首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Argyrosomus regius (3.0 ± 0.9 g) were exposed to different concentrations of ammonia in a series of acute toxicity tests by the static renewal method at three temperature levels (18, 22 and 26°C) at a pH of 8.2. Low temperature clearly increased the tolerance of the fish to total ammonia nitrogen (TAN) and unionized ammonia (NH3) (P < 0.05). While the 96‐h LC50 values of TAN were 19.79, 10.39 and 5.06 mg L?1, the 96‐h LC50 of NH3 were 1.00, 0.70 and 0.44 mg L?1 at 18, 22 and 26°C respectively. The safe levels of NH3 for A. regius was estimated to be 0.10, 0.07 and 0.04 mg L?1 at 18, 22 and 26°C respectively (P < 0.05). This study clearly indicates that A. regius is more sensitive to ammonia than other marine fish species cultured on the Mediterranean and Eastern Atlantic coasts.  相似文献   

2.
Ammonia toxicity and morphological changes in gills of juvenile Japanese flounder Paralichthys olivaceus (5.76 ± 0.12 g) were investigated when fish were separately exposed to normal dissolved oxygen (DO) at 6.5 ± 0.5 mg L?1 and supersaturated oxygen at 16.0 ± 2.0 mg L?1 at different ammonia concentrations. Under normal oxygen, ammonia concentrations were tested from 0.04 (control) to 93.3 mg L?1 total ammonia nitrogen (TAN), whereas under oxygen supersaturation, ammonia concentrations ranged from 0.04 (control) to 226.7 mg L?1 TAN in the trial. After exposure to ammonia for 96 h, the ammonia LC50 for fish was 62.48 mg L?1 TAN (0.50 mg L?1 NH3–N) at normal oxygen and 160.71 mg L?1 TAN (0.65 mg L?1 NH3–N) at oxygen supersaturation. Light microscopic observations confirmed that gill damage in normal oxygen was more profound than in oxygen supersaturation when fish were exposed to the same level of TAN (93.3 mg L?1). Furthermore, electron microscopic scanning also showed more crimple, retraction and fibrosis on the secondary lamella surface in fish exposed to normal oxygen than those in fish exposed to supersaturated oxygen at the same TAN (93.3 mg L?1). This study suggests that supersaturated oxygen can increase ammonia tolerance in Japanese flounder through reducing gill damage by ammonia, which partially explains the merit of using pure oxygen injection in intensive fish farming.  相似文献   

3.
Survival rate, growth and feed intake were determined for late juveniles (4.31 ± 0.18 g) of river prawn Macrobrachium rosenbergii in freshwater with total ammonia‐N (NH3‐N+NH4‐N) concentrations of 0.015 (control), 0.5, 1.0 and 1.5 mg L−1 for 60 days at pH 7.53 ± 0.04 and temperature 24.0 ± 2.5°C. Survival rate was significantly (P<0.05) lower (54 ± 4.2–70 ± 5.4%) for total ammonia concentrations from 0.5 to 1.5 mg L−1 [0.0139–0.0419 mg L−1 of unionized ammonia (NH3)]. Growth (0.026–0.030 g day−1 range) of the prawns did not differ for the different NH3 levels but were significantly (P<0.05) lower compared with control (0.056 g day−1). Feed intake rates also diminished significantly (P<0.05) from 77.60 ± 2.45% at control (0.015 mg L−1 NH3‐N) to 48.69 ± 2.13% at 1.5 mg L−1 NH3‐N (0.0419 mg L−1 of unionized NH3).  相似文献   

