首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Summary We cultured colchicine-treated hybrid ovules in vitro to produce fertile amphidiploids of C. persicum (2n=2x=48. referred to as AA) × C. purpurascens (2n=2x=34, referred to as BB). Seedlings and mature plants were obtained from the ovules without colchicine and those exposed to 50 mg/l colchicine for 5, 10 and 15 days, whereas they were not obtained from the ovules exposed to 50 mg/l colchicine for 20 days and 500 mg/l for 5, 10, 15 and 20 days. Although 8 mature hybrids derived from the ovules without colchicine produced a few fertile pollen grains, they failed to produce viable seeds by self-fertilization. The hybrids had 41 somatic chromosomes. Four and 3 mature plants were derived from ovules exposed to 50 mg/l colchicine for 10 and 15 days, respectively. One each among 4 and 3 mature plants showed a high frequency of pollen grain fertility, produced several seeds by self-fertilization, and had 82 somatic chromosomes which is twice the number of hybrid chromosomes (2n=41, AB). These findings indicated that these plants are amphidiploids (2n=82, AABB) between C. persicum and C. purpurascens. Three and 2 viable seeds were derived by the conventional crosses of diploid C. persicum × the amphidiploid and the amphidiploid × C. purpurascens, respectively. Flowering plants that developed from the seeds of diploid C. persicum × the amphidiploid were barely fertile and had 65 somatic chromosomes (2n=65, AAB), whereas those that developed from the seeds of the amphidiploid × C. purpurascens were barely fertile and had 58 somatic chromosomes (2n=58, ABB). The somatic chromosomes indicated that these plants are probably sesquidiploids between the amphidiploid and either C. persicum or C. purpurascens. The interspecific cross-breeding of cyclamen using the amphidiploids and the sesquidiploids is discussed.  相似文献   

2.
Using three varieties of Brassica rapa, cv. Hauarad (accession 708), cv. Maoshan-3 (714) and cv. Youbai (715), as the maternal plants and one variety of B. oleracea cv. Jingfeng-1 (6012) as the paternal plant, crosses were made to produce interspecific hybrids through ovary culture techniques. A better response of seed formation was observed when ovaries were cultured in vitro at 9–12 days after pollination on the basal MS and B5 media supplemented with 6-benzylaminopurine (BA) and naphthylacetic acid (NAA). The best response was observed for cross 714×6012 with the rate of seeds per ovary reaching 43.0%. Seeds for cross 715×6012 showed the best germination response (66.7%) on the regeneration medium (MS+1.0 mg l–1 BA+0.05 mg l–1 NAA). In all three cross combinations, good response in terms of root number and length of plants was observed on the root induction medium (MS+1.0 mg l–1 BA+0.1 mg l–1 NAA). A better response was observed for the regenerated plants cultured for 14 days than for 7 days. The ovary-derived plants with well-developed root system were hardened for 8 days and their survival rate reached over 80%. Cytological studies showed that the chromosome number of all plants tested was 19 (the sum of both parents), indicating that these regenerated plants were all true hybrids of B. rapa (n = 10) × B. oleracea (n = 9). The regenerated plants were doubled with colchicine treatment, and the best response in the crosses 708×6012, 714×6012 and 715×6012 was observed when treated with 170 mg l–1 colchicine for up to 30 h and their doubling frequency reached 52, 56 and 62%, respectively.  相似文献   

3.
Black rot is a bacterial disease of Brassica oleracea caused by Xanthomonas campestris pv. campestris. Resistance to the major black rot races 1 or 4 has been identified in related Brassica species including B. carinata and B. napus. In this study, two B. juncea accessions (A 19182 and A 19183) that are resistant to races 1 and 4 of Xcc were used as maternal and paternal parents to generate interspecific hybrids with B. oleracea cultivars. Interspecific hybrids were recovered using the embryo rescue technique and confirmed through inheritance of paternal molecular markers. Twenty-six interspecific hybrid plants were obtained between A 19182 and B. oleracea cultivars, but no interspecific hybrids were obtained using A 19183. Although interspecific hybrid plants were male sterile, they were used successfully as maternal parents to generate backcross plants using embryo rescue. All hybrid and BC1 plants were resistant to black rot races 1 and 4.  相似文献   

