首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We studied the longevity of mice produced without sperm using the genomes of oocytes that are already committed to a germline cell lineage. The first sperm-free mouse "KAGUYA", which we term 'bi-maternal mouse', was born on 3 February, 2003. Bi-maternal embryos were generated using 2 sets of female genomes--one derived from fully grown oocytes from normal adults and the other from non-growing oocytes from newborn pups. These genomes were combined by nuclear transfer. We refined the technique for generating bi-maternal mice and found that genetic manipulations in only 2 regions--the imprinting centres of Igf2-H19 and Dlk1-Gtl2--on chromosomes 7 and 12 of the newborn pups allowed us to generate bi-maternal mice at a high rate. Studying bi-maternal conceptuses and mice provides further insight into the mechanisms by which paternally methylated imprinted genes regulate mammalian ontogenesis.  相似文献   

2.
3.
Mouse bi-maternal embryos (BMEs) that contain two haploid sets of genomes from non-growing (ng) and fully-grown (fg) oocytes develop to embryonic day (E) 13.5. However, the ng/fg BMEs never develop beyond E13.5 because of repression of the paternally expressed imprinted genes, Igf2 and Dlk1. The present study was conducted to address the issue of whether fetal hematopoietic disorder is involved in the restricted development of BMEs. FACS analysis revealed that the livers of ng(wt)/fg BMEs contained increased numbers of immature c-kit(+)/ter119(-) hematopoietic cells, were while the numbers of mature c-kit(-)/ter119(+) hematopoietic cells were decreased. This finding was supported by histological observations. Quantitative gene expression analysis revealed that Igf2 and Dlk1 expression was repressed in the liver. To understand the role of paternally-methylated imprinted genes on chromosomes 7 and 12, particularly Igf2 and Dlk1, in fetal liver hematopoiesis, we constructed ng(Deltach7)/fg, ng(Deltach12)/fg and ng(DeltaDouble)/fg BMEs using ng oocytes harboring deletion of differentially methylated regions at distal chromosomes 7 and/or 12. The ng(Deltach7)/fg, ng(Deltach12)/fg and ng(DeltaDouble)/fg BMEs, respectively, express Igf2, Dlk1 and both, and these embryos developed to term with specific phenotypes; the ng(Deltach7)/fg and ng(Deltach12)/fg BMEs develop to term with severe growth retardation, and the ng(DeltaDouble)/fg BMEs can survive to become normal female adults. By inducing Igf2 and Dlk1 expression, the proportions of mature and immature hematopoietic cells in the livers of the ng(Deltach7)/fg, ng(Deltach12)/fg and ng(DeltaDouble)/fg BMEs were considerably restored, and particularly in the ng(DeltaDouble)/fg BMEs, hematopoiesis occurred normally with appropriate expressions of the related genes. These data suggest that inappropriate expression of Igf2 and Dlk1 is involved in impaired fetal hematopoiesis.  相似文献   

4.
Loss of imprinting (LOI) is occasionally observed in human imprinting disorders. However, the process behind the LOI is not fully understood. To gain a better understanding, we produced embryos and pups from mouse oocytes that lacked a complete methylation imprint using a method that involved transferring the nuclei of growing oocytes into the cytoplasm of enucleated fully grown oocytes following in vitro fertilization (IVF). We then analyzed the imprinting statuses. Our findings show that the incomplete methylation imprint derived from growing oocytes results in epigenetic mosaicism or a loss of methylation imprint (LOM) at maternal alleles in embryos. In some embryos, both hypo- and hypermethylated maternal Kcnq1ot1 alleles were detected, whereas either hypo- or hypermethylated maternal Kcnq1ot1 alleles were detected in others. Such tendencies were also observed at the Igf2r and Mest loci. Gene expression levels of imprinted genes were linked with their methylation statuses in some but not all embryos. Possible explanations of the inconsistency between the data from DNA methylation and gene expression include epigenetic mosaicism in embryos. Pups were successfully produced from growing oocytes at a quite low frequency. They exhibited an obese phenotype and LOI with respect to Igf2r, Snrpn and Mest. Our finding suggests the possibility that LOI/LOM at maternal alleles in human concepti could be derived from epigenetically immature/mutated oocytes.  相似文献   

