion rates to 30% of potential erosion, halving the critical period when above tolerance rates may occur.  相似文献   

    14.
    The strategy for implementing silvicultural practices in Japanese plantation forests was examined to achieve a carbon uptake of 13.0 Mt-C year–1, which was capped by the Marrakesh Accords, during the first commitment period, 2008–2012. The plantation forests that implemented silvicultural practices in the period 1990–2012 (FM plantation forests) were identified in compliance with the hypothesized identification rules, and carbon uptake in the forests was estimated using a simple model composed of simulation and optimization components on the assumption that whole plantation forest is classified into only two groups. Furthermore, parametric analysis was conducted to investigate the relationships among three factors: (1) the average annual harvesting volume (including thinning) in plantation forests during the first commitment period, (2) the total area of FM plantation forests in 2012, and (3) the average annual amount of carbon to be sequestered in FM plantation forests during the first commitment period. The results imply that young stands have to be prioritized in implementing silvicultural practices under any harvesting plan and carbon sequestration goal, and that FM plantation forests sequestered 8.0–10.5 (Mt-C year–1) carbon in inverse proportion to the harvesting volume of 21.0–14.0 million m3 year–1 (log volume), assuming that most of the plantation forests were incorporated into them.  相似文献   

    15.
    The Dahurian larch forest in northeast China is important due to its vastness and location within a transitional zone from boreal to temperate and at the southern distribution edge of the vast Siberian larch forest. The continuous carbon fluxes were measured from May 2004 to April 2005 in the Dahurian larch forest in Northeast China using an eddy covariance method. The results showed that the ecosystem released carbon in the dormant season from mid-October 2004 to April 2005, while it assimilated CO2 from the atmosphere in the growing season from May to September 2004. The net carbon sequestration reached its peak of 112 g.m^-2.month ^-1 in June 2004 (simplified expression of g (carbon).m^-2.month^-1) and then gradually decreased. Annually, the larch forest was a carbon sink that sequestered carbon of 146 g-m^-2.a^-1 (simplified expression of g (carbon).m^-2.a^-1) during the measurements. The photosynthetic process of the larch forest ecosystem was largely affected by the vapor pressure deficit (VPD) and temperature. Under humid conditions (VPD 〈 1.0 kPa), the gross ecosystem production (GEP) increased with increasing temperature. But the net ecosystem production (NEP) showed almost no change with increasing temperature because the increment of GEP was counterbalanced by that of the ecosystem respiration. Under a dry environment (VPD 〉 1.0 kPa), the GEP decreased with the increasing VPD at a rate of 3.0 μmol.m^-2.s^-1kPa -1 and the ecosystem respiration was also enhanced simultaneously due to the increase of air temperature, which was linearly correlated with the VPD. As a result, the net ecosystem carbon sequestration rapidly decreased with the increasing VPD at a rate of 5.2 μmol.m^-2.s-1.kPa^-1. Under humid conditions (VPD 〈 1.0 kPa), both the GEP and NEP were obviously restricted by the low air temperature but were insensitive to the high temperature because the observed high temperature value comes within the category of the optimum range.  相似文献   

    16.
    Most research on carbon content of trees has focused on temperate species, with less information existing for tropical trees and very little for tropical plantations. This study investigated factors affecting the carbon content of nineteen tropical plantation tree species of ages seven to twelve and compared carbon content of Khaya species from two ecozones in Ghana. For all sample trees, volume of the main stem, wood density, wood carbon (C) concentration and C content were determined. Estimated stem volume for the 12-year-old trees varied widely among species, from 0.01 to 1.04 m3, with main stem C content ranging from 3 to 205 kg. Wood density among species varied from 0.27 to 0.76 g cm?3, with faster growing species exhibiting lower density. Significant differences in wood density also occurred with position along the main stem. Carbon concentration also differed among tree species, ranging from 458 to 498 g kg?1. Differences among species in main stem C content largely reflected differences among species in estimated main stem volume, with values modified somewhat by wood density and C concentration. The use of species-specific wood density values was more important for ensuring accurate conversion of estimated stem volumes to C content than was the use of species-specific C concentrations. Significant differences in wood density did exist between Khaya species from the wet and moist semi-deciduous ecozones, suggesting climatic and site factors may also need to be considered. Wood densities for these plantation grown trees were lower than literature values reported for the same species in natural forests, suggesting that the application of data derived from natural forests could result in overestimation of the biomass and C content of trees of the same species grown in plantations.  相似文献   

    17.
    China’s forests cover 208.3 million ha and span a wide range of climates and a large variety of forest types including tropical,temperate,and boreal forests.However the variation patterns of fine root(2 mm in diameter biomass,production,and turnover from the south to the north are unclear.This study summarizes fine root biomass(FRB),production(FRP)and turnover rate(FRT)in Chi na’s forests as reported by 140 case studies published from 1983 to 2014.The results showed that the mean values o FRB,FRP and FRT in China’s forests were 278 gm~(-2)366 gm~(-2)a~(-1),and 1.19 a~(-1),respectively.Compared with other studies at the regional or global scales,FRB in China’s forests was lower,FRP was similar to estimates a the global scale,but FRT was much higher.FRB,FRP,and FRT in China’s forests increased with increasing mean annual precipitation(MAP),indicating that fine root vari ables were likely related to MAP,rather than mean annua temperature or latitude.This is possibly due to the smal variation in temperature but greater variation in precipitation during the growing season.These findings suggest that spatiotemporal variation in precipitation has a more profound impact on fine root dynamics in China’s forests,and this will impact carbon and nutrient cycles driven by root turnover in the future.  相似文献   