4.
Summary Triazine resistant Brassica napus ssp. oleifera and ssp. rapifera were hybridized to cultivars of B. oleracea ssp. italica, ssp. botrytis, ssp. capitata and ssp. fimbriata. The interspecific embryos did not survive in vivo but could be rescued in vitro using a culture medium developed by Monnier (1973). The embryos did not grow directly into normal plants but were successfully regenerated using the protocol developed by Keller (1984). Hybridization efficiency ranged from 0 to 2.64 hybrids per pollination. Interspecific embryo abortion may be related to abnormal endosperm development.  相似文献   

5.
Summary Eight triazine resistant (Brassica napus x B. oleracea) x B. oleracea interspecific hybrids with chromosome numbers ranging from 25 to 27 were backcrossed a second time to B. oleracea but no seed was formed. However, in vitro embryo rescue on 77 developing ovules yielded nine BC2 plants with chromosome numbers between 19 and 25 and in which the herbicide resistance was still strongly expressed. Three of these plants (NOH-8B2B1, 2n=20; NOH-8B2B3 and NOH-8B2B4, 2n=19) were backcrossed again to B. oleracea. Two of the three plants produced seed which germinated to produce triazine resistan BBC3s with 18, 19 or 20 chromosomes. The triazine resistant B. campestris cytoplasm has now been stabilized in B. oleracea.  相似文献   

6.
Summary Intergeneric hybrids between Moricandia arvensis (a C3-C4 intermediate species) and Brassica oleracea (a C3 species) were obtained through ovary culture. Many hybrid embryos (2.71 per pollination) were produced in the M. arvensis × B. oleracea cross, but none were produced from the reciprocal cross. Though most embryos failed to develop into plantlets directly, plants were obtained by inducing shoots from hypocotyl explants. The hybrid plants were morphologically intermediate between the parents except for the petal color. Cytogenetic observations indicated that partial homology existed between the two genomes. Ovary culture is an efficient technique for gene transfer from M. arvensis to B. oleracea.  相似文献   

7.
Summary Atrazine resistant Brassica napus × B. oleracea F1 hybrids were backcrossed to both parental species. The backcrosses to B. napus produced seeds in both directions but results were much better when the F1 hybrid was the pollen parent. Backcrosses to B. oleracea failed completely but BC1s were rescued by embryo culture both from a tetraploid hybrid (2n = 4x = 37; A1C1CC) and sesquidiploid hybrids (2n = 3x = 8; A1C1C). Progeny of crosses between the tetraploid hybrid and B. oleracea had between 25 and 28 chromosomes. That of crosses between the sesquidiploid hybrid and B. oleracea had between 21 and 27. A few plants that had chromosome counts outside the expected range may have originated from either diploid parthenogenesis, unreduced gametes or spontaneous chromosome doubling during in vitro culture. Pollen stainability of the BC1s ranged from 0% to 91.5%. All the BC1s to B. oleracea were resistant to atrazine.  相似文献   

8.
Synthesis and sterility of raphanobrassica   总被引:4,自引:0,他引:4  
Summary The synthesis of Raphanobrassica (2n=36, rrcc) from Raphanus sativus (2n=18, rr) and Brassica oleracea (2n=18, cc) is described a) by colchicine treatment of diploid hybrids; b) by crossing autotetraploid froms of the parent species.The variation within R. sativus and B. oleracea suggests that a range of morphologically distinct Raphanobrassica forms may be created, some of which may have agronomic potential and in particular, it is hoped, Plasmodiophora resistance.Inter-generic hybrids were readily obtained from crossing the parental species at both 2x and 4x chromosome levels, but only with R. sativus as female parent.Details are given of the morphology, fertility and chromosome behaviour of both diploid F1 R. sativus × B. oleracea hybrids and of the amphidiploid Raphanobrassica.Synthesized Raphanobrassica plants proved, in general, highly sterile. Some aneuploids resulted from 4x R. sativus × 4x B. oleracea crosses but most progeny were euploid and showed almost regular chromosome association. A number of stunted, deformed plants were obtained from both 2x and 4x crosses. Vigour, fertility and aneuploidy appeared unconnected in the amphidiploid.Previous work on Raphanobrassica is reviewed. It is concluded that the extremely low fertility encountered in the present study is more likely to be the result of genic imbalance than to cytological anomalies which appear to be of lesser significance.  相似文献   