5.
基因组印记是一种表观调控机制,在哺乳动物的发育中具有重要作用。印记基因是仅一方亲本来源的同源基因表达,而来自另一亲本不表达的一种基因。近年来,印记基因被广泛研究。印记基因分为父系印记基因和母系印记基因,其表达具有组织特异性,而且在胚胎不同发育阶段的表达也具有一定差异,胚胎期的营养水平也影响印记基因的表达。DNA甲基化在调控印记基因的表达中起重要作用,影响细胞核移植过程细胞的表观重编程,并影响胎盘及内脏器官的正常发育;基因印记模式的改变也可以引起甲基化的改变进而导致基因印记的丢失等。本文综述了近年来关于牛的印记基因的研究进展情况,为印记基因的后续相关研究工作提供借鉴。  相似文献   

6.
The DNA methylation of imprinted genes is an important way to regulate epigenetic reprogramming of donor cells in somatic cell nuclear transfer (SCNT). However, the effects of sexual distinction on the DNA methylation of imprinted genes in cloned animals have seldom been reported. In this study, we analysed the DNA methylation status of three imprinted genes (Xist, IGF2 and H19) from liveborn cloned buffaloes (L group, three female and three male), stillborn cloned buffaloes (S group, three female and three male) and natural reproduction buffaloes (N group, three female and three male), using bisulphite sequencing polymerase chain reaction (BS‐PCR). The expression levels of these imprinted genes were also investigated by quantitative real‐time PCR (QRT‐PCR). The DNA methylation levels of H19 were not significantly different among the groups. However, the Xist in female and IGF2 in male of the S group were found to be significantly hypomethylated in comparison with the same sexual buffaloes in L group and N group (< .05). Furthermore, the expression levels of Xist, IGF2 and H19 in the stillborn female cloned buffaloes of S group were significantly higher than that of the female buffaloes in the L group and N group (< .05). The expression levels of IGF2 and H19 in the stillborn male cloned buffaloes in the S group were significantly higher than that of the male buffaloes in the L group and N group (< .05). These results indicate that Xist may be associated with the viability of female cloned buffaloes, and IGF2 may also be related to the viability of male cloned buffaloes.  相似文献   

7.
为了探求新生克隆猪可能的死亡原因以及是否存在不完全的DNA甲基化重编程,本试验运用亚硫酸氢盐测序法分别检测了H19基因和IGF2R基因差异甲基化区(DMR)在新生死亡克隆猪和同期正常猪心脏、肝脏、脾脏、肺脏和肾脏中的甲基化状态。结果发现,H19基因DMR在克隆猪肺脏中表现为超甲基化,极显著高于正常猪(95.20%VS46.80%P〈0.01),且10个测序克隆中存在2处连续的全甲基化CpG位点(4-9位、12-S17位),而在其他组织中甲基化差异不显著(P〉0.05);IGF2R基因DMR在肝脏中处于超甲基化状态,显著高于正常猪(80.00%V839.41%P〈0.05),而在肺脏中为去甲基化状态,板显著低于正常猪(14.71%VS66.47%P〈0.01),在其他组织差异不显著(P〉0.05)。结果说明,在死亡克隆猪中,H19基因DMR在肺脏和IGF2R基因在肝脏与肺脏中存在不完全的DNA甲基化重编程,这可能是导致克隆动物死亡的因素之一。  相似文献   

