首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The landscape matrix is suggested to influence the effect of habitat fragmentation on species richness, but the generality of this prediction has not been tested. Here, we used data from 10 independent studies on butterfly species richness, where the matrix surrounding grassland patches was dominated by either forest or arable land to test if matrix land use influenced the response of species richness to patch area and connectivity. To account for the possibility that some of the observed species use the matrix as their main or complementary habitat, we analysed the effects on total species richness and on the richness of grassland specialist and non-specialist (generalists and specialists on other habitat types) butterflies separately. Specialists and non-specialists were defined separately for each dataset. Total species richness and the richness of grassland specialist butterflies were positively related to patch area and forest cover in the matrix, and negatively to patch isolation. The strength of the species-area relationship was modified by matrix land use and had a slope that decreased with increasing forest cover in the matrix. Potential mechanisms for the weaker effect of grassland fragmentation in forest-dominated landscapes are (1) that the forest matrix is more heterogeneous and contains more resources, (2) that small grassland patches in a matrix dominated by arable land suffer more from negative edge effects or (3) that the arable matrix constitutes a stronger barrier to dispersal between populations. Regardless of the mechanisms, our results show that there are general effects of matrix land use across landscapes and regions, and that landscape management that increases matrix quality can be a complement to habitat restoration and re-creation in fragmented landscapes.  相似文献   

2.
Habitat loss and associated fragmentation effects are well-recognised threats to biodiversity. Loss of functional connectivity (mobility, gene flow and demographic continuity) could result in population decline in altered habitat, because smaller, isolated populations are more vulnerable to extinction. We tested whether substantial habitat reduction plus fragmentation is associated with reduced gene flow in three ??decliner?? woodland-dependent bird species (eastern yellow robin, weebill and spotted pardalote) identified in earlier work to have declined disproportionately in heavily fragmented landscapes in the Box-Ironbark forest region in north-central Victoria, Australia. For these three decliners, and one ??tolerant?? species (striated pardalote), we compared patterns of genetic diversity, relatedness, effective population size, sex-ratios and genic (allele frequency) differentiation among landscapes of different total tree cover, identified population subdivision at the regional scale, and explored fine-scale genotypic (individual-based genetic signature) structure. Unexpectedly high genetic connectivity across the study region was detected for ??decliner?? and ??tolerant?? species. Power analysis simulations suggest that moderate reductions in gene flow should have been detectable. However, there was evidence of local negative effects of reduced habitat extent and structural connectivity: slightly lower effective population sizes, lower genetic diversity, higher within-site relatedness and altered sex-ratios (for weebill and eastern yellow robin) in 10 × 10?km ??landscapes?? with low vegetation cover. We conclude that reduced structural connectivity in the Box-Ironbark ecosystem may still allow sufficient gene flow to avoid the harmful effects of inbreeding in our study species. Although there may still be negative consequences of fragmentation for demographic connectivity, the high genetic connectivity of mobile bird species in this system suggests that reconnecting isolated habitat patches may be less important than increasing habitat extent and/or quality if these need to be traded off.  相似文献   

3.
The declines of many specialist bird species in the agricultural landscapes of Central Europe have resulted in small and isolated populations. In the case of the black grouse, a ground-nesting bird species with large spatial requirements, empiric evidence about underlying landscape changes is scarce. In this study, we examined land cover and land cover changes in a farmland-forest mosaic in eastern Lower Saxony, Germany and how they affect occurrence and persistence of black grouse. Spatial information came from historic topographic maps from 1958 to 1975. The results show profound conversions of habitat to forest and farmland but also an increase in settlement area. Habitat conversions and suburbanization were negative correlates of black grouse persistence. Habitat models from before and after a decline period differed in some of the predictors and suggest black grouse habitat to be more diverse before the land cover changes. Our study confirms that land use factors at a landscape scale extent contribute to explain black grouse occurrence and thus can complement important small scale factors like the quality and size of individual habitat patches. Results also show that landscape factors affect black grouse distribution predominantly from an area much greater than an individual black grouse home range. Our models may be further evaluated on present-day landscapes and might be used to evaluate large-scale habitat availability for black grouse.  相似文献   

4.