4.
This study was conducted to determine the effects of dietary α‐ketoglutarate (AKG) supplementation on the antioxidant defense system and gene expression of heat shock protein (HSP) 70 and HSP 90 in hybrid sturgeons Acipenser schrenckii ♀ × A. baerii ♂ exposed to ammonia‐N stress. A 2 × 3 factorial experiment was arranged, in which each diet (0%, 1% AKG) was randomly assigned to 0.25 (control) 5 and 10 mg L?1 ammonia‐N groups with three replicate aquaria for each 72 h. The 10 mg L?1 ammonia‐N significantly increased serum ammonia concentrations and intestinal Gln concentrations and GS activity compared with the 0.25 or 5 mg L?1 ammonia‐N groups. The intestinal Gln concentration and GS activity increased, and the serum ammonia concentration decreased, in fish given dietary supplementation of 1.0% AKG compared with fish given diets without AKG. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in serum, gills and intestines decreased when fish were exposed to 5 or 10 mg L?1 ammonia‐N, and their activity increased in fish given diets with 1% AKG. Catalase in the serum and gills decreased when fish were exposed to 5 or 10 mg L?1 ammonia‐N and increased in fish given diets with 1% AKG. The 10 mg L?1 ammonia‐N or 1% AKG supplementation increased HSP 70 and HSP 90 gene expression in the liver. The increased activity of antioxidant enzymes, and increased HSP 70 and HSP 90 gene expression in fish fed diets containing 1% AKG suggested higher tolerance to ammonia‐N stress.  相似文献   

5.
Haematological parameters of 2‐year‐old carp (Cyprinus carpio L.) were assessed to study the protective effect of chloride on the health of fish exposed to elevated nitrite concentrations. Four groups of carp were exposed to different concentrations of nitrite and chloride for 96 h (group E1: 67 mg L?1 NO2?, 11 mg L?1 Cl?; group E2: 67 mg L?1 NO2?, 100 mg L?1 Cl?; group E3: 0 mg L?1 O2?, 100 mg L?1 Cl? and group C: 0 mg L?1 NO2?, 11 mg L?1 Cl?). The main haematological response of carp to an acute exposure to nitrite (group E1) was a significant decrease (P<0.05) in haemoglobin concentrations (53.40±6.61 g L?1), haematocrit (0.21±0.02 LL?1), erythrocyte count (1.13±0.12 TL?1), leucocyte count (7.1±4.19 GL?1) and lymphocyte count (5.28±2.51 GL?1), and a significant increase in methaemoglobin concentration (90.50±4.38%, P<0.01) and mean corpuscular haemoglobin concentration (0.27±0.2 LL?1, P<0.05). At higher chloride concentrations (group E2), a lower nitrite toxicity was observed. In group E2 carp, methaemoglobin made up 38.32±13.30%. Erythrocytes in carp exposed to nitrite showed qualitative changes. Compared with the control group C, group E1 carp showed a significantly higher number (P<0.05) of elongated erythrocytes, with the nucleus located at one cell pole (0.519±0.388 TL?1). All erythrocytes of group E1 carp had remarkably clear cytoplasms compared with the cytoplasm in the control group C. The biochemical values found were comparable with those found in controls. The main histological lesions were found in the gills of carp exposed to nitrite and consisted of hyperplasia and an elevated number of chloride cells.  相似文献   

6.
Piaractus mesopotamicus juveniles (total length 12 ± 0.5 mm) were exposed to different concentrations of ammonia‐N (un‐ionized plus ionized ammonia as nitrogen), using the static renewal method at different temperature levels (15, 20 and 25°C) at pH 7. The 24, 48, 72, 96 h LC50 values of ammonia‐N in P. mesopotamicus juveniles were 5.32, 4.19, 3.79 and 2.85 mg L?1 at 15°C; 4.81, 3.97, 3.25 and 2.50 mg L?1 at 20°C; and 4.16, 3.79, 2.58 and 1.97 mg L?1 at 25°C respectively. The 24, 48, 72, 96 h LC50 values of NH3‐N (un‐ionized ammonia as nitrogen) were 0.018, 0.014, 0.013, 0.009 mg L?1 at 15°C temperature; 0.023, 0.019, 0.016 and 0.012 mg L?1 at 20°C; 0.029, 0.026, 0.018 and 0.014 mg L?1 at 25°C. The temperature increase from 15 to 25°C caused an increase of ammonia‐N susceptibility by 21.80%, 9.55%, 31.92% and 30.87%, after 24, 48, 72 and 96 h exposure respectively. Furthermore, we found that exposure of fish to ammonia‐N caused an elevation in total haemoglobin and blood glucose with an increase of 2 mg L?1 concentration. Ammonia levels tolerated, especially in different temperatures levels, have important implications for the management of aquaculture.  相似文献   