8.
Epigenetic abnormalities in cloned animals are caused by incomplete reprogramming of the donor nucleus during the nuclear transfer step (first reprogramming). However, during the second reprogramming step that occurs only in the germline cells, epigenetic errors not corrected during the first step are repaired. Consequently, epigenetic abnormalities in the somatic cells of cloned animals should be erased in their spermatozoa or oocytes. This is supported by the fact that offspring from cloned animals do not exhibit defects at birth or during postnatal development. To test this hypothesis in cloned cattle, we compared the DNA methylation level of two imprinted genes (H19 and PEG3) and three non‐imprinted genes (XIST, OCT4 and NANOG) and two repetitive elements (Satellite I and Satellite II) in blood and sperm DNAs from cloned and non‐cloned bulls. We found no differences between cloned and non‐cloned bulls. We also analyzed the DNA methylation levels of four repetitive elements (Satellite I, Satellite II, Alpha‐satellite and Art2) in oocytes recovered from cloned and non‐cloned cows. Again, no significant differences were observed between clones and non‐clones. These results suggested that imprinted and non‐imprinted genes and repetitive elements were properly reprogramed during gametogenesis in cloned cattle; therefore, they contributed to the soundness of cloned cattle offspring.  相似文献   

9.
为了探求核移植过程中DNA甲基化重编程是否充分,运用亚硫酸氢盐测序法分别检测新生死亡克隆猪和同期正常猪心脏、肝脏、脾脏、肺脏和肾脏组织中IGF2/H19基因印迹控制区(DMR1、DMR2、DMR3)的甲基化状态。结果发现,DMR1、DMR3在克隆猪和正常猪各组织中的甲基化水平不同,但差异不显著(P>0.05)。DMR2在克隆猪肺脏组织表现为超甲基化,极显著高于正常猪(P<0.01),且10个测序克隆中存在2处连续的全甲基化CpG位点(分别为4-9位和12-17位),而在其它组织中甲基化差异不显著(P>0.05)。说明DMR2在克隆猪肺脏组织可能存在DNA甲基化重编程紊乱,这也可能是导致该克隆猪死亡的因素之一。  相似文献   

10.
The fundamental assumption of Mendelian genetics is that behavior of an allele is identical whether it arrives to a zygote through paternal or maternal germline pathway. Gametic imprinting phenomena discovered and studied in mammals show limitations of the classical view in special cases. Two sources of evidence were essential to describe gametic imprinting. The first approach based on genetic evidence demonstrated that some maternally and paternally derived regions of certain chromosomes were not equivalent. Paternal or maternal disomy of the regions containing particular genes caused significant effects on viability and development of progeny. The second set of data was obtained by nuclear transplantations and parthenogenetic activation of mammalian oocytes. These data suggested that the contribution of parental genomes was not equivalent and differential imprinting of nuclear genes during gametogenesis was very likely. The number of loci found in mice, which show gametic imprinting, is 34 and continues to grow. It is generally accepted that gametic imprinting is a mammalian invention and there are differences in imprinting pattern between species. Most hypotheses propose involvement of imprinted genes in the control of fetal growth and fetal-maternal interactions, thus keeping a balance between contradictory fetal and maternal requirements. Molecular mechanisms responsible for gametic imprinting still remain to be studied, but for several genes it was shown that imprinting marks are imposed by a parent-specific methylation process during gametogenesis. These marks are resistant to global demethylation during cleavage and to global de novo methylation after implantation and maintain different methylation patterns in paternal and maternal alleles of imprinted genes. About 20 to 25% of all transgene loci studied demonstrate similarities with imprinted genes. For instance, methylation of some transgenes is dependent on parental gametic pathway and reversible in the next generation. There are data indicating that selection of modifier genes may change the effects of gametic imprinting. It is possible that future selection and crossbreeding programs may take gametic imprinting into consideration.  相似文献   