Context

The classical theory of island biogeography explains loss of species in fragmented landscapes as an effect of remnant patch size and isolation. Recently this has been challenged by the habitat amount and habitat continuum hypotheses, according to which persistence in modified landscapes is related to total habitat amount rather than habitat configuration or the ability of species to use all habitats to varying degrees. Distinguishing between these theories is essential for effective conservation planning in modified landscapes.

Objective

Identify which factors of habitat type, amount and configuration predict the persistence of a keystone woodland specialist, the eastern bettong Bettongia gaimardi, in a fragmented landscape.

Method

In the Midlands region of Tasmania we carried out camera surveys at 62 sites in summer and winter. We included habitat and landscape features to model whether habitat amount or patch size and isolation influenced the presence of the eastern bettong, and to measure effects of habitat quality.

Results

Habitat amount within a 1 km buffer was a better predictor of occupancy than patch size and isolation. Occupancy was also affected by habitat quality, indicated by density of regenerating stems.

Conclusion

Our results support the habitat amount hypothesis as a better predictor of presence. For a species that is able to cross the matrix between remnant patches and utilise multiple patches, the island biogeography concept does not explain habitat use in fragmented landscapes. Our results emphasize the value of small remnant patches for conservation of the eastern bettong, provided those patches are in good condition.
  相似文献   

5.
Although it is recognized that anthropogenic forest fragmentation affects habitat use by organisms across multiple spatial scales, there is uncertainty about these effects. We used a hierarchical sampling design spanning three spatial scales of habitat variability (landscape > patch > within-patch) and generalized mixed-effect models to assess the scale-dependent responses of bird species to fragmentation in temperate forests of southern Chile. The abundances of nine of 20 bird species were affected by interactions across spatial scales. These interactions resulted in a limited effect of within-patch habitat structure on the abundance of birds in landscapes with low forest cover, suggesting that suitable local habitats, such as sites with dense understory cover or large trees, are underutilized or remain unused in highly fragmented landscapes. Habitat specialists and cavity-nesters, such as tree-trunk foragers and tapaculos, were most likely to exhibit interactions across spatial scales. Because providing additional sites with dense understory vegetation or large habitat trees does not compensate the negative effect of the loss of forest area on bird species, conservation strategies should ensure the retention of native forest patches in the mixed-use landscapes.  相似文献   

6.
Despite good theoretical knowledge about determinants of plant species richness in mosaic landscapes, validations based on complete surveys are scarce. We conducted a case study in a highly fragmented, traditional agricultural landscape. In 199 patches of 20 representative multi-patch-plots (MPPs, 1 ha) we recorded a total of 371 plant species. In addition to an additive partitioning of species diversity at the (a) patch- and (b) MPP-scale, we adopted the recently proposed ‘specificity’ measure to quantify the contribution of a spatial subunit to landscape species richness (subunit-to-landscape-contribution, SLC). SLC-values were calculated at both scales with respect to various spatial extents. General regression models were used to quantify the relative importance of hypothesis-driven determinants for species richness and SLC-values. At the patch scale, habitat type was the main determinant of species richness, followed by area and elongated shape. For SLC-values, area was more important than habitat type, and its relevance increased with the extent of the considered landscape. Influences of elongated shape and vegetation context were minor. Differences between habitat types were pronounced for species richness and also partly scale-dependent for SLC-values. Relevant predictors at the MPP-scale were nonlinear habitat richness, the gradient from anthropogenic to seminatural vegetation, and the proportions of natural vegetation and rare habitats. Linear elements and habitat configuration did not contribute to species richness and SLC. Results at the MPP-scale were in complete accordance with the predictions of the mosaic concept. Hence, our study represents its first empirical validation for plant species diversity in mosaic landscapes.  相似文献   

