首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
When grassland is ploughed and reseeded this results in an increased mineralization of organically bound nitrogen (N) in the soil. Greater amounts of nitrate in autumn are at risk of being leached during the winter half of the year. In two field experiments, nitrate leaching was measured over 2 years after reseeding of a 9‐year‐old grassland field in spring on a sandy soil in northwest Germany. During the experiments, major management factors that can influence the intensity of mineralization were varied: Type of fertilizer, mineral N fertilizer or organic manure, and the level of fertilization, 0, 160 or 320 kg N ha−1 a−1, before renewal of the grassland, and level of fertilization, 0, 160 or 320 kg N ha−1 a−1 in mineral form, after renewal of the grassland. The type of fertilization as well as the level of N fertilization before ploughing had no significant effect on the soil mineral nitrogen content (SMN) in autumn and N leaching in the year following the grassland renewal. N fertilizer level after sward renovation had a significant effect on the nitrate leaching losses in the two following years. Fertilization at a rate of 320 kg N ha−1 resulted in leaching losses of 7 and 61 kg N ha−1 in the first and second subsequent years, respectively. At fertilizer rates of 0 and 160 kg N ha−1 leaching losses were lower than 5 kg N ha−1. It is concluded that for mown grassland no restriction of the N fertilization before the renovation of the sward is necessary to reduce the nitrate leaching risk as long as the amount of N fertilized does not exceed the N‐uptake by the crop. Similarly, the N fertilization after the sward renewal does not bear a particular leaching risk.  相似文献   

2.
Irrigation frequency is one of the most important factors in drip irrigation scheduling that affects the soil water regime, the water and fertilization use efficiency and the crop yield, although the same quantity of water is applied. Therefore, field experiments were conducted for 2 years in the summer season of 2005 and 2006 on sandy soils to investigate the effects of irrigation frequency and their interaction with nitrogen fertilization on water distribution, grain yield, yield components and water use efficiency (WUE) of two white grain maize hybrids (Zea mays L.). The experiment was conducted by using a randomized complete block split‐split plot design, with four irrigation frequencies (once every 2, 3, 4 and 5 days), two nitrogen levels (190 and 380 kg N ha?1), and two maize hybrids (three‐way cross 310 and single cross 10) as the main‐plot, split‐plot, and split‐split plot treatments respectively. The results indicate that drip irrigation frequency did affect soil water content and retained soil water, depending on soil depth. Grain yield with the application of 190 kg N ha?1 was not statistically different from that at 380 kg N ha?1 at the irrigation frequency once every 5 days. However, the application of 190 kg N ha?1 resulted in a significant yield reduction of 25 %, 18 % and 9 % in 2005 and 20 %, 13 % and 6 % in 2006 compared with 380 kg N ha?1 at the irrigation frequencies once every 2, 3 and 4 days respectively. The response function between yield components and irrigation frequency treatments was quadratic in both growing seasons except for 100‐grain weight, where the function was linear. WUE increased with increasing irrigation frequency and nitrogen levels, and reached the maximum values at once every 2 and 3 days and at 380 kg N ha?1. In order to improve the WUE and grain yield for drip‐irrigated maize in sandy soils, it is recommended that irrigation frequency should be once every 2 or 3 days at the investigated nitrogen levels of 380 kg N ha?1 regardless of maize varieties. However, further optimization with a reduced nitrogen application rate should be aimed at and will have to be investigated.  相似文献   