11.
12.
13.
14.
Discovery of epigenetic modifications associated with feed efficiency or other economically important traits would increase our understanding of the molecular mechanisms underlying these traits. In combination with known genetic markers, this would provide opportunity to improve genomic selection accuracy in cattle breeding programs. It would also allow cattle to be managed to improve favorable gene expression. The objective of this study was to identify variation in DNA methylation between beef cattle of differential pre-natal nutrition and divergent genetic potential for residual feed intake (RFI). Purebred Angus offspring with the genetic potential for either high (HRFI) or low (LRFI) RFI were prenatally exposed to either a restricted maternal diet of 0.5 kg/d average daily gain (ADG) or a moderate maternal diet of 0.7 kg/d ADG from 30 to 150 d of gestation. We performed DNA methylation analysis of differentially methylated regions (DMR) of imprinted genes (Insulin-like growth factor 2 (IGF2) DMR2, IGF2/H19 imprinting control region (ICR) and IGF2 receptor (IGF2R) DMR2) using post-natal samples of longissimus dorsi (LD) muscle taken from male and female calves at birth and weaning, and of LD muscle, semimembranosus (SM) muscle, and liver samples collected from steers at slaughter (17 months of age). Interestingly, for all three DMR investigated in liver, LRFI steers had higher levels of methylation than HRFI steers. In LD muscle, IGF2/H19 ICR methylation differences for heifers at birth were due to pre-natal diet, while for steers at birth they were mostly the result of genetic potential for RFI with LRFI steers again having higher levels of methylation than HRFI steers. While results from repeated measures analysis of DNA methylation in steers grouped by RFI revealed few differences, in steers grouped by diet, we found higher methylation levels of IGF2 DMR2 and IGF2R DMR2 in LD muscle of restricted diet steers at weaning and slaughter than at birth, as well as increased methylation in LD muscle of restricted diet steers compared with moderate diet steers at weaning and/or slaughter. Our results suggest that differential pre-natal nutrition, and divergent genetic potential for RFI, induces tissue- and sex-specific alterations in post-natal IGF2 and IGF2R methylation patterns and that these patterns can vary with age in Angus beef cattle.  相似文献   

15.
16.
DNA甲基化调控牛AQP1基因的胎盘特异性印记   总被引:1,自引:1,他引:0  
为揭示牛AQP1(aquaporin 1)基因在不同组织及胎盘中的印记状态,以及DNA甲基化修饰在印记中的调控机制,本研究采用基于SNP的PCR产物直接测序的方法,对32头健康雌性成年荷斯坦奶牛心组织及15个自然分娩后的胎盘试验样本进行检测,确定了5头杂合子个体牛和3个杂合子胎盘,对其组织(心、肝、脾、肺、肾、肌肉和脂肪)和胎盘进行AQP1等位基因表达分析及印记状态分析,利用亚硫酸氢盐测序法分析AQP1基因位于启动子和第一个外显子区的CpG岛在牛心、肝组织、2个胎盘和对应精子中的DNA甲基化状态。结果发现,在杂合子牛被检测的7个组织中,AQP1基因呈现双等位基因表达;而在胎盘中,AQP1基因为单等位基因表达。通过分析杂合子胎盘对应的亲本基因型,发现AQP1基因为母源等位基因表达,即父源印记。进一步比较分析AQP1基因启动子区CpG岛在牛组织、胎盘及对应精子中的甲基化状态,在双等位基因表达的心脏、肝脏组织中,该区域未发现差异甲基化区(differentially methylated regions,DMR);而在单等位基因表达的胎盘中,存在差异甲基化区,同时父源等位基因精子中为重甲基化状态。以上结果说明,牛AQP1基因为胎盘特异性单等位基因表达的父源印记基因,且AQP1基因位于启动子和第一个外显子区的CpG岛甲基化修饰参与调控牛胎盘的印记表达;在被检测的组织中为双等位基因表达。  相似文献   