7.
Spatially-explicit, individual-based models are increasingly used to evaluate the effects of habitat loss and fragmentation on habitat use and population persistence. Yet, they are criticized on the basis that they rely on little empirical data, especially regarding decision rules of moving individuals. Here we report the results of an experiment measuring the gap-crossing decisions of forest birds attracted to a recording of chickadee(Poecile atricapillus) mobbing calls, and provided with options to travel to the speaker by either crossing an open area (short cut) or taking a longer route under forest cover (detour). We performed the experiment in winter and late summer near Québec City, Québec, Canada. We recorded 1078 travel paths from 6 resident and 12 migratory species in 249 experimental sites. In both seasons, birds preferred to travel under forest cover rather than cross open areas, even when the forested detour conveyed a substantially longer route than the short cut in the open. Only when the detour under forest cover. This was considerably longer than the short-cut in the open, in both relative and absolute terms, were birds more likely to take short cuts, indicating that gap-crossing decisions are scale dependent. However, birds rarely ventured >25 m from forest edges despite having the opportunity to do so. Except for Hairy Woodpeckers (Picoides villosus) which ventured further into the open, all species showed similar gap-crossing decisions. Residents remained marginally closer to forest edges in late summer as compared to in winter. Conspecific group size had no influence on gap-crossing decisions. This experiment supports the hypothesis that forest bird movements are constrained in fragmented landscapes, and provides opportunities to calibrate spatially-explicit, individual-based models addressing the influence of landscape composition and configuration on dispersal. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Jonsen  Ian D.  Fahrig  Lenore 《Landscape Ecology》1997,12(3):185-197
The purpose of this study was to investigate the effect ofchanges in landscape pattern on generalist and specialistinsects. We did this by comparing the species richness andabundance of generalist and specialist herbivorous insects inalfalfa (Medicago sativa, L.) fields on 26 agriculturallandscapes that differed in spatial structure. The insects werefrom the families Curculionidae (Coleoptera), weevils, andCicadellidae (Auchennorhyncha), leafhoppers.We hypothesized that: (1) generalist richness and abundancewould be highest in landscapes with high diversity(Shannon-Wiener); (2) specialist richness and abundance would behighest in landscapes with (i) high percent cover alfalfa and(ii) low mean inter-patch distance. We tested for these effectsafter controlling for the patch-level effects of field size,field age, frequency of disturbance and vegetation texture.The important findings of the study are: (1) generalist richness andabundance increased with increasing landscape diversity and (2)isolation (percent cover alfalfa in the landscape and/or meaninter-patch distance) does not affect specialist insects. Theseresults are significant because they indicate that bothgeneralist and specialist insects may move over much largerdistances than previously thought. This is one of the firststudies to demonstrate a large scale effect of spatial structureon insects across a broad range of landscapes.  相似文献   

9.
We compared populations of a forest damselfly —Calopteryx maculata — in two kinds of landscapes. In fragmented landscapes, forested foraging patches were separated from streams (where oviposition and mating occur) by up to 500 m of pasture. In non-fragmented landscapes, there was continuous forest cover adjacent to streams. The prevalence and intensity of midgut infections of a gregarine parasite were significantly lower in the fragmented landscapes than in the non-fragmented landscapes. We have shown elsewhere that in the fragmented landscapes, damselflies move over greater areas to forage than in the non-fragmented landscapes. We postulate that these movements lower the rate of encounter between damselflies and oocysts, thus lowering the prevalence and intensity of infection. The differences suggest that actual habitat fragmentation events would alter the relationship between host and parasite, but that populations of both species would persist after fragmentation. Prevalence of parasitism is related to age but we found no residual effects of size on parasitism.  相似文献   