3.
The influence of main species (Lolium multiflorum Lam., Lolium X boucheanum Kunth, Lolium perenne L. and Dactylis glomerata L.), sward density, nitrogen and time on yield, energy content, crudeprotein/energy ratio and nitrate content The aim of this investigation was to determine the influence of different rates of nitrogen fertilizer and of varied sward density on yield and chemical composition of some non-perennial (Lolium multiflorum, Lolium X boucheanum) and some perennial species (Lolium perenne, Dactylis glomerata) in a field experiment. Excepted 600 kg N ha?l - yr?1 the non-perennial species produced the highest energy yields. At a fertilization level of 400 kg N ha?1 yr?1 had sward density an influence on energy yield of Lolium multiflorum. It appeared that almost the energy content of the Lolium species was higher than in Dactylis glomerata. In most cases there were little differences between the Lolium species. There was a positive correlation between the NFEcontent and the content of water soluble carbohydrates and the energy content which was depressed by applying increasing rates of fertilizer. Generally at the lowest rate of nitrogen used (200 kg N ha?1 yr?1) there were positive effects on crude protein/energy ratios. The crude protein/energy ratio was higher of Dactylis glomerata than that of the Lolium species. The nitrate content increased to critical values when applying 400 kg N ha?1 yr?1. Dactylis glomerata had the highest and Lolium perenne the lowest nitrate content. At high rate of fertilizer, plots with high sward density sometimes had higher nitrate contents than open swards. The results of the experiment indicate that there are differences in quality even between species with high performance. Regarding the quality of grass swards, future attention should be focused on the main species and on sward density.  相似文献   

4.
A new fertilization method with deep placement of slow‐release N fertilizers, such as coated urea and lime nitrogen (LN) (calcium cyanamide) at 20 cm depth was found to promote soy bean seed yield. In the present study, the effect of deep placement of LN was investigated on different parameters such as growth, N accumulation, N2 fixation activity and yield of soy bean by applying LN at different rates in the rotated paddy field of Niigata, Japan. In addition to the basal fertilizer, ammonium sulphate (16 kg N ha?1), deep placement of LN was conducted by applying various amounts such as 50 kg N ha?1 (A50), 100 kg N ha?1 (A100) and 200 kg N ha?1 (A200) at 20 cm depth in separate plots. A 15N‐labelled LN fertilizer was also employed for each of the above treatments to calculate N utilization from LN in separate plots. Soya bean plant growth and N2 fixation activity were periodically analysed. Both plant growth and N accumulation were found to increase with LN treatment compared with control plants. An increase in N2 fixation activity was found in the A100 plots. The total seed yield was the highest in the deep placement of LN with A100 (73 g per plant) compared with other treatments. The visual quality of harvested seeds also showed that A100 enhanced the quality of seeds compared with other treatments. Thus, it is suggested that N fertilization management with particular reference to optimum amount of fertilizers is important for maximum growth, N2 fixation and enhancement of seed yield of soy bean.  相似文献   

5.
Crops generally utilize nitrogen (N) from slurries less efficiently than from mineral fertilizers. In order to compare the effects of slurry and mineral N application on yield and residual fertilization effects, a long-term field trial was established in autumn 1994, where pig slurry was applied to oilseed rape (OSR), winter wheat and winter barley at the same application dates as mineral N fertilizer. N amounts ranged from 0 to 240 kg total N ha−1. The same treatment regimes were applied to the same plots in each year. Starting in 2010 (2011), wheat (barley) received no N fertilization in order to allow for testing residual fertilizer effects. Every year seed yield and N offtake by the seeds were determined.Accounting only for ammonia N of pig slurry, similar seed yields in OSR and slightly higher grain yields in wheat and barley compared to mineral N fertilizer were achieved. This indicates that mineralization of organically bounded slurry N compensated gaseous ammonia losses. In plots without N fertilization, OSR showed no yield trends during the experimental period, whereas wheat (barley) yield started to decrease after 10 (13) years without N fertilization. In the highly fertilized treatments, no significant trend in seed yield or N amount required for maximum yield could be detected. In the subsequent unfertilized wheat crop, accumulated slurry effects increased grain yield more than those of mineral N fertilizer. Barley grown in the second year without N supply remained unaffected by the previous slurry N application.  相似文献   