9.
The present investigation discusses the scope for transferring of resistance to leaf spot disease incited by Alternaria helianthi from two hexaploid wild species (H. tuberosus and H. resinosus) to diploid cultivated sunflower. Interspecific hybrids produced between sunflower and these two hexaploid species were partially fertile with tetraploid chromosome status. Backcrosses of these interspecific hybrids with cultivated sunflower resulted in the formation of sterile triploid plants. To overcome the problem of sterility and facilitate backcrosses with cultivated sunflower, anther culture of the tetraploid interspecific hybrids was carried out to bring down their chromosome number to diploid status. Anthers from both interspecific hybrids were cultured on basal Murashige and Skoog media supplemented with varying concentrations of organics and the growth regulators benzyladenine and naphthaleneacetic acid. Anthers of interspecific hybrids involving H. resinosus responded well and regenerated through an embryogenic route at a frequency of 98.7%. But in interspecific hybrids with H. tuberosus, anthers formed callus and subsequently regenerated shoots through an organogenic pathway. DNA ploidy analysis of anther culture plants of interspecific hybrids derived from H. tuberosus crosses was carried out to identify plants with desired diploid status. In vitro screening of parents, interspecific hybrids and anther culture plantlets against A. helianthi showed resistance in 68.5% of the anther culture plants of interspecific hybrids from H. tuberosus and in 24.3% of the plants derived from interspecific hybrids involving H. resinosus.  相似文献   

10.
Cultivars in Brassica napus var. oleifera, a self‐pollinating, self‐compatible species, have traditionally been developed as open‐pollinated lines or populations. Significant yield gains in this species have been realized through the exploitation of heterosis. Commercial hybrid production has been possible as a result of the development of a number of pollination control systems. Self‐incompatibility was transferred from B. oleracea var. italica to B. napus var. oleifera through interspecific hybridization. The response to interspecific pollination, as measured by pod elongation and initial stages of ovule development, was genotype dependent, and two highly responsive B. napus genotypes were identified. Embryo rescue was used to produce the interspecific hybrids. Isoelectric focusing of stigma proteins was used to identify S‐alleles in the interspecific hybrids to facilitate backcrossing. Segregation of the S‐locus through a series of back‐crosses to B. napus was complicated by aneuploidy; however, the S‐locus was found to segregate as a single gene. Usefulness of B. oleracea as a source of S‐alleles for pollination control in B. napus is discussed.  相似文献   

11.
Summary Meiosis in 14 interspecific F1 hybrids with three chromosomal levels (triploid, tetraploid, hexaploid; 2n=28, 37 and 55) between Brassica napus L. and 2x and 4x cabbage (B. oleracea var. capitata L.) was studied. The oleracea genome from B. napus maintained close homology with the c genome of cabbage while the campestris genome of B. napus showed partial homology with the c genome contained in the hybrids. Genotypic influence on chromosome pairing was indicated. Structural chromosome differences and spontaneous chromosome breakage and reunion were suggested as causes for the abnormalities which related to the unbalance of the genotypes. The divergence of the genomes of B. napus and B. oleracea and the need for the qualification of the term secondary association were discussed.Contribution No. J. 673, Research Station, Agriculture Canada, St. Jean, Québec.  相似文献   

12.
N. Inomata 《Plant Breeding》2002,121(2):174-176
In this cytogenetic study the progeny of all crosses were investigated in F1, F2 and backcross (BC1) hybrids. Brassica napus and F1 hybrids between B. napus and B. oleracea, and between B. napus and three wild relatives of B. oleracea (B. bourgeaui, B. cretica and B. montana). Each of the wild relatives has 18 somatic chromosomes. Interspecific F1 hybrids were obtained through ovary culture mean. These had 28 and 37 chromosomes and their mean pollen fertility was 10.7% and 93.0%, respectively. Many F2 and BC1 seeds were harvested from the F1 hybrids with 37 chromosomes after self‐pollination and open pollination of the F1 hybrids, and backcrossing with B. napus. Many aneuploids were obtained in the F2 and BC1 plants. It is evident from these investigations that the F1 hybrids may serve as bridge plants to improve B. napus and other Brassica crops.  相似文献   

