首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
【目的】针对铣削加工中铣削切削参数的非线性优化,研究了铣削参数优化求解问题。【方法】以最大生产率为目标建立了铣削切削参数优化数学模型,将试验优化设计中均匀设计的思路引入优化过程,根据均匀设计原理,在优化模型的设计变量空间内均匀分布一系列点,然后将可行域内的上述系列布点作为优化计算的系列初始点,并运用MATLAB工具箱函数分别开始进行优化计算。【结果】提出了一种基于均匀设计变量的铣削用量优化方法,得到了优化模型的一系列局部最优点,比较所有局部最优点的最优值,即认为在一定程度上获得了该优化问题的全局最优解。实例计算表明,单工序切削时间减少了5.72s,表明该方法对铣削用量的优化是可行的。【结论】采用均匀布点的铣削用量优化求解方法可求取非线性多峰值函数的全局最优解。  相似文献   

2.
以黄秋葵为原料,采用酸解盐析法提取其果胶,对提取条件进行优化。通过对无机酸类型、料液比、酸解pH值、酸解温度、加热酸解时间5个因素进行研究,先进行单因素确定,再通过L9(34)正交试验来确定pH值、酸解温度、酸解时间、料液比4个因素的最佳工艺条件和影响果胶提取率的主次因素。试验结果表明,黄秋葵果胶提取的最佳工艺条件院pH值为4,酸解温度为70℃,酸解时间为110 min,料液比为1:10,最优无机酸是硫酸,在此条件下,果胶的得率为29.10%。  相似文献   

3.
李啸  张娅  李建华  林超  罗少华 《安徽农业科学》2010,38(33):19081-19082,19084
[目的]用响应面法优化酶法提取黑木耳多糖的条件。[方法]在单因素试验的基础上,用响应面法优化pH值、酶解时间、提取温度3个因素。[结果]黑木耳多糖提取的最优条件为:酶解时间100 min,pH值4.2,提取温度49℃。在最优条件下黑木耳多糖的提取率为18.59%。[结论]该试验优化了黑木耳多糖的提取条件,对黑木耳多糖的工业化生产具有一定的参考价值。  相似文献   

4.
以平菇子实体为原料,采用超声波联合酶法,通过单因素及响应面试验设计对平菇多糖提取工艺进行优化优化,考察液固比、酶解温度、酶解pH值和超声时间四个因素对平菇多糖提取率的影响。经研究得出,平菇多糖最优提取工艺为:液固比22∶1、每处理温度60℃、酶解pH7.0、超声时间65 min,在此工艺条件下平菇提取率85.68%,理论预测值为85.73%,相对误差0.06%,理论值与实际值相近,说明该工艺可行,希望对平菇多糖标准化生产提供参考。  相似文献   

5.
【目的】对鹿茸胶原多肽进行复合酶水解,优化水解工艺,并测定水解液分子量分布。【方法】以碱性蛋白酶和胰蛋白酶为供试酶类,选用酶解时间、pH值、酶解温度、加酶量为影响因素,采用响应面试验设计优化单酶水解条件,根据响应面试验所得到的单酶水解的最适条件,确定双酶复合水解方案。通过Sephadex G25测定鹿茸胶原多肽的分子量分布。【结果】碱性蛋白酶最优水解条件为:酶解时间3.6h,pH值10.50,酶解温度55℃,加酶量4%,水解液的水解度为22.03%;胰蛋白酶最优水解条件为:酶解时间3.2h,pH值8.00,酶解温度50℃,加酶量4.4%,水解液的水解度为15.81%。复合酶水解条件:酶解温度为52.5℃,调节pH值为10.50,加入4%的碱性蛋白酶酶解3.6h;调节pH值至8.00,加入4.4%的胰蛋白酶酶解3.2h,所得水解液的水解度可达33.42%。复合酶水解胶原多肽的分子量分布在400~1 400u。【结论】确定了鹿茸胶原多肽碱性蛋白酶和胰蛋白酶复合水解的工艺条件。  相似文献   