6.
Three different tillage practices, conventional (mouldboard ploughing at 22–25 cm plus one rotary hoeing at 5–6 cm, CT), minimum (one rotary hoeing at 12–15 cm, MT), and no‐tillage (direct drilling in soil covered by vetch residues, NT), combined with three fertilization treatments, inorganic (50 kg N ha?1 as ammonium sulphate), cattle manuring (30 t ha?1), and control (no‐fertilizer), were applied on a cotton crop (Gossypium hirsutum L. cv. Acala SJ‐2) grown on a clay loam soil in the field of the Agricultural University of Athens. Soil (gravimetric water content, bulk density, and penetration resistance in the top 40 cm) and plant parameters (root growth, leaf water potential, leaf area growth and seedcotton yield) were recorded throughout the cultivation period in all treatments. No‐tillage was associated with significantly higher values of soil water throughout the observation period caused by the vetch mulch. Bulk density and penetration resistance were initially higher in the no‐tilled plots, but they became significantly lower after 2–3 months from sowing. These beneficial effects on soil properties favoured root growth, expressed as root surface density, in the NT‐plots at the top soil layer. Similar, although less spectacular, effects were observed in the manured plots. Plant water status, expressed in terms of the water potential index, was significantly and consistently best in the NT‐ and worst in the CT‐plots throughout crop growth. In addition, NT favoured a better foliage growth and resulted in significantly higher yields than the other tillage practices. In general, NT, and in second instance, MT considerably improved plant water status, and hence foliage growth and yield in comparison with CT by maintaining higher levels of soil water and improving root growth. Manuring positively interacted with the reduced tillage practices for most soil and plant parameters.  相似文献   

7.
Field experiments with silage maize were conducted in 1987 and 1988 on a loess-derived Luvisol in southwest Germany. Four nitrogen fertilizer treatments were compared: application of preplanting NH4 N (plus a nitrification inhibitor, dicyandiamide as Didin) and preplanting NO3-N, split application of NO3-N (preplanting and side dressed 45 days after planting) and a control without nitrogen fertilizer in 1987 and with 64 kg N ha?1 as calcium ammonium nitrate in 1988. The total amounts of soil mineral nitrogen (Nmin+ fertilizer N) were 200 kg N ha?1 in 1987 and 240 kg N ha?1 in 1988. Suction cups and tensiometer were installed at five depths and samples were taken in regular intervals. Nitrate concentrations in the suction solution steeply increased at 15 cm and 45 cm soil depth 3-4 weeks after fertilizer application (1987 up to 160mgNl?1; 1988 up to 170mgN l?1) and steeply decreased up to 75 cm depth with the onset of intensive N uptake at shooting. Ammonium concentrations in the suction solution were very low (0-0.16 mg N l?1). Compared to preplanting NCyN application, preplanting NH4-N and split NO3-N application decreased nitrate concentrations in the suction solution in spring 1987. In 1988, however, nitrate concentrations in the suction solution of preplanting NH4-N and split NO3-N application plots did not fall below 50mgNl?1 at 15 cm depth during the growing season. Nitrate concentrations of split NO3-N application increased again in autumn 1988 and hence doubled the calculated N losses by leaching during the winter months compared to preplanting N applications. At shooting, plants of the preplanting NH4-N treatment had lower nitrate concentrations in leaf sheaths compared to plants of preplanting NO3-N application. Total N uptake of maize between shooting and early grain filling of preplanting NH4-N and split NO3 -N application tended to be higher compared to preplanting NO3-N application, reflecting the higher N availability in the soil later in the season. However, final dry matter yields and N uptake were not significantly affected by N form or time of N application. Since N losses by nitrate leaching between N application and onset of N uptake by plants were negligible on the experimental site, preplanting NH4-N application and split NO3-N application showed no agronomic advantages. High amounts of side dressed NO3-N may increase nitrate leaching during the winter months, especially in years with delayed rainfall after application.  相似文献   