10.
Even among forest specialists, species-specific responses to anthropogenic forest fragmentation may vary considerably. Some appear to be confined to forest interiors, and perceive a fragmented landscape as a mosaic of suitable fragments and hostile matrix. Others, however, are able to make use of matrix habitats and perceive the landscape in shades of grey rather than black-and-white. We analysed data of 42 Chiroxiphia caudata (Blue Manakin), 10 Pyriglena leucoptera (White-shouldered Fire-eye) and 19 Sclerurus scansor (Rufous-breasted Leaftosser) radio-tracked in the Atlantic Rainforest of Brazil between 2003 and 2005. We illustrate how habitat preferences may determine how species respond to or perceive the landscape structure. We compared available with used habitat to develop a species-specific preference index for each of six habitat classes. All three species preferred old forest, but relative use of other classes differed significantly. S. scansor perceived great contrast between old forest and matrix, whereas the other two species perceived greater habitat continuity. For conservation planning, our study offers three important messages: (1) some forest specialist species are able to persist in highly fragmented landscapes; (2) some forest species may be able to make use of different anthropogenic habitat types to various degrees; whereas (3) others are restricted to the remaining forest fragments. Our study suggests species most confined to forest interiors to be considered as potential umbrella species for landscape-scale conservation planning.  相似文献   

11.
Land cover change, predominantly habitat conversion to agricultural use and urbanization, has recently been recognized as the primary cause of biodiversity loss in terrestrial ecosystems. We evaluated the relative effects of urban and agricultural landscapes on anuran species richness and the abundance of six anuran species found at breeding ponds in and around the cities of Ottawa, Ontario and Gatineau, Quebec. We performed six call surveys at 29 permanent focal ponds surrounded by one of three landscape contexts: primarily urban, primarily agricultural, and primarily forested. We also measured three local pond variables to control for the effects of local habitat quality in our analyses. We found that anuran species richness was significantly lower in breeding ponds in urban landscapes compared to forested and agricultural landscapes, which exhibited no significant difference in species richness. The abundances of individual anuran species were also consistently lower in urban landscapes for all species except one, which exhibited no response to landscape type. Three species had their highest abundances in ponds in forested landscapes, whereas two species had their highest abundances in ponds in agricultural landscapes. We conclude that ponds embedded in urban landscapes support lower biodiversity than ponds in agricultural settings. We suggest that landscapes composed of a mosaic of forest and open habitats surrounding wetlands would hold the highest biodiversity of these species.  相似文献   

12.

Context

The habitat amount hypothesis has rarely been tested on plant communities. It remains unclear how habitat amount affect species richness in habitat fragments compared to island effects such as isolation and patch size.

Objectives

How do patch size and spatial distribution compared to habitat amount predict plant species richness and grassland specialist plant species in small grassland remnants? How does sampling area affect the prediction of spatial variables on species richness?

Methods

We recorded plant species density and richness on 131 midfield islets (small remnants of semi-natural grassland) situated in 27 landscapes in Sweden. Further, we tested how habitat amount, compared to focal patch size and distance to nearest neighbor predicted species density and richness of plants and of grassland specialists.

Results

A total of 381 plant species were recorded (including 85 grassland specialist species). A combination of patch size and isolation was better in predicting both density and richness of species compared to habitat amount. Almost 45% of species richness and 23% of specialist species were explained by island biogeography parameters compared to 19 and 11% by the amount of habitat. A scaled sampling method increased the explanation level of island biogeography parameters and habitat amount.

Conclusions

Habitat amount as a concept is not as good as island biogeography to predict species richness in small habitats. Priority in landscape planning should be on larger patches rather than several small, even if they are close together. We recommend a sampling area scaled to patch size in small habitats.
  相似文献   

13.

Context

Identifying the drivers shaping biological assemblages in fragmented tropical landscapes is critical for designing effective conservation strategies. It is still unclear, however, whether tropical biodiversity is more strongly affected by forest loss, by its spatial configuration or by matrix composition across different spatial scales.

Objectives

Assessing the relative influence of forest patch and landscape attributes on dung beetle assemblages in the fragmented Lacandona rainforest, Mexico.