6.
人工神经网络可用于流域水土流失的预测.针对BP神经网络收敛速度慢及容易陷入局部最优解的缺点,设计了基于遗传算法(GA)的优化BP神经网络.利用遗传算法特有优势,为BP网络的初始权值和阈值搜索全局最优解空间,经过BP算法迭代训练,进行预测.依据黄土高原沟壑区杨家沟小流域多年径流与泥沙的实测数据,对创建的侵蚀量模型进行训练和预测,取得了较高的预测精度和较快的收敛速度.  相似文献   

7.
为减少汽车侧面碰撞中驾驶员胸腹部的综合伤害,并保证头部HIC值满足C-NCAP的法规要求,采用有限元分析模型、逐步回归代理模型和序列优化方法对头胸部气囊进行了优化设计.以验证过的汽车有限元模型为基础,建立了一个L型头胸部气囊的有限元仿真模型.模拟了侧面安全气囊在侧碰撞条件下的响应过程,优化分析了气囊设计参数,从而进一步提高了该车的综合安全性能,进而对其优化解的可靠性进行了评估.研究结果表明:安全气囊材料泄气参数为0.040 8,气囊体积约为10.32 L,起爆时间为10 ms为最优,得到侧面碰撞的综合伤害评估值下降了16%,且保证了头部HIC值满足法规要求.  相似文献   

8.
为保持所求得的多目标优化问题Pareto最优解的多样性,提出了一种精英保留和根据目标函数值进行排序的多目标优化差分进化算法.对排序策略中目标函数的选择方式进行了分析和比较,并提出了一种确定进化过程中求得的精英解是否进入Pareto最优解集的阈值确定方法.用多个经典测试函数进行了实验分析,并与NSGA-Ⅱ算法进行了比较.实验结果表明,该方法收敛到问题的Pareto前沿效果良好,能有效保持所求得的Pareto最优解的多样性.  相似文献   

9.
超声波预处理玉米秸秆的条件优化   总被引:2,自引:0,他引:2  
为加速纤维素酶对玉米秸秆的分解效率,采用超声波预处理玉米秸秆。研究超声波处理时间、功率、温度等因素对处理效果的影响,通过Box-Behnken中心组合试验设计优化超声波预处理玉米秸秆的条件。结果表明,超声波预处理玉米秸秆的最优条件为:料液体积比为1∶30,超声时间10min,温度45℃,功率140W。用纤维素酶酶解在优化条件下超声处理的玉米秸秆,酶解效果较好。  相似文献   

10.
对于KHV内啮合副(即渐开线少齿差内啮合行星齿轮副)可行解的寻求,在未采用电算技术的情况下已属较为复杂的工程计算。借助于电算技术,不仅可很方便地求得其可行解,且可进一步寻求其优化解。本文介绍的KHV内合副优化设计的方法,是通过对超越方程组的求解而进行的,它具有迭代次数少、占用内存少、程序简单、收敛快的特点,因此可在微处理机上进行该啮合副主要几何参数(包括齿形系数)的优化设计。本文介绍的程序,可做为独立的KHV内啮合副优化程序,从而获得具有标准径向间隙的啮合副优化参数,也可以作为非标准径向间隙的啮合副优化设计中,求对应于某一c*(或ha*)值的最优参数的子程序。本文蓝对按照最小啮合角原则设计少齿差内啮合副的经济效益作了粗略的估计。  相似文献   