17.
DNA methylation patterns at the IGF2‐H19 locus were investigated in sperm DNA from Swiss Landrace (SL) and Swiss Large White (LW) boars. The putative IGF2 differentially methylated regions (DMR) 0, 1 and 2, a quantitative trait nucleotide (QTN) region in the intron 3 and a CpG island in the intron 4 of the IGF2 gene as well as three regions around porcine CTCF binding sites within the H19 differentially methylated domain (DMD) were selected for the DNA methylation analysis. In both breeds putative IGF2 DMR0, 1, 2 and H19 DMD were hypermethylated. Significant differences in DNA methylation content were found between the two breeds in the two DMD regions proximal to the H19 gene. The IGF2 QTN region and the CpG island in the IGF2 intron 4 were hypomethylated in sperm DNA of both breeds. The methylation analysis revealed significantly more methylated CpG sites in the intron 4 of sperm from the LW breed than in that from SL. No difference was found in global DNA methylation between the two breeds. These results indicate differences in DNA methylation patterns between breeds and it remains to be established whether variation in DNA methylation patterns impacts on phenotypic traits.  相似文献   

18.
19.
A recent large-scale experimental study showed that bottle-feeding ovine colostrum from seropositive ewes results in high MVV-seroconversion in lambs. In contrast, relatively few lambs that naturally suckled colostrum from seropositive dams seroconverted as a result of it. Furthermore, lambs fed uninfected bovine colostrum readily seroconverted when mixed with ovine-colostrum lambs indicating that horizontal MVV transmission between lambs was efficient. MVV-infection was further investigated in the same samples using two PCR tests targeting sequences in the long-terminal repeats (LTR) and POL MVV genes. PCR-tests confirmed previous serological findings. However, the LTR-PCR was more sensitive and allowed detecting infection earlier than the other tests, including 5-8% of new-born lambs from seropositive dams, providing more evidence that prenatal MVV-infection may be more important than considered. The degree of agreement between PCR and antibody tests in individual samples was low up to 6 months of age and moderate at 10 months-old. Nine percent of lambs were always PCR-negative but seroconverted and 19% of lambs were PCR-positive at least once and did not seroconvert. However, seroconversion was associated with increasing number of times lambs were PCR-positive and ovine colostrum-fed lambs were more frequently PCR-positive than other lambs. The significance of these findings in terms of MVV-infection, epidemiology and control is discussed.  相似文献   

20.
The methylation status of pivotal genes involved in fat deposition in chickens has been extensively studied. However, the whole-genome DNA methylation profiles of broiler abdominal adipose tissue remain poorly understood. Using whole-genome bisulfite sequencing, we generated DNA methylation profiles of chicken abdominal adipose tissue from Northeast Agricultural University broiler lines divergently selected for abdominal fat content. We aimed to explore whether DNA methylation was associated with abdominal fat deposition in broilers. The whole-genome DNA methylation profiles of fat- and lean-line broilers abdominal adipose tissue were constructed. The DNA methylation levels of functional genomic regions in the fat broiler were higher than those in the lean broiler, especially in the 3′ untranslated regions (UTRs) and exons in the non-CG contexts. Additionally, we identified 29,631 differentially methylated regions and, subsequently, annotated 6,484 and 2,016 differentially methylated genes (DMGs) in the gene body and promoter regions between the two lines, respectively. Functional annotation showed that the DMGs in promoter regions were significantly enriched mainly in the triglyceride catabolic process, lipid metabolism-related pathways, and extracellular matrix signal pathways. When the DMG in promoter regions and differentially expressed genes were integrated, we identified 30 genes with DNA methylation levels that negatively correlated with their messenger RNA (mRNA) expression, of which CMSS1 reached significant levels (false discovery rate < 0.05). These 30 genes were mainly involved in fatty acid metabolism, peroxisome-proliferator-activated receptor signaling, Wnt signaling pathways, transmembrane transport, RNA degradation, and glycosaminoglycan degradation. Comparing the DNA methylation profiles between fat- and lean-line broilers demonstrated that DNA methylation is involved in regulating broiler abdominal fat deposition. Our study offers a basis for further exploring the underlying mechanisms of abdominal adipose deposition in broilers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号