首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
毛竹林的碳密度和碳贮量及其空间分布   总被引:47,自引:8,他引:47  
利用标准样方法研究毛竹林碳密度和碳贮量以及空间分布。结果表明 :毛竹不同器官碳密度波动在0 4 6 83~ 0 5 2 10g·g- 1 ,按碳密度高低排列依次为竹根 >竹秆 >竹蔸 >竹枝 >竹鞭 >竹叶 ;碳贮量在毛竹不同器官中的分配以竹秆占比例最大 ,为 5 0 97% ,其次为竹根 ,占 19 79% ,占比例最小的是竹叶 ,仅占 4 87% ;毛竹林生态系统中碳总贮量为 10 6 36 2t·hm- 2 ,其中植被层 34 2 31t·hm- 2 ,占了 32 18% ,枯落物和土壤层 (0~ 6 0cm) 72 131t·hm- 2 ,占了 6 7 82 % ;毛竹林乔木层碳素年固定量为 5 0 97t·hm- 2 a- 1 ,与粗放经营竹林相比 ,毛竹集约经营 10年后 ,竹林生态系统中碳贮量减少了 8 133t·hm- 2 ,但乔木层年净固定碳量增加了 0 5 89t·hm- 2 a- 1 。  相似文献   

2.
楠木人工林生态系统生物量、碳含量、碳贮量及其分布   总被引:5,自引:0,他引:5  
对32年生楠木人工林生物量、碳含量、碳贮量及其空间分布进行测定.结果表明;楠木林分平均生物量为174.33 t·hm-2,其中乔木层为166.73 t·hm-2,占林分生物量的95.6%;楠木林分生态系统各组分碳含量为树干0.576 9 gC·8-1,树皮0.465 4 gC·g-1,树枝0.523 2 gC·g-1,树叶0.495 8 gC·g-1,树根0.493 1 gC·g-1,灌木层0.498 9gC·g-1,草本层0.473 3 gC·g-1,苔藓层0.414 3 gC·g-1,枯落物层0.388 2 gC·g-1;土壤碳含量平均值为0.013 9gC·g-1,随土层深度增加各层次土壤碳含量逐渐减少;楠木林分生态系统总碳贮量为227.59 t·hm-2,其中乔木层91.33 t·hm-1,占楠木林分生态系统总碳贮量的40.13%,灌木层0.38 t·hm-2,只占0.17%,草本层1.71 t·hm-2,占0.76%,苔藓层0.63 t·hm-2,占0.28%,枯落物层0.66 t·hm-2,占0.29%,林地土壤(0~80 cm)碳贮量为 132.88t·hm-2,占58.40%;其碳库空间分布序列为土壤(0~80 cm)>乔木层>草本层>枯落物层>苔藓层>灌木层;楠木林分净生产量为8.570 6 t·hm-2a-1,其中乔木层净生产量为6.669 1 t·hm-2a-1,占林分总量的77.82%.楠木林分碳素年固定量4.253 6 t·hm-2a-1,其中乔木层碳素年固定量3.573 6 t·hm-2a-1,占林分总量的84.01%.  相似文献   

3.
灰木莲人工林碳贮量及其分配特征   总被引:1,自引:0,他引:1  
对广西南宁市高峰林场46年生灰木莲人工林生态系统碳素贮量及其分配格局进行系统研究。结果表明,灰木莲各组分碳素含量变化范围为476.8~532.5 g/kg,各器官碳素含量为树干>树根>树枝>树皮>树叶,土壤层(0~80 cm)碳素含量为10.36 g/kg,不同土层碳素含量随土壤深度增加而降低。灰木莲人工林生态系统总碳贮量为236.70 t/hm2,其中乔木层碳贮量(118.03 t/hm2)最大,占生态系统总碳贮量的49.86%;灌木层碳贮量为2.00 t/hm2,占0.84%;草本层碳贮量为1.18 t/hm2,占0.50%;现存凋落物碳贮量为3.48 t/hm2,占1.47%;土壤层有机碳贮量为111.71 t/hm2,占47.19%。灰木莲人工林生态系统乔木层碳素年净固定量为3.72 t/(hm2·a),各组分碳素年净固定量大小依次为:树干>树叶>树根>树枝>树皮。  相似文献   