13.
Interspecific hybrids were produced from reciprocal crosses between Brassica napus (2n = 38, AACC) and B. oleracea var. alboglabra (2n = 18, CC) to introgress the zero-erucic acid alleles from B. napus into B. oleracea. The ovule culture embryo rescue technique was applied for production of F1 plants. The effects of silique age, as measured by days after pollination (DAP), and growth condition (temperature) on the efficiency of this technique was investigated. The greatest numbers of hybrids per pollination were produced under 20°/15°C (day/night) at 16 DAP for B. oleracea (♀) × B. napus crosses, while under 15°/10°C at 14 DAP for B. napus (♀) × B. oleracea crosses. Application of the ovule culture technique also increased the efficiency of BC1 (F1 × B. oleracea) hybrid production by 10-fold over in vivo seed set. The segregation of erucic acid alleles in the self-pollinated backcross generation, i.e. in BC1S1 seeds, revealed that the gametes of the F1 and BC1 plants carrying a greater number of A-genome chromosomes were more viable. This resulted in a significantly greater number of intermediate and a smaller number of high-erucic acid BC1S1 seeds.  相似文献   

14.
Summary Resistance to Leptosphaeria maculans was assessed in Brassica napus, B. juncea, B. carinata, B. nigra and progeny issuing from an interspecific cross B. napus × B. juncea, using a cotyledon-inoculation test. In these individual plants, brassilexin accumulation was determined following an abiotic, non-specific, elicitation. All the tested B. napus cultivars were highly susceptible to the parasite and weakly accumulated brassilexin. In contrast, B. juncea, B. carinata, and B. nigra usually displayed a hypersensitive response to the inoculation and accumulated more brassilexin than B. napus. The same correlation between resistance to L. maculans and phytoalexin accumulation was observed in the interspecific hybrid progeny. The cotyledon-inoculation test allowed the discrimination of plants displaying a hypersensitive response to the inoculation from those highly sensitive to the parasite, but intermediate disease severity classes were not usually representative of resistance or susceptibility. In this respect, brassilexin determination allowed differentiation, within a set of plants presenting an intermediate response to the pathogen, of plants with a high (B. juncea-like), and with a weak (B. napus-like) ability to accumulate brassilexin.Abbreviations IHP interspecific hybrid progeny - JR B. juncea-type complete resistance to blackleg (Roy, 1984) - W&D test cotyledon-inoculation test as described by Williams & Delwiche (1979)  相似文献   

15.
Genetic information conffering non- shattering of siliques has been introgressed in rapeseed (Brassica napus) following; interspecific hybridization between Brassica juncea and B. napus. A reconstituted B. napus plant with complete non-dehiscence of its fruits was isolated in the BC-, generation. This plant had normal meiosis and formed 19 bivalents. Its seed fertility, however, was low (23 percent). It is suggested that the gene(s) for shattering-resistance were incorporated into a B. oleracea chromosome following allosyndetic; chromosome pairing and. segmental exchange between B. nigra and B. oleracea chromosomes in the initial interspecific AABC hybrid.  相似文献   

16.
Peng Luo  Zequ Lan  Jie Deng  Ziqing Wang 《Euphytica》2000,114(3):217-221
Oil radish (Raphanus sativus var. raphanistroides Makino) is resistant to drought and low temperature. In order to breed more resistant cultivars of rapeseed, the wide cross between rapeseed (Brassica napus L.) and oil radish was made. Rapeseed was not compatible with oil radish, and the frequency of hybrid plants (F1) was very low. Moreover, the hybrid plants were sterile. In order to recover the intergeneric hybrids (F1), the in vitro organ culture technique was applied in our experiments. The frequency of hybrid plants (F1) was increased up to 25.55% by means of in vitro culture of pollinated ovaries. Some fertile amphidiploid hybrid plants were obtained by means of colchicine treatment of small buds obtained from cultured flower receptacle segments of hybrid plants (F1). It is suggested that the technique of in vitro culture of pollinated ovaries and flower receptacle segments is useful in the wide-cross breeding of rapeseed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Brassica napus plants, artificially synthesized through somatic hybridization of B. oleracea and B. campestris protoplasts, were analyzed by oligonucleotide fingerprinting. While the fingerprint patterns of the different hybrid plants looked very much alike, they did not simply represent a combination of the parental patterns. Instead, the absence of parental bands as well as the presence of new bands suggest that elimination and/or rearrangements occurred during or after the fusion of the two genomes. The fingerprints of individual F1 progeny plants of selfed hybrids did not detect major changes. Thus, once formed, the artificially resynthesized amphidiploid B. napus genome appears to be stable. Taken together, our experiments demonstrate the usefulness of oligonucleotide fingerprinting for the characterization of artificial hybrids in the genus Brassica.  相似文献   