7.
Exposure to heat‐shock protein (Hsp) stimulating factors induces Hsp accumulation and confers tolerance to lethal ammonia stress on the common carp Cyprinus carpio. This study investigated whether a non‐lethal heat shock bestowed similar protective effects against ammonia and induced thermotolerance, both thought to be rendered by increased amounts of Hsps. The 30‐min lethal temperature (30 min LHT) and 1‐h lethal ammonia concentration (1 h LCT) for this species occurred at 41°C and 14.2 mg/L NH3 respectively. Heating juvenile carp (5 cm) from 28°C to 32, 34 and 38°C, with a subsequent 8‐h recovery period augmented tolerance to lethal heat and ammonia perturbation by two to threefold as compared with animals held at 28°C. Protection occurred in conjunction with Hsp70 accumulation in gills, substantiating the role of this Hsp in enhancing the stress tolerance of common carp.  相似文献   

8.
Ammonia is a metabolite of aquatic organisms which might reach deleterious levels in intensive fish farms. The aim of the present study was to determine median lethal concentrations (96‐h LC50) of total ammonia nitrogen (TA‐N) on marbled spinefoot rabbitfish (Siganus rivulatus) and chronic effects of TA‐N on survival, growth and behaviour of juvenile rabbitfish over a 50 day period. In the first experiment, fish were exposed to 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 mg L?1 TA‐N for 96 h and survival evaluated. In the second experiment, 12 fish were stocked per 50‐L tank and treated with one of 0, 2, 4, 6, 8, 10 and 12 mg L?1 TA‐N with three replicate tanks per treatment. Survival and growth were determined and histopathological alterations of gills due to chronic ammonia exposure were studied by light and electron microscopy. The 96‐h LC50 values were 16–18 mg L?1 TA‐N. In the chronic exposure experiment, fish reared in water with 0 mg L?1 TA‐N had 100% survival and had 50% weight increase in 50 days. Fish at 2 and 4 mg L?1 TA‐N all died whilst fish in 6, 8, 10 and 12 mg L?1 TA‐N survived and grew albeit less than in treatment 0 mg L?1. Gills from ammonia treated fish displayed severe histological and ultrastructural alterations including hyperplasia, hypertrophy and fusion of secondary lamellae, aneurysms and presence of pleomorphic altered cells. Chronic exposure to ammonia is deleterious to marbled spinefoot rabbitfish and low concentrations of ammonia appear to kill the fish in <50 days whilst fish can survive for more than 50 days at concentrations between 6 and 12 mg L?1 TA‐N.  相似文献   

9.
Koi herpesvirus specifically infects and causes mass mortality on koi and carp, resulting in severe economic losses. In this study, we presented the efficacy of KHV DNA vaccine administration by immersion method on Cyprinus carpio. Two different immersion densities of fish were applied, namely 800 fish L?1 and 1200 fish L?1. Thirty‐day‐old common carp juveniles were immersed for 30 min in the water containing 1.3 × 108 CFU mL?1 of heat‐killed Escherichia coli carrying DNA vaccine encoding glycoprotein‐25, and without vaccination treatment as controls. The challenge test was performed at 30 days post vaccination by injecting 0.1 mL KHV filtrate (10?3 of dilution rate). The result showed that higher relative per cent survival of KHV‐challenged fish was obtained in 800 fish L?1 (< 0.05). Furthermore, significant specific antibody anti‐KHV response (< 0.05) was detected on 28 and 36 days post vaccination in 800 and 1200 fish L?1, respectively, compared to the controls there was no specific antibody detected. In conclusion, the KHV DNA vaccine could provide good protection in common carp against KHV infection, which has practical applications in aquaculture practices.  相似文献   

10.
In the present study, the hypothesis tested was that Penaeus monodon post‐larvae (PL) experience lower growth when exposed to crushed conspecifics, which was achieved by exposing individual P. monodon PL with abundant food for 4 weeks to a gradient from 0 to 100 crushed conspecific PL L?1. Both dry weight (48.5±7.2 mg) and body size (28.0±1.3 mm) of animals exposed to 1 macerated PL L?1 were significantly (P≤0.011) higher than those of animals in treatments with 0, 5 and 10 crushed PL L?1 (average over treatments: 25.6±3.2 mg; 23.4±0.5 mm). All animals died within 1 week when exposed to 70 and 100 crushed PL L?1, and within 3–4 weeks when exposed to 50 and 30 crushed PL L?1. Exposure time affected mortality and it appeared that LC50 values decreased from 60 to 13 crushed PL L?1 from 1 to 4 weeks' exposure. Survival of P. monodon PL was negatively correlated to pH, biological oxygen demand, ammonia and nitrate. In conclusion, low dose of crushed conspecifics has a stimulatory effect on P. monodon PL, as larvae were heavier and larger, while high doses cause high mortality.  相似文献   