4.
以贵州南部4年生桉树人工林为研究对象,通过样地实测生物量和采用重铬酸钾法测定植物和土壤碳素含量,建立了桉树林各器官生物量回归方程,并测定了碳储量及其空间分布特征。结果表明:桉树林分平均生物量为160.86 t/hm2,其中乔木层为157.1 t/hm2,占林分生物量的97.66%;桉树林分生态系统各组分碳含量为:树叶0.460 2 g/g,树枝0.451 5 g/g,树干0.478 5 g/g,树皮0.375 0 g/g,树根0.420 9 g/g,灌木层0.427 5 g/g,草本层0.407 1 g/g,枯落物层0.345 1 g/g;土壤碳含量随土层深度的增加而减少;桉树林分生态系统碳总贮量为172.29 t/hm2,其中乔木层68.68 t/hm2,占桉树林分生态系统总碳贮量的39.86%,灌木层0.22 t/hm2,占0.13%,草本层0.70t/hm2,占0.41%,枯落物层0.53 t/hm2,占0.31%,林地土壤碳贮量为102.16 t/hm2,占59.29%。  相似文献   

5.
慈竹林生态系统碳储量及其空间分配特征   总被引:5,自引:1,他引:4  
利用标准样方法研究了慈竹林生态系统的碳含量、碳储量以及空间分配特征,结果表明:慈竹各器官碳含量介于0.4600~0.5105 g.g-1之间,碳含量从高到低排序为竹秆>竹根>竹蔸>竹枝>竹叶;灌草与枯落物层碳含量为0.3724 g.g-1;土壤层有机碳含量以表层土(0~20 cm)最大,为15.29 g.kg-1,并随土层深度的增加而减少;慈竹林生态系统碳储量为135.95 t.hm-2,其中乔木层碳储量为56.27 t.hm-2,占41.39%,土壤层(0~100 cm)为74.07 t.hm-2,占54.48%,灌草与枯落物层最低,为5.61 t.hm-2,占4.13%;慈竹具有较强的固碳能力,其年固碳量为11.25 t.hm-2.a-1。  相似文献   

6.
河南省西平县杨树人工林碳贮量及其分配特征研究   总被引:6,自引:2,他引:4  
基于对西平县杨树人工林植被生物量,土壤容重和碳含量的调查,估算杨树林生态系统碳贮量。研究表明:杨树林的乔木层碳密度波动在0.489~0.512g/g,杨树各器官的碳密度大小依次是树叶>树干>树枝>树根,整个植被层碳贮量大小依次是乔木层>林下植被层>凋落物层,与其各自生物量所占比例相当;土壤层的碳密度以0~20 cm的最高,往下逐渐降低;整个杨树林的碳贮量为164.29 t/hm2,乔木层碳贮量在整个植被层碳贮量中处于主导地位,占整个植被层碳贮量的97.36%。  相似文献   

7.
根据2017年湖南省森林资源清查资料和野外实地调查实测数据,对湖南省阔叶林生态系统碳储量、碳密度的动态特征进行了研究。结果表明:湖南省阔叶林森林生态系统总碳贮量为505.17 TgC,其中乔木层、灌草层、枯落物和土壤层层分别为113.75 TgC、9.92 TgC、9.64 TgC和377.86 TgC,分别占阔叶林生态系统碳贮量的22.52%、1.96%、1.91%和73.61%;湖南省阔叶林森林生态系统碳密度为154.51 t·hm^2,各层碳密度的大小顺序为土壤层(113.74 t·hm-2)>乔木层(34.79 t·hm-2)>灌草层(3.03 t·hm-2)>枯落物层(2.95 t·hm-2)。在3种类型阔叶林中,乡土阔叶林生态系统碳贮量为485.56 TgC,所占全省阔叶林生态系统碳贮量的96.12%;乡土阔叶林生态系统碳密度最大,为154.72 t·hm-2,杨树林生态系统碳密度最小,为149.59 t·hm-2。在阔叶林各龄组中,中、幼龄林约占湖南省阔叶林生态系统碳贮量的67.13%,是阔叶林的主要碳库且固碳潜力巨大;湖南省阔叶林碳密度幼龄林、中龄林、近熟林和成过熟林的碳密度分别介于24.60~55.51 t·hm-2之间,具体表现为成过熟林(55.51 t·hm-2)>近熟林(47.51 t·hm-2)>中龄林(44.68 t·hm-2)>幼龄林(24.60 t·hm-2)。全省阔叶林生态系统空间分布表现为碳贮量呈现明显的湘西、湘南,湘中较低特征,而碳密度整体表现出洞庭湖流域地区大于其他地区的趋势。  相似文献   