8.
氮素实时管理对冬小麦产量和氮素利用的影响   总被引:9,自引:0,他引:9  
为实现氮素效率和小麦产量的协同提高,以山东省泰安市和兖州市为试验地点,连续2年在4个田块上进行了基于土壤硝态氮测试的氮素实时管理试验。与农民习惯施肥相比,优化施氮处理提高产量0.87%~10.44%,平均5.82%;而氮肥用量减少38.61%~53.29%,平均46.70%;氮素吸收效率、氮素表观利用率和氮素农学效率分别增加36.67%~85.69%、58.49%~267.69%和34.16%~410.58%;氮肥偏生产力升高74.23%~124.87%;产/投比提高78.50%~112.09%。说明应用土壤硝态氮测试进行小麦氮肥实时实地管理达到了减少氮肥用量,提高氮素利用效率,增加产量和经济效益的目的。  相似文献   

9.
Depending on soil and management, ploughing up grassland for use as arable land can lead to an increase in the release of mineralized nitrogen and a high risk of nitrogen leaching during winter. The amount of N leaching is also dependent on the N efficiency of following crops and the level of N fertilization.In a field experiment in northwest Germany permanent grassland was ploughed and used as arable land. The experiment was conducted over 2 years at three sites and investigated two main factors: (i) succeeding crops, either spring barley (and catch crop)–maize or silage maize–maize; and (ii) N-fertilization either nil or moderate (120 kg N ha−1 for barley or 160 kg for maize). Plant yields, the soil mineral nitrogen (SMN) content and the nitrate leaching losses over winter were determined. On average for the 2-year period, the SMN in autumn and the nitrate leaching losses during winter for the rotation barley–maize were 76 kg ha−1 SMN and 81 kg N ha−1 N leaching losses, and for maize–maize they amounted to 108 and 113 kg ha−1, respectively. The SMN and N leaching losses for the plots with no N fertilizer were 49 and 52 kg N ha−1 and for the plots fertilized at a moderate N level they were 135 and 142 kg N ha−1, respectively.We conclude that although the extent of nitrate leaching is influenced by the site conditions and management of the grassland prior to ploughing, the management after ploughing is the decisive factor. The farmer can significantly reduce nitrate leaching with his choice of succeeding crop and the amount of N fertilization.  相似文献   

10.
大田试验条件下采用苏丹草(Sorghum sudanense)与黑麦草(Lolium L.)轮作,分别设CK(不施肥)、NP(施氮磷肥)、NK(施氮钾肥)、PK(施磷钾肥)、NPK(施氮磷钾肥) 5个处理研究施肥对饲草产量、养分吸收及土壤养分的影响。结果表明,氮磷钾肥配施显著提高苏丹草与黑麦草鲜草产量,2005—2006年与2006—2007年两季饲草分别为162.7 t hm-2、114.9 t hm-2,分别比同期PK、NK、NP处理增产312.9%、26.9%、17.9%和338.5%、20.3%、17.2%。施肥影响饲草的氮、磷、钾含量,且氮磷钾配施可以改善饲草养分吸收,2005—2006年NPK处理的饲草N、P、K吸收量分别为500 kg hm-2、91 kg hm-2和997 kg hm-2,2006—2007年NPK处理的饲草N、P、K吸收量分别为312 kg hm-2、56 kg hm-2和402 kg hm-2。轮作系统中,氮磷钾肥配施条件下氮、磷盈余最少,而钾亏缺。在苏丹草-黑麦草轮作制中,随着种植次数的增多,各施肥处理土壤有机质、全氮均有不同程度上升,施磷(NPK、NP、PK)处理的速效磷、施钾(NPK、NK、PK)处理的速效钾均有上升,而NK处理的速效磷、NP处理的速效钾略有下降。  相似文献   