11.
The objective of this study was to determine the long‐term effects of ambient unionized ammonia nitrogen (NH3‐N) combined with different feeding regimes on Atlantic salmon Salmo salar L parr growth, welfare and smoltification. Previous studies on the parr stage of Atlantic salmon have mostly focused on acute exposure, or at low temperatures. Atlantic salmon parr were exposed for 105 days (at 12°C, pH 6.8) to four sublethal ammonia concentrations ranging from 0.1 to 35 μg L?1 NH3‐N (0.1–25 mg L?1 TAN) at two feeding levels: full feed strength (+20% overfeeding) and 1/3 of full feed strength. After 21 days, it was observed that 32 μg L?1 NH3‐N reduced growth rate of parr fed full ration, but this effect was not evident at the end of the exposure. Feed utilization was not affected by ammonia exposure at any sampling point. Increasing ammonia levels were associated with a higher prevalence and severity of gill damage at 22 days but not at the end of the exposure. The examination of welfare indicators revealed only a few pathologies, not related to ammonia exposure. In addition, higher ammonia concentrations did not appear to influence the development of hypo‐osmoregulatory ability during parr‐smolt transformation.  相似文献   

12.
The effects of ammonia and nitrite on survival, growth and moulting were investigated in juvenile tiger crab, Orithyia sinica (carapace length 3.91±0.15 mm, carapace width 3.84±0.23 mm, n=440), after 30 days exposure to ammonia‐N (0, 20, 50, 100 and 150 mg L?1) and nitrite‐N (0, 50, 100, 150, 200 and 250 mg L?1) using a continuous flow system. Survival rates of tiger crab exposed to ammonia and nitrite decreased linearly with the exposure time and concentration. The growth rate of tiger crab exposed to 50, 100 and 150 mg L?1 ammonia was significantly lower than that of control crabs. The growth rate of tiger crab exposed to nitrite decreased at 150, 200 and 250 mg L?1 nitrite. During the ammonia and nitrite exposure, the intermoult period of the juveniles of tiger crab O. sinica was shortened between the first and second moult, and the number of moulting of crabs exposed to a higher concentration were significantly higher than that of control crabs.  相似文献   

13.
The tolerance of Litopenaeus vannamei larvae to increasing concentrations of total ammonia nitrogen (TAN) using a short‐term static renewal method at 26°C, 34 g L?1 salinity and pH 8.5 was assessed. The median lethal concentration (24 h LC50) for TAN in zoea (1‐2‐3), mysis (1‐2‐3) and postlarvae 1 were, respectively, 4.2‐9.9‐16.0; 19.0‐17.3‐17.5 and 13.2 mg L?1TAN (0.6‐1.5‐2.4; 2.8‐2.5‐2.6 and 1.9 mg L?1 NH3‐N). The LC50 values obtained in this study suggest that zoeal and post‐larval stages are more sensitive to 24 h ammonia exposure than the mysis stage of L. vannamei larvae. On the basis of the ammonia toxicity level (24 h LC50) at zoea 1, we recommend that this level does not exceed 0.42 mg L?1 TAN – equivalent to 0.06 mg L?1 NH3‐N – to reduce ammonia toxicity during the rearing of L. vannamei larvae.  相似文献   