Methods

Using a multimodel inference approach we tested the relative impact of forest patch size and landscape forest cover (measures of forest amount at the patch and landscape scales, respectively), patch shape and isolation (forest configuration indices at the patch scale), forest fragmentation (forest configuration index at the landscape scale), and matrix composition on the diversity, abundance and biomass of dung beetles.

Results

Patch size, landscape forest cover and matrix composition were the best predictors of dung beetle assemblages. Species richness, beetle abundance, and biomass decreased in smaller patches surrounded by a lower percentage of forest cover, and in landscapes dominated by open-area matrices. Community evenness also increased under these conditions due to the loss of rare species.

Conclusions

Forest loss at the patch and landscape levels and matrix composition show a larger impact on dung beetles than forest spatial configuration. To preserve dung beetle assemblages, and their key functional roles in the ecosystem, conservation initiatives should prioritize a reduction in deforestation and an increase in the heterogeneity of the matrix surrounding forest remnants.
  相似文献   

14.
Acknowledgment that the matrix matters in conserving wildlife in human-modified landscapes is increasing. However, the complex interactions of habitat loss, habitat fragmentation, habitat condition and land use have confounded attempts to disentangle the relative importance of properties of the landscape mosaic, including the matrix. To this end, we controlled for the amount of remnant forest habitat and the level of fragmentation to examine mammal species richness in human-modified landscapes of varying levels of matrix development intensity and patch attributes. We postulated seven alternative models of various patch habitat, landscape and matrix influences on mammal species richness and then tested these models using generalized linear mixed-effects models within an information theoretic framework. Matrix attributes were the most important determinants of terrestrial mammal species richness; matrix development intensity had a strong negative effect and vegetation structural complexity of the matrix had a strong positive effect. Distance to the nearest remnant forest habitat was relatively unimportant. Matrix habitat attributes are potentially a more important indicator of isolation of remnant forest patches than measures of distance to the nearest patch. We conclude that a structurally complex matrix within a human-modified landscape can provide supplementary habitat resources and increase the probability of movement across the landscape, thereby increasing mammal species richness in modified landscapes.  相似文献   

15.
Disentangling the confounded effects of edge and area in fragmented landscapes is a recurrent challenge for landscape ecologists, requiring the use of appropriate study designs. Here, we examined the effects of forest fragment area and plot location at forest edges versus interiors on native and exotic bird assemblages on Banks Peninsula (South Island, New Zealand). We also experimentally measured with plasticine models how forest fragment area and edge versus interior location influenced the intensity of avian insectivory. Bird assemblages were sampled by conducting 15?min point-counts at paired edge and interior plots in 13 forest fragments of increasing size (0.5?C141?ha). Avian insectivory was measured as the rate of insectivorous bird attacks on plasticine models mimicking larvae of a native polyphagous moth. We found significant effects of edge, but not of forest patch area, on species richness, abundance and composition of bird assemblages. Exotic birds were more abundant at forest edges, while neither edge nor area effects were noticeable for native bird richness and abundance. Model predation rates increased with forest fragmentation, both because of higher insectivory in smaller forest patches and at forest edges. Avian predation significantly increased with insectivorous bird richness and foraging bird abundance. We suggest that the coexistence of native and exotic birds in New Zealand mosaic landscapes enhances functional diversity and trait complementation within predatory bird assemblages. This coexistence results in increased avian insectivory in small forest fragments through additive edge and area effects.  相似文献   

16.

Context

Amphibians are declining worldwide and land use change to agriculture is recognized as a leading cause. Argentina is undergoing an agriculturalization process with rapid changes in landscape structure.

Objectives

We evaluated anuran response to landscape composition and configuration in two landscapes of east-central Argentina with different degrees of agriculturalization. We identified sensitive species and evaluated landscape influence on communities and individual species at two spatial scales.

Methods

We compared anuran richness, frequency of occurrence, and activity between landscapes using call surveys data from 120 sampling points from 2007 to 2009. We evaluated anuran responses to landscape structure variables estimated within 250 and 500-m radius buffers using canonical correspondence analysis and multimodel inference from a set of candidate models.