11.
The soil organic matter content represents a huge reservoir of plant nutrients and an effective safeguard against pollution; beside it can sequestrate atmospheric CO2. Since 1966 up to now in the Southeast Po valley (Italy), the soil organic C (SOC) and total N (TN) dynamics in the 0–0.40 m soil layer under a maize–wheat rainfed rotation are studied as influenced by organic and mineral N fertilizations. Every year in the same plots cattle manure, cattle slurry, and crop residues (i.e. wheat straw and maize stalk) are ploughed under to 0.40 m depth at a same dry matter rate (6.0 and 7.5 t DM ha−1 year−1 after wheat and maize, respectively) and are compared to an unamended control. Each plot is splitted to receive four rates of mineral fertilizer (0–100–200–300 kg N ha−1). In the whole experiment, in 2000 SOC concentration was lower than in 1966 (6.77 and 7.72 g kg−1, respectively), likely for the deeper tillage that diluted SOC and favoured mineralization in deeper soil layer. From 1972 to 2000 SOC stock did not change in the control and N fertilized plots, while it increased at mean rates of 0.16, 0.18, and 0.26 t ha−1 year−1 with the incorporation of residues, slurry and manure, corresponding to sequestration efficiencies of 3.7, 3.8 and 8.1% of added C with the various materials. TN followed the same SOC dynamic, demonstrating how it depends on the soil organic matter. Manure thus confirmed its efficacy in increasing both SOC content and soil fertility on the long-term. In developed countries, however, this material has become scarcely available; slurry management is expensive and implies high environmental risks. Moreover, in a C balance at a farm (or regional) scale, the CO2 lost during manure and slurry stocking should be considered. For these reasons, the incorporation of cereal residues, even if only a little of their C content was found capable of soil accumulation, appears the best way to obtain a significant CO2 sequestration in developed countries. Our long-term experiment clearly shows how difficult it is to modify SOC content. Moreover, because climate and soil type can greatly influence SOC dynamic, to increase CO2 sequestration in cropland, it is important to optimize the fertilization within an agricultural management that includes all the agronomic practices (e.g. tillage, water management, cover crops, etc.) favouring the organic matter build up in the soil.  相似文献   

12.
Increased recovery and recycling of manure phosphorus (P) by crops on dairy farms is needed to minimize environmental problems. The main objective of this study was to compare P utilization by orchardgrass (Dactylis glomerata L.) and tall fescue (Festuca arundinaceae Schreb.) from dairy manure or inorganic fertilizer. The study was conducted from 1994 to 2000 at the Cornell University Baker Farm, Willsboro, NY, on a somewhat poorly drained Kingsbury clay (very–fine, illitic, mesic Aeric Epiaqualfs). The design was a split‐plot in a randomized complete block with two manure rates (16 800 and 33 600 kg ha?1) and one nitrogen (N) fertilizer rate (84 kg N ha?1 at spring greenup and 56 kg N ha?1 prior to each regrowth harvest) as the main plots and grass species as subplots replicated six times. Fertilizer P [Ca(H2PO4)2] was applied to the fertilizer treatment in 1995 and 1996 at 11 kg P ha?1 year?1. Orchardgrass P removal averaged 21 % higher than tall fescue P removal for the spring harvest, but orchardgrass averaged 24 % lower P removal than tall fescue removal for all regrowth harvests from 1995–99. Phosphorus herbage concentration in the fertilizer treatment was in the range of 1.9–2.7 g P kg?1 compared with 2.2–5.3 g P kg?1 in the manure treatments. Seasonal P removal ranged from as low as 9.2 kg P ha?1 to as high as 48.5 kg P ha?1. Morgan extractable soil P in the top 0–0.20 m remained high through 1999, with 29.1 kg P ha?1 at the highest manure rate in tall fescue compared with 8.4 kg P ha?1 measured in 1993 prior to the experiment. In 2000, soil P at the highest manure rate in tall fescue dropped to 10.1 kg P ha?1, following cessation of manure application in 1998. Intensively managed harvested orchardgrass and tall fescue have the potential to remove large quantities of manure P.  相似文献   