14.
This study aimed to evaluate the tolerance of common snook Centropomus undecimalis larvae and juveniles exposed to acute concentrations of un-ionized ammonia for 96 h at 35g L?1 salinity, after 24 h starvation. For that, 10 larvae (20.85 ± 1.46 mm) of 47 days post hatch (DPH) per experimental unit (1.5 L) were exposed to 0.00 ± 0.00, 0.65 ± 0.04, 1.29 ± 0.09, 2.59 ± 0.18, 3.88 ± 0.27, 5.17 ± 0.34, and 6.47 ± 0.43 mg L?1 NH3, in triplicates, at 26.72 ± 0.08°C, dissolved oxygen at 5.72 ± 0.10 mg L?1 and pH 8.45 ± 0.06. During this period, no mortalities were observed. Another trial was performed with five juveniles (20.35 ± 6.10 g, 13.90 ± 1.75 cm) per experimental unit (60 L) exposed to 0.00 ± 0.00, 2.26 ± 0.07, 2.68 ± 0.11, 3.20 ± 0.13, 3.68 ± 0.17, and 4.27 ± 0.16 mg L?1 NH3, in triplicates, at 21.90 ± 0.76°C, dissolved oxygen at 6.27 ± 0.21 mg L?1 and pH at 8.38 ± 0.04. Fish mortality increased as ammonia concentrations increased at each day, and LC50 96 h was 3.52 mg L?1 NH3. Larvae were less sensitive than juveniles, demonstrating that the environmental toxicity of ammonia to common snook is influenced by age. Sublethal exposition to ammonia caused histological damages in gills of common snook juveniles and variation on glucose levels, hematocrit, and red blood cells number, showing negative effects on fish homeostasis. Moreover, compared to other species, the common snook has great resistance to ammonia.  相似文献   

15.
Four successive life stages (zoea-III, zoea-IV, zoea-V and megalopa) of the Chinese mitten-handed crab, Eriocheir sinensis (H. Milne-Edwards), were exposed to ammonia in a series of short-term bioassays with the static-renewal method at 22°C, pH 8.0 and 25%o salinity. The greatest sensitivity was observed in the zoea-III stage. The 24-h LC50 values for zoea-III, zoea-IV, zoea-V and megalopa were 32.8, 73.1, 84.0 and 90.1 mg L?1 for NH3+ NH4+, and 1.11, 2.36, 2.77 and 3.18 mg L?1 for NH3, respectively. The 72-h LC50 values for zoea-III, zoea-IV and zoea-V were 11.9, 23.6 and 38.2 mg L?1 for NH3+ NH4+, and 0.40, 0.76 and 1.26 mg L?1 for NH3, respectively. The 96-h LC50 values for megalopa were 37.3 mg L?1 for NH3+ NH4+ and 1.31 mg L?1 for NH3. It was found that ammonia tolerance increased with larval development from zoea-III to megalopa, especially from zoea-III to zoea-IV and from zoea-IV to zoea-V. A comparison of safe levels of ammonia among the different life stages indicated that all stages were significantly different with respect to safe levels of ammonia (P < 0.05) except zoea-V and megalopa, which had the highest safe levels. In general, both the larvae and juveniles of E. sinensis are less resistant to ammonia than those of other crustacean species studied so far.  相似文献   

16.
A comprehensive acute toxicity trial was conducted using a static water system to study the toxic effect of ammonia on haematology and enzyme profiles of Cirrhinus mrigala H. The LC50 of total ammonia‐nitrogen (TAN) was 11.8 mg L?1 TAN (1.029 mg L?1 NH3‐N). The sub‐lethal test revealed that with increasing concentration of TAN, the total erythrocyte counts were reduced in lower concentrations (1–4 mg L?1 TAN) followed by higher levels in fish exposed to higher concentrations (8–16 mg L?1 TAN). In contrast, the total leucocyte counts were opposite. With increasing concentration of TAN, haemoglobin and serum protein content were reduced, whereas the blood glucose level increased. As the concentration of ammonia increased, there was a reduction in acetylecholinesterase activity in the brain and liver; alkaline phosphatase activity in the serum, brain and gill; and acid phosphatase (ACP) activity in the gill. The activity of lactate dehydrogenase in the gill, liver, kidney and brain increased with increased concentration of ammonia. In addition, activities of ACP in the serum and brain, alanine aminotransferase in the serum, brain and gill, and aspartate aminotransferase in the serum, brain and gill were increased.  相似文献   