8.
根据野外实地调查数据和湖南省森林资源清查资料,洞庭湖流域生态血防林生态系统各组分的碳贮量、碳密度及其关联特征进行了分析。结果表明:血防林乔木层各器官的碳贮量和碳密度分配呈现出树干树枝树根树叶的规律,树干在乔木层的碳贮量和碳密度最大,为1.93 TgC和21.48 t·hm~(-2),占整个乔木层的68.76%,而树叶最小,为0.08 TgC和0.84 t·hm~(-2),仅占整个乔木层的2.70%。血防林生态系统碳贮量和碳密度分别为23.42 TgC和260.70 t·hm~(-2),其中土壤层碳密度、乔木层、林下植被和枯落物分别占整个血防林生态系统碳密度的87.59%、11.98%、0.28%和0.15%。血防林乔木层树干、树枝、树叶、乔木地上部分、乔木层地下部分(树根)的碳密度存在极显著相关性(P0.01),乔木层、林下植被和枯落物碳密度存在显著性相关(P0.05),树叶与林下植被存在显著性相关。生态血防林的立木蓄积量与乔木层碳密度存在极显著的线性关系(P0.001),与林下植被的碳密度拟合曲线系数降低且呈极显著性负相关(P0.01),与枯落物碳密度的拟合度达到极显著水平(P0.01)。  相似文献   

9.
速生阶段杉木人工林碳素密度、贮量和分布   总被引:69,自引:11,他引:69  
利用定位观测取得的数据 ,对速生阶段杉木人工林的碳素密度、贮量及其空间分布特征进行了研究。结果表明 :杉木不同器官中碳素密度变化范围在 0 4 5 5 8gC·g- 1 ~ 0 5 0 0 3gC·g- 1 之间 ,各器官碳素密度的排列顺序为 :树皮 >树叶 >树干 >树根 >球果 >树枝 ,多年生枝、叶的碳素密度比其他年龄的枝、叶要高 ;灌木层、草本层的碳素密度分别为 0 4 344gC·g- 1 、0 4 0 0 9gC·g- 1 ,死地被物层碳素密度为 0 4 341gC·g- 1 ,土壤中各层次碳素密度分布不均 ,表土层的碳素密度略低于亚表土层 ;碳贮量在杉木不同器官中的分配 ,基本与各器官的生物量成正比例关系 ,树干生物量占林分生物量的 4 7 7% ,其碳贮量占林分碳素贮量的 4 7 5 % ,枝、叶、皮、根等当中的碳贮量占 5 2 5 % ;在速生阶段杉木林生态系统中 ,碳库的总贮量为 12 7 88tC·hm- 2 ,其中植被层中碳总贮量为 35 883tC·hm- 2 ,土壤层 (包括死地被物层 )的碳总贮量为 91 997tC·hm- 2 ;速生阶段杉木林年净生产力为 7 35 1t·hm- 2 a- 1 ,有机碳年净固定量为 3 4 89tC·hm- 2 a- 1 。  相似文献   

10.
应用相对生长法和样方收获法对不同更新模式尾巨桉人工林碳贮量的变化及其分配格局进行研究。结果表明:不同更新模式尾巨桉各器官的碳素密度差异不显著,但不同植被层和土壤各层的碳素密度有一定差异,但各器官、植被层及土壤层的碳贮量均有极显著差异。当林分密度同为1 097株/hm2时,植苗和萌芽更新模式林分的碳贮量分别为37.511 t/hm2和32.074 t/hm2,植苗林分碳贮量高于萌芽林分16.95%;萌芽和植苗更新土壤层的碳贮量分别为53.065 t/hm2和47.008 t/hm2,萌芽更新土壤层的碳贮量高于植苗更新12.89%;而生态系统的总碳贮量基本相同,分别为85.139 t/hm2和84.520 t/hm2。萌芽更新尾巨桉人工林林分碳贮量随保留密度的增加而增加,当密度从1 097株/hm2增到2 119株/hm2时,林分碳贮量从32.074 t/hm2增到46.893 t/hm2,增长46.20%。  相似文献   