11.
采用淀粉平板和羧甲基纤维素钠(CMC-Na)平板从选取的140株芽胞杆菌中初筛出8株具有产纤维素酶和淀粉酶复合酶芽胞杆菌,经酶活力测定解淀粉芽胞杆菌FJAT-8754(Bacillus amyloliquef aciens)具有较高的淀粉酶、纤维素酶活力。通过研究解淀粉芽胞杆菌FJAT-8754的生长、产酶曲线以及酶学特性,确定在发酵28 h后菌体生长进入稳定期,培养44 h时发酵液中活菌数达到最大为4.41×109 cf u · mL -1,在36 h时纤维素酶、淀粉酶均达到酶活最高峰,酶活分别为135.8、1543.3 U · mL -1;纤维素酶反应最适p H值为5.5、最适温度为50℃,Vmax为5.14×10-3 mg · mL -1· min-1、 Km值为7.71×10-1 mg · mL -1;淀粉酶反应最适pH值为5.5、最适温度为55℃,Vmax为3.35×10-2 mg · mL -1· min-1、 Km值为6.03×10-3 mg · mL -1。采用3因素7水平,即U 7(73)均匀设计法优化解淀粉芽胞杆菌产酶条件,确定产纤维素酶、淀粉酶的最优条件均为:初始pH值6.2、培养温度37.5℃、转速180 r · min-1,优化后解淀粉芽胞杆菌 FJAT-8754纤维素酶活力为202.9 U·mL -1、淀粉酶活力为2392.9U·mL -1。  相似文献   

12.
熊小真  赵南 《安徽农业科学》2010,38(27):15026-15028
[目的]提高假单胞菌MAP-3对甲胺磷的降解率。[方法]在基础培养基中加入800mg/L甲胺磷,接入假单胞菌MAP-3,采用Plackett-Burman试验设计对7个影响假单胞菌MAP-3降解甲胺磷的因素进行筛选,在此基础上采用Box-Behnken设计对影响甲胺磷降解的关键因素进行优化。[结果]pH值、温度和摇床转速是影响甲胺磷降解的关键因素。采用Box-Behnken设计对3个关键因素进行优化,得3个因素的最优水平为:pH值7.1,培养温度30.57℃,摇床转速164.9r/min,此条件下甲胺磷最大降解率预测值为78.1%。[结论]根据实际条件,优化后假单胞菌MAP-3对甲胺磷的最佳降解条件为:pH值7.1,培养温度30.60℃,摇床转速165.0r/min,接种量10%,250ml摇瓶装液量80ml,培养基中MnSO40.05%、FeSO40.06%。此条件下甲胺磷降解率达77.8%。  相似文献   

13.
采用碱性蛋白酶酶解缢蛏,以多肽含量为指标,在酶解p H值、料液比、温度、酶添加量、时间的单因素试验基础上,通过正交试验优化缢蛏蛋白酶解工艺。结果表明,利用碱性蛋白酶对蛋白质进行水解,多肽含量高。碱性蛋白酶酶解缢蛏制备多肽最优工艺参数为:p H值9.5、酶添加量1.5%、料液比为1∶3.0、温度45℃、时间2.5 h,在此最优工艺参数条件下每克鲜缢蛏可提取多肽(81.3±0.4)mg。  相似文献   

14.
采用多指标正交试验设计方法优化小米饮料酶解工艺技术参数。通过单因素试验研究酶种类、添加量、料液比、酶解时间和p H值对水解度和多酚含量的影响。结果表明,p H值、酶解时间和添加量均对实验结果呈显著性影响(P0.05),其中添加量为主要贡献因素(P0.01),最佳酶解条件为:酶解温度85℃,料液比1∶10,p H 6.4,时间17 min,酶添加量18.0 U·g-1小米。  相似文献   

15.
针对建筑结构体系越来越复杂,影响因素多、计算工作量大等问题,在建立结构优化的数学模型后,引入萤火虫算法对其进行优化。针对基本萤火虫算法对初始解的依赖性高、后期易陷入局部最优的缺陷,采用Logistic方程得到初始解群分布并且对计算后期的局部最优解进行高斯干扰,提高了算法的速度和精度。工程实例表明,改进的萤火虫算法在收敛速度与寻优精度方面均有所提高,该研究为结构优化设计提供了一种新的思路及方法。  相似文献   