17.
Optimal water quality is considered as being a restriction for marine copepod cultures for live feed. There is a lack of knowledge on the water‐quality conditions in copepod cultures and the effect on copepods. Few studies have investigated the effect of ammonia on copepods, and fewer reports No Observed Effect Concentrations (NOEC) and Lowest Observed Effect Concentrations (LOEC), which provides safety levels before cultures are affected. This study investigates the tolerance of Acartia tonsa nauplii and adults to ammonia, using mortality as the endpoint after 24, 48 and 72 h of exposure. Nauplii were exposed to levels from 0 to 5127 μg NH3 L?1 and adults to levels from 0 to 8481 μg NH3 L?1. Nauplii NOEC was 30 μg NH3 L?1 and LOEC was 81 μg NH3 L?1. Adult NOEC was 477 μg NH3 L?1 and LOEC was 1789 μg NH3 L?1. 50% Lethal Concentrations (LC50) for nauplii of 48 and 72 h was 1257 and 220 μg NH3 L?1. LC50 for adults was 2370 (24 h), 972 (48 h) and 770 (72 h). Combining NOEC with excretion rates of NH4/NH3 a model was developed to calculate densities in batch cultures. We recommend that for batch cultures of A. tonsa, NH3 is kept below NOEC for nauplii and that levels of NH3 together with pH are monitored weekly.  相似文献   

18.
Effects of eugenol (AQUI‐S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L?1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L?1, yellow perch controls (0 mg L?1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg?1 h?1, while yellow perch exposed to 20 and 30 mg L?1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg?1 h?1 respectively. Nile tilapia exposed to 30 mg L?1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg?1 h?1) relative to the 0 mg L?1 eugenol control (546.6 ± 53.5 mg O2 kg?1 h?1) at a loading density of 120 g L?1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L?1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.  相似文献   

19.
Juvenile mirror carp were fed diets containing 303.4, 321.7, 341.2, 361.0 and 379.1 g kg?1 proteins, respectively, and reared at different water temperatures (18, 23 and 28°C) for 60 days. Gene expression of heat shock protein gene (Hsp70) and the warm temperature acclimation‐related 65 kDa protein gene (Wap65), immunity and antioxidant status in the carp were investigated. Results indicated that the contents of serum complement 3 (C3), complement 4 (C4) and immunoglobulin M (IgM), as well as activities of liver superoxide dismutase (SOD) and lysozyme (LSZ) were significantly enhanced with increasing dietary protein (< 0.05), while content of malondiadehyde (MDA) decreased. Gene expression level of Wap65 in the liver significantly increased with dietary protein, while gene expression of Hsp70 decreased. The contents of C3, C4 and IgM, the activities of SOD and LSZ and gene expression level of Wap65 in the liver significantly increased with temperature. These results suggest that: Serum immune parameter, antioxidant enzymes and Hsp70 and Wap65 expression interact in fish to improve ability to adapt to the environment; and the optimal conditions for the immunity of carp are 348.1?354.5 g kg?1 protein at 18°C, 352.3?364.9 g kg?1 at 23°C and 360.2?364.3 g kg?1 at 28°C, and the optimum temperature for carp is 23°C.  相似文献   

20.
To evaluate the effect of thermal and microbial stress on the immune response of common carp (Cyprinus carpio L.), relative mRNA expression level of pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β] and other genes related to immune or stress response [inducible nitric oxide synthase (iNOS), heat shock protein 70 (Hsp70), superoxide dismutase one (SOD1), and glucocorticoid receptor (GR)] was measured by quantitative PCR (qPCR). In addition, total protein and total immunoglobulin level in blood plasma of experimental common carp was also assayed. All the above parameters were estimated 24 h post-challenge with Gram-negative bacterium, Aeromonas hydrophila. Common carp (54.89?±?6.90 g) were initially exposed to 20 °C (control group) and 30 °C (thermal stress group) water temperature for 30 days, followed by experimental challenge with 2.29?×?108 colony forming unit/mL (CFU/mL; LD50 dose) of A. hydrophila. Exposure of fish to thermal stress and subsequently challenge with A. hydrophila significantly (P?<?0.05) increases the IL-1β mRNA expression in head kidney and spleen of common carp by ~?39.94 and ~?4.11-fold, respectively. However, TNF-α mRNA expression in spleen decreased ~?5.63-fold in control fish challenged with A. hydrophila. Thermal stress and challenge with bacterium suppresses the iNOS and GR mRNA expression in spleen of common carp. Moreover, significant (P?<?0.05) increase in total protein content of blood plasma (~?43 mg/g) was evident in fish exposed to thermal stress and challenged with A. hydrophila. In conclusion, our study highlights the importance of elevated temperature stress and microbial infection in differential regulation of expression of several immunogenes in common carp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号