13.
In a crop rotation trial, conducted from 1985 to 1988 at TU-Munich's research station in Roggenstein, the transfer of grain legume nitrogen was evaluated in crop rotations containing fababeans and dry peas as well as oats (reference crop) and winter wheat and winter barley as following crops. The results obtained can be summarized as follows: Dinitrogen fixation by fababeans ranged from 165 to 240 kg N ha1, whereas N2-fixation by peas amounted from 215 to 246 kg N ha?1. In all seasons the calculated N-balance where only grain was removed was positive, with a net gain being on average 106 (peas) and 84 (fababeans) kg N ha?1. After the harvest of peas 202 kg N ha?1 remained on the field on average over seasons (158 kg N ha?1 in the above ground biomass and 44 kg N ha?1 as NO3-N in 0–90 cm depth). As compared to peas, fababeans left 41 kg N ha?1 less due to smaller amounts of nitrogen in the straw. After oats very small amounts of residual nitrogen (33 kg N ha?1) were detected. After the harvest of grain legumes always a very high nitrogen mineralization was observed during autumn especially after peas due to a close C/N-relationship and higher amounts of nitrogen in the straw as compared to fababeans. In comparison with fababeans, N-mineralization after the cultivation of oats remained lower by more than 50%. During winter, seepage water regularly led to a considerable decrease of soil NO3-N content. The N-leaching losses were especially high after cultivation of peas (80 kg N ha ?1) and considerably lower after fababeans (50 kg N ha?1) and oats (20 kg N ha?1). As compared to oats, a higher NO3-N content in soil was determined at the beginning of the growing period after preceding grain legumes. Therefore, winter wheat yielded highest after preceding peas (68 dt ha?1) and fababeans (60 dt ha?1) and lowest after preceding oats (42 dt ha?1). The cultivation of grain legumes had no measurable effect on yield formation of the third crop winter barley in either of the growing seasons.  相似文献   

14.
张玉娇  李军  郭正  岳志芳 《作物学报》2015,41(11):1726-1739
为探索不同肥力水平对渭北旱塬连作冬小麦田在长周期免耕/深松轮耕措施下土壤蓄水保墒和作物增产效应的影响,在模拟精度验证基础上,应用Win EPIC模型长周期定量模拟研究了1980–2009年渭北旱塬免耕/深松轮耕连作麦田5个不同施肥水平下(T1,N 75 kg hm–2+P2O5 60 kg hm–2;T2,N 120 kg hm–2+P2O5 90 kg hm–2;T3,N 150 kg hm–2+P2O5 120 kg hm–2;T4,N 180 kg hm–2+P2O5 150 kg hm–2;T5,N 255 kg hm–2+P2O5 90 kg hm–2)冬小麦产量和土壤水分效应。在30年模拟期间,各处理的冬小麦产量、年度耗水量和水分利用效率均呈波动下降趋势,下降幅度表现为T5T4T3T2T1。0~5 m土层土壤有效含水量呈季节性波动降低趋势,且随施肥水平的升高而降低,5个处理的麦田平均干燥化速率依次为每年13.5、17.1、17.4、20.1和23.9 mm。0~1.5 m土层土壤湿度随季节降水波动;各处理在不同深度形成稳定的土壤干层,其中T1在1.5~2.0 m,T2和T3在1.5~3.0 m,T4和T5在1.5~4.0 m。上述结果表明,随着肥力水平的增加,旱作冬小麦产量和耗水量也增加,土壤干层加厚。综合考虑认为,在渭北旱塬免耕/深松轮耕长期连作小麦田适宜的施肥量为纯氮150 kg hm–2+P2O5 120 kg hm–2。  相似文献   