16.
【目的】采用响应曲面法对鹿角盘胶原蛋白酶解提取工艺进行优化。【方法】以马鹿鹿角盘为原料,胶原蛋白提取率为指标,选取料液比、pH值、加酶量、酶解温度、酶解时间5个因素进行单因素试验,确定各因素的最优提取条件。在单因素试验的基础上,选取pH值、加酶量、酶解温度、酶解时间为影响因素,进行4因素3水平的Box-Behnken试验设计,采用响应曲面法分析4个因素对胶原蛋白提取率的影响。【结果】单因素试验结果表明:料液比1∶20、pH值1.8、加酶量4%、酶解温度37℃、酶解时间为6h时胶原蛋白提取率最高。响应曲面法得到的最佳提取工艺为:pH 1.77、加酶量3.94%、酶解温度36.78℃、酶解时间5.39h,考虑到实际情况,对模型预测得到的马鹿鹿角盘胶原蛋白最优提取工艺进行修正,修正后的工艺为:pH 1.8、加酶量4%、酶解温度37℃、酶解时间5h。在此条件下,马鹿鹿角盘胶原蛋白提取率达到83.32%。4个因素对胶原蛋白提取率影响的重要性顺序为:酶解温度加酶量pH值酶解时间。【结论】建立了酶解法提取鹿角盘胶原蛋白的二次多项式模型,获得了胶原蛋白提取率较高的最佳工艺参数,有效缩短了胶原蛋白的提取时间。  相似文献   

17.
以油茶籽为原料,油脂提取率、残油率为评价指标,利用单因素试验及正交试验分别考查了酶的添加量、酶解温度、酶解时间、酶解pH值及料水比等因素在不同水平下对油茶籽油提油率的影响.结果表明,水酶法提取油茶籽油的最优工艺参数为加酶量0.10%、酶解温度85℃、酶解时间3h、酶解pH值6、料水比1∶4,在此优化条件下,油茶籽油的提油率可达92.2%以上.  相似文献   

18.
酶解法提取黑豆多糖的研究   总被引:1,自引:0,他引:1  
以黑豆为原料,采用不同种类的酶研究了提取黑豆多糖的技术,试验在不同的酶解浓度、温度、时间、pH值对黑豆多糖提取率的影响的基础上,用星点设计法优化了酶法提取黑豆多糖的最佳工艺参数。结果表明:在用纤维素酶、果胶酶、木瓜蛋白酶进行的提取中,纤维素酶法提取率最高;最优的提取参数为酶浓度3mg/100ml、pH6.0、酶解时间120min、酶解温度50℃、黑豆多糖得率为0.3214%,与理论贴近度99.41%,各因素对多糖得率的影响顺序为pH>酶解时间>酶解温度。  相似文献   

19.
为消除由于设计参数或环境因子扰动对多目标优化问题带来的影响,提出基于t分布构建有效目标函数,并在传统Pareto最优解评估策略基础上,一方面用种群在空间的分布密度替换NSGA2算法中基于距离的拥挤排序策略以维护外部档案;另一方面,引入基于种群分布密度的全局最优解概率选择策略和基于拉丁超立方的局部采样方法.实验结果表明,该算法能有效求解多目标问题的鲁棒Pareto最优解.  相似文献   

20.
[目的]探讨酶解法制备孔鳐鱼软骨抗氧化肽的最佳工艺。[方法]以孔鳐软骨为试验材料,以DPPH自由基清除率为考察指标,采用双酶复合法酶解制备抗氧化多肽,通过响应面分析优化为最佳酶解工艺参数。[结果]采用胰蛋白酶与碱性蛋白酶复配(1∶3)组合制备酶解物的抗氧化性最好,酶解的最优工艺条件为:p H 8.5,加酶量6.25%,料液比2.1%,温度50.19℃,预测的DPPH自由基清除率为34.45%。[结论]通过响应面设计优化确定了孔鳐软骨抗氧化多肽的酶解工艺,为软骨鱼类高值化利用提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号