    18.
    Mangroves offer a number of ecosystem goods and services, including carbon (C) storage. As a carbon pool, mangroves could be a source of CO2 emissions as a result of human activities such as deforestation and forest degradation. Conversely, mangroves may act as a CO2 sink through biomass accumulation. This study aimed to determine carbon stocks, harvest removals and productivity of mangrove forests of mainland Tanzania. Nine species were recorded in mainland Tanzania, among them Avicennia marina (Forssk.) Vierh., Rhizophora mucronata Lam. (31%) and Ceriops tagal (Perr.) C.B.Rob. (20%) were dominant. The aboveground, dead wood, belowground and total carbon were 33.5 ± 5.8 Mg C ha?1, 1.2 ± 1.1 (2% of total carbon), 30.0 ± 4.5 Mg C ha?1 (46% of total carbon) and 64.7 ± 8.4 Mg C ha?1 at 95% confidence level, respectively. Carbon harvest removals accounted for loss of about 4% of standing total carbon stocks annually. Results on the productivity of mangrove forests (using data from permanent sample plots monitored for four years [1995-1998]) showed an overall carbon increment of 5.6 Mg C ha?1 y?1 (aboveground carbon), 4.1 C ha?1 y?1 (belowground carbon) and 9.7 C ha?1 y?1 (total carbon) at 23%, 32% and 27% levels of uncertainty, respectively. Both natural death and tree cutting/harvest removals resulted in significant decline of annual carbon productivity. Findings from this study demonstrate that mangroves store large quantities of carbon and are more productive than other dominant forest formations in southern Africa. Both their deforestation and forest degradation, therefore, is likely to contribute to large quantities of emission and loss of carbon sink functionality. Therefore, mangroves need to be managed sustainably.  相似文献   

    19.
    Carbon sequestration is important in studying global carbon cycle and budget. Here, we used the National Forest Resource Inventory data for China collected from 2004 to 2008 and forest biomass and soil carbon storage data obtained from direct field measurements to estimate carbon (C) sequestration rate and benefit keeping C out of the atmosphere in forest ecosystems and their spatial distributions. Between 2004 and 2008, forests sequestered on average 0.36 Pg C yr?1 (1 Pg = 1015g), with 0.30 Pg C yr?1 in vegetation and 0.06 Pg C yr?1 in 0–1 meter soil. Under the different forest categories, total C sequestration rate ranged from 0.02 in bamboo forest to 0.11 Pg C yr?1 in broadleaf forest. The southwest region had highest C sequestration rate, 30% of total C sequestration, followed by the northeast and south central regions. The C sequestration in the forest ecosystem could offset about 21% of the annual C emissions in China over the same period, especially in provinces of Tibet, Guangxi, and Yunnan, and the benefit was similar to most Annex I countries. These results show that forests play an important role in reducing the increase in atmospheric carbon dioxide in China, and forest C sequestration are closely related to forest area, tree species composition, and site conditions.  相似文献   

    20.
    H. T. Tate  T. Page 《New Forests》2018,49(4):551-570
    Developing methods for routine clonal propagation of sandalwood (Santalum austrocaledonicum) is important for its domestication and development as a commercial agroforestry species. The amenability of this species to propagation by leafy stem cuttings in low-cost non-mist propagators was assessed in four separate experiments. These experiments evaluated the effects of (1) genotype (15 genotypes from two island provenances), (2) cutting position on the stock plant (apical, medial and basal), (3) cutting size (1-node/400 mm2 and 2-node/800 mm2 leaf area), (4) three propagation media [scoria (5 mm, air-filled porosity (AFP)—29%), vermiculite and perlite (1:1 v/v, AFP—46%) and vermiculite, perlite and peat (2:2:1 v/v/v, AFP—42%)], (5) indole-3-butyric (IBA) (3000, 4000 and 8000 ppm) and (6) irradiance in the propagator [daily light integral (DLI) 5.3, 3.9, 2.6, 2.2 mol m?2 day?1]. IBA, propagation media and cutting size had no significant effect on rooting percentage, root number or root growth. Evidence of provenance-based variation in rooting capacity was recorded with greater rooting success for genotypes from the island of Erromango compared with Tanna. Variation in adventitious root induction was also recorded between individual genotypes from Erromango across all four experiments. Cuttings collected from the apical and medial parts of the shoot on the stock plant had higher rooting percentage than those collected from the base. Differences in rooting capacity between apical and medial shoots were variable between experiments and may be attributed to different levels of hardening. The use of artificial shade (~?70%) to achieve a mean DLI of between 2.6 and 3.9 mol m?2 day?1 increased rooting percentage compared to both lower (2.2 mol m?2 day?1 or?~?90% shade) and higher (5.3 mol m?2 day?1 or?~?50% shade) irradiance treatments. Leaf retention of cuttings in the propagator was positively associated with the percentage of cuttings with adventitious roots, with highest percentage in cuttings with full leaf retention, regardless of original cutting size. This study demonstrated S. austrocaledonicum seedlings can be successfully propagated by cuttings provided the propagation conditions are optimized for each genotype.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号