15.
High rates of nitrogen (N) fertilizer may increase N leaching with drainage, especially when there is no further crop response. It is often discussed whether leaching is affected only at levels that no longer give an economic return, or whether reducing fertilization below the economic optimum could reduce leaching further. To study nitrate leaching with different fertilizer N rates (0–135 kg N ha−1) and grain yield responses, field experiments in spring oats were conducted in 2007, 2008 and 2009 on loamy sand in south-west Sweden. Nitrate leaching was determined from nitrate concentrations in soil water sampled with ceramic suction cups and measured discharge at a nearby measuring station. The results showed that nitrate leaching per kg grain produced had its minimum around the economic optimum, here defined as the fertilization level where each extra kg of fertilizer N resulted in a 10 kg increase in grain yield (85% DM). There were no statistically significant differences in leaching between treatments fertilized below this level. However, N leaching was significantly elevated in some of the treatments with higher fertilization rates and the increase in nitrate leaching from increased N fertilization could be described with an exponential function. According to this function, the increase was <0.04 kg kg−1 fertilizer N at and below the economic optimum. Above this fertilization level, the nitrate leaching response gradually increased as the yield response ceased and the increase amounted to 0.1 and 0.5 kg kg−1 when the economic optimum was exceeded by 35 and 100 kg N ha−1, respectively. The economic optimum fertilization level depends on the price relationship between grain and fertilizer, which in Sweden can vary between 5:1 and 15:1. In other words, precision fertilization that provides no more or no less than a 10 kg increase in grain yield per kg extra N fertilizer can be optimal for both crop profitability and the environment. To predict this level already at fertilization is a great challenge, and it could be argued that rates should be kept down further to ensure that they are not exceeded due to overestimation of the optimum rate. However, the development of precision agriculture with new tools for prediction may reduce this risk.  相似文献   

16.
Intercropping of corn with legumes is an alternative to corn monocropping and has a number of advantages, for example, lower levels of inputs, lower costs of production and better silage quality than the monocrop system. An experiment was carried out at two sites in 1993 and 1994 to investigate the effects of seeding date (simultaneous with corn or 3 weeks later) and number of rows of large‐seeded legumes (one or two) seeded between the corn rows. The intercrop plots received 90 kg ha?1 less nitrogen fertilizer than the monocrop plots, which received 180 kg ha?1. Silage yields were sometimes decreased by the simultaneous seeding of corn and large‐seeded legumes. Protein content and concentration were not affected by most treatments and provided reasonable quality silage, despite a reduction in the amount of nitrogen fertilizer used.  相似文献   

17.
Studies were conducted at Adana, in the Çukurova region of southern Turkey, to evaluate the effects of the rate and timing of application of soil‐applied potassium (K) on cotton (Gossypium hirsutum L.) in 1999 and 2000. Potassium rates of 0, 80, 160 and 240 kg K2O ha?1 were soil‐applied in single treatments (all at early boll development) or in split treatments (1/2 at first square and 1/2 at first white flower; 1/4 at first square, 1/4 at first white flower and 1/2 at early boll development). Data collected in the two years indicated that application of 160 kg K2O ha?1 produced significant differences in seed‐cotton yield, lint yield and boll weight compared with the untreated control. The best combination producing the greatest yield was application of 160 kg K2O ha?1 with all of the K soil‐applied at early boll development. Cotton yields did not respond to K fertilization above the rate of 160 kg K2O ha?1 under the production practices typically found in the region. For application of K at a rate of 240 kg K2O ha?1 there was a marked difference in fibre strength between years in this study, but micronaire and uniformity ratio were not different amongst K rates within each year. When the total amount of K was applied at early boll development, higher yields, boll weights and lint turnouts were obtained compared with split applications, but the single application did not have a large impact on fibre properties.  相似文献   