Results

Anuran richness was lower in the landscape with greater level of agriculturalization with reduced amount of forest cover and stream length. This pattern was driven by the lower occurrence and calling activity of seven out of the sixteen recorded species. Four species responded positively to the amount of forest cover and stream habitat. Three species responded positively to forest cohesion and negatively to rural housing. Two responded negatively to crop area and diversity of cover classes.

Conclusions

Anurans within agricultural landscapes of east-central Argentina are responding to landscape structure. Responses varied depending on species and study scale. Life-history traits contribute to responses differences. Our study offers a better understanding of landscape effects on anurans and can be used for land management in other areas experiencing a similar agriculturalization process.
  相似文献   

17.
Human land-use practices have dramatically altered the composition and configuration of native habitats throughout many ecosystems. Within heterogeneous landscapes generalist predators often thrive, causing cascading effects on local biological communities, yet there are few data to suggest how attributes of fragmentation influence local population dynamics of these species. We monitored 25 raccoon (Procyon lotor) populations from 2004 to 2009 in a fragmented agricultural landscape to evaluate the influence of local and landscape habitat attributes on spatial and temporal variation in demography. Our results indicate that agricultural ecosystems support increased densities of raccoons relative to many other rural landscapes, but that spatial and temporal variation in demography exists that is driven by non-agricultural habitat attributes rather than the availability of crops. At the landscape scale, both density and population stability were positively associated with the size and contiguity of forest patches, while at the local scale density was positively correlated with plant diversity and the density of tree cavities. In addition, populations occupying forest patches with greater levels of plant diversity and stable water resources exhibited less temporal variability than populations with limited plant species complexity or water availability. The proportion of populations comprised of females was most strongly influenced by the availability of tree cavities and soft mast. Despite the abundance of mesopredators in heterogeneous landscapes, our results indicate that all patches do not contribute equally to the regional abundance and persistence of these species. Thus, a clear understanding of how landscape attributes contribute to variation in demography is critical to the optimization of management strategies.  相似文献   

18.

Context

Theory predicts that habitat loss and fragmentation may have drastic consequences on species’ interactions. To date, however, little empirical evidence exists on the strength of interspecific competition in shaping animal communities in fragmented landscapes.

Objectives

Our aim was to measure the degree of ongoing competitive interference between species in fragmented landscapes. Our model system was the community of ground-dwelling rodents in deciduous woodlands in central Italy, composed of a habitat generalist species (Apodemus sylvaticus) and two forest specialists (Apodemus flavicollis and Myodes glareolus). Our objectives were to test whether species were segregated among forest patches and whether spatial segregation was determined by interspecific competition or habitat and resource availability.

Methods

We surveyed the populations inhabiting 29 woodland patches in a highly fragmented landscape using a capture-mark-recapture protocol, capturing >4500 individuals. First we modelled species’ distribution as a function of habitat, resource availability and landscape variables. The second stage of our analyses involved measuring the response of vital rate parameters (body mass, reproduction, survival, recruitment, population density) to competitor density.

Results

The relative distribution of species reflected a spatial segregation of habitat generalists and specialists according to habitat quality, cover and connectivity. Interspecific competition mainly affected individual level vital rates, whereas we found no substantial effects at the population level.

Conclusions

Competitive exclusion of specialist species by generalist species was occurring. However, when compared to other factors such as habitat connectivity and resource availability, interspecific competition played a relatively minor role in shaping the studied community.
  相似文献   

19.
Sweaney  N.  Lindenmayer  D. B.  Driscoll  D. A. 《Landscape Ecology》2022,37(1):175-189
Landscape Ecology - The behavioural response of animals to edges between habitat patches and the matrix can influence population dynamics and species persistence in fragmented landscapes. We aimed...  相似文献   

20.
Landscape Ecology - Landscape connectivity plays a key role in determining the persistence of species inhabiting fragmented habitat patches. In dynamic landscapes, most studies measure connectivity...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号