18.
The primary aim of this study was to optimize in vitro culture protocols to establish an efficient reproducible culture system for different Brassica interspecific crosses, and to synthesize yellow-seeded Brassica napus (AACC) for breeding and genetical studies. Reciprocal crosses were carried out between three B. rapa L. ssp. oleifera varieties (AA) and five accessions of B. oleracea var. acephala (CC). All the parental lines were yellow-seeded except one accession of B. oleracea. Hybrids were obtained through either ovary culture from crosses B. rapa × B. oleracea, or embryo culture from crosses B. oleracea × B. rapa. A higher rate of hybrid production was recorded when ovaries were cultured at 4–7 days after pollination (DAP). Of different culture media, medium E (MS with half strength macronutrients) showed good response for ovaries from all the crosses, the highest rate of hybrid production reaching 45% in B. rapa (1151) × B. oleracea (T2). In embryo culture, the hybrid rate was significantly enhanced at 16–18 DAP, up to 48.1% in B. oleracea (T3) × B. rapa (JB2). The combinations of optimal DAP for excision and media components increased recovery of hybrids for ovary and embryo culture, and constituted an improved technique for B. rapa × B. oleracea crosses. In addition, yellow seeds were obtained from progenies of two crosses, indicating the feasibility of developing yellow-seeded B. napus through the hybridization between yellow-seeded diploids B. rapa and B. oleracea var. acephala.  相似文献   

19.
Interspecific hybrids from cross incompatible relatives of sweetpotato   总被引:1,自引:0,他引:1  
Summary Hybrids were obtained from Ipomoea interspecific crosses through ovule culture. The hybridity of the progeny obtained from I. triloba × IitI. trifida and (I. triloba × I. lacunosa) × I. batatas (4x) crosses was established by comparisons of floral morphology and analyses of peroxidase and esterase isozymes. The hybrids displayed the inflorescence type and sepal shape and texture of their male parents, while corolla size and anther and nectary color tended to be intermediate to their parents. The isozyme banding patterns of the hybrids contained bands present in the patterns of each of their parents. Pollen grain viability, measured by aceto-carmine stainability, was 44.1%, 92.3% and 82.4%, respectively, for the I. triloba × I. trifida hybrid and the (I. triloba × I. lacunosa) × I. batatas (4x) hybrids, H1 and H2. A controlled pollination study revealed that the I. triloba × I. trifida, and the (I. triloba × I. lacunosa) × I. batatas (4x) hybrids, H1 and H2 were partially self fertile with 6%, 70% and 13%, respectively, of the pollinated flowers producing viable seed. Success in backcrossing and sib-mating varied with the cross combination.  相似文献   

20.
Summary The possibilities to transfer important traits and in particular resistance to the beet cyst nematode (Heterodera schachtii, abbrev. BCN) from Raphanus sativus to Brassica napus were investigated. For these studies B. napus, R. sativus, the bridging hybrid ×Brassicoraphanus (Raparadish) as well as offspring of the cross ×Brassicoraphanus (Raparadish) ×B. napus were used. Reciprocal crosses between B. napus and R. sativus were unsuccessful, also with the use of embryo rescue. Crosses between ×Brassicoraphanus as female parent and B. napus resulted in a large number of F1 hybrids, whereas the reciprocal cross yielded mainly matromorphic plants. BC1, BC2 and BC3 plants were obtained from backcrosses with B. napus, which was used as the male parent. F1 hybrids and BC plants showed a large variation for morphology and male and female fertility. Cuttings of some F1 and BC1 plants, obtained from crosses involving resistant plants of ×Brassicoraphanus, were found to possess a level of resistance similar to that of the resistant parent. These results and indications for meiotic pairing between chromosomes of genome R with those of the genomes A and/or C suggest that introgression of the BCN-resistance of Raphanus into B. napus may be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号