18.
Little is known about the effect of combined phosphorus and nitrogen (P‐N) fertilization on the N requirement of sunflower (Helianthus annus L.). This study was carried out to evaluate the effects of varying levels of P and N, as well as the interaction P × N, on the N uptake, yield and N apparent utilization efficiency under field conditions. Split‐plot design experiments were conducted in the mid‐western Pampas in Argentina. Four levels of N (0, 46, 92 and 138 kg N ha?1) and three levels of P (0, 12 and 40 kg P ha?1) were applied to two Typic Hapludolls over two growing seasons (1997–98 and 1998–99). N uptake and soil N‐NO3 contents were determined at the V7, R5 and R9 growth stages. The sunflower yield ranged from 2.5 to 5.0 Mg ha?1. The total N requirement was around 45 kg N Mg?1 grain, and this result suggests that it is not necessary to use different N requirements (parameter b) for fertilized crops when a yield response is expected. To achieve a 100 % yield maximum a N supply (soil plus fertilizer) of 181 kg N ha?1 at P40 was needed. However, at P0, the highest yield was about 80 % of the maximum yield with a N supply (soil plus fertilizer) of 164 kg N ha?1. P application increased the apparent use efficiency of the supplied N.  相似文献   

19.
The field experiments conducted on the grey‐brown podzolic soil in the four growing seasons (1998–2001) at Krzeslice Farm, central‐western Poland comprised seven fertilization variants: 80NF + 80CAN; 80CAN + 80CAN; 80AN + 80AN; 80NF + 50CAN + 30CN; 80CAN + 50CAN +30CN; 80AN + 50AN + 30CN (where NF – nitrofos NPK; CAN – calcium‐ammonium nitrate; AN – ammonium nitrate; CN – calcium nitrate) and control (without N) applied in split rates at the beginning of spring regrowth (80 kg N ha?1), stem elongation (80 or 50) and flower buds visible stages (30). The yielding effect of tested fertilization variants was significant in comparison with the control (2.24 t ha?1). The highest mean seed yield (3.64 t ha?1) was collected from 80AN + 80AN and 80CAN + 80CAN variants. Mean values of 4 years indicate that the second N rate division (80 + 50 + 30) decreased yield, although not significantly in comparison with these two N treatments. Plants grown on these treatments have developed different patterns of growth to yield the seeds. These patterns were characterized by very high crop growth rate during flowering (above 21 g m?2 day?1) and negative at maturation (down to ?2.5 g m?2 day?1). Plants fertilized with ammonium nitrate (80AN + 80AN) reached maximum growth rate earlier (65 days), which lasted longer (20 days) than plants fertilized with calcium‐ammonium nitrate (71 days lasting 17.5 days). Plants grown on the control treatment reached the highest crop growth rate within 79 days (14.8 g m?2 day?1), which lasted 15 days.  相似文献   

20.
In dryland agricultural systems, pig slurry (PS) is usually applied to cereal crops only at sowing, and slurries accumulate for the rest of the year in pits. In this context, a four-year experiment was established in order to evaluate the feasibility of PS applications at the barley or wheat tillering stage. The main treatments were PS either applied at sowing (25 Mg ha−1) or not, but they alternated after a two-year period. Both were annually combined with eight side-dressing treatments at cereal tillering: mineral N as NH4NO3 (M; 60 or 120 kg N ha−1 yr−1), PS from fattening pigs (PSf; 17, 30, 54 Mg ha−1 yr−1), PS from sows (PSs; 25, 45, 81 Mg ha−1 yr−1) and a treatment without N. The combined fertilization treatments were 18 plus a control (no N applied). In the context of crop rotation, the biennial alternation of PS applied at sowing allowed the control of soil nitrate increments, while PS side-dressing improved N recovery compared with a unique application at sowing. The highest yields (>3.6 Mg ha−1 yr−1) were obtained with an annual average (4-yr) N rate close to 173 kg N ha−1 (±40 kg N ha−1). The best overall strategies corresponded to PSs side-dressings of 50–90 kg N ha−1. These PSs rates also recorded the highest values on the five calculated N-efficiency indexes, which were higher than or similar to results from M side-dressings or those recorded in the literature. These similarities (M vs. PSs) were also shown by the reduction of unaccounted-for N inside the overall N balance. Thus, split PS application during the crop cycle is a sound fertilization option in dryland systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号