11.
分析了南亚热带中山区的铁坚油杉天然林乔木层、灌木层、草本层和凋落物层的生物量和碳储量以及分配格局,为提高该地区碳储量提供参考依据。在天然铁坚油杉林内设定标准样地,采用标准样方收获法和标准木法测定生态系统的生物量和碳储量。(1)铁坚油杉天然林生态系统总生物量为239.61 t/hm~2,乔木层为237.65 t/hm~2,灌草层为0.18 t/hm~2,凋落物层为1.78 t/hm~2,生物量主要集中在乔木层。(2)植被层各组分有机碳含量相差不大,为介于465.22~512.17 g/kg之间;各组份间的碳含量无显著性差异,0~20 cm层土壤层碳含量高达12.55 g/kg,土壤层碳含量随着土壤深度增加而逐渐降低,随着深度增加碳含量降低程度变小。(3)生态系统总碳为134.55 t/hm~2,其中植被层为68.45 t/hm~2,乔木层为67.54t/hm~2,碳储量相对高,植被层的碳储量主要集中在乔木层,所占比例高达98.70%;土壤层碳储量为66.10 t/hm~2,该生态系统碳储量集中在土壤层和乔木层,且两者所占比例接近,分别为50.20%、49.13%。铁坚油杉天然林生态系统生物量和碳储量相对较高,土壤固碳能力较强,应进行合理保护利用。  相似文献   

12.
依据全国碳汇专项调查的理论和方法,对福建省霞浦县不同林龄阔叶混交林生态系统各组分的碳、氮含量及碳、氮储量格局进行调查分析,结果表明:灌木层各器官碳含量从大到小依次为枝干根叶,氮含量为叶干根枝;草本层碳、氮含量从大到小均为地上部分地下部分;土壤碳、氮含量均随土层深度增加而降低,随林龄的增大而上升;系统各组分C/N从大到小依次为枝根干枯落物叶土壤;12年生、19年生和28年生阔叶混交林生态系统的碳储量分别为164.066、231.751和290.985t!hm-2,氮储量分别为15.011、23.503和31.236t!hm-2,其中,土壤层碳储量所占比重分别为60.27%、46.50%和39.50%,氮储量所占比重分别为45.94%、33.09%和28.67%;乔木层、灌木层、枯落物层和土壤层碳、氮储量均随林龄的增大而增加。  相似文献   

13.
兴安落叶松林3个类型生物及土壤碳储量比较研究   总被引:5,自引:3,他引:2  
运用森林生态学典型样地法设立标准地并获取野外数据,采用重铬酸钾—硫酸氧化湿烧法测定了生物、土壤中的碳。通过对兴安落叶松林3个类型生物及土壤碳储量的比较研究表明:兴安落叶松不同器官中碳素密度变化范围为0.4946~0.5352g/g;杜香落叶松林、草类落叶松林、杜鹃落叶松林生态系统总的碳储量分别为173.21t/hm2、207.81t/hm2、118.95t/hm2,其中生物碳储量分别为53.41t/hm2、86.23t/hm2、33.76t/hm2,土壤碳储量分别为119.80t/hm2、121.58t/hm2、85.19t/hm2;兴安落叶松林有机碳年净固定量为3.51t/(hm2.a)。  相似文献   

14.
Biomass, carbon content, carbon storage and spatial distribution in the 32-year-old Phoebe bournei artificial forest were measured. The mean biomass of the forest stand was 174.33 t/hm2, among which the arbor layer was 166.73 t/hm2, which accounted for 95.6%. Carbon contents of stems, barks, branches, leaves, root, shrub layer, herb layer, lichen layer and litter layer were 0.5769 g C/g, 0.4654 g C/g, 0.5232 g C/g, 0.4958 g C/g, 0.4931 g C/g, 0.4989 g C/g, 0.4733 g C/g, 0.4143 g C/g, 0.3882 g C/g, respectively. The mean carbon content of soil was 0.0139 g C/g, which reduced gradually along with soil depth. Total carbon storage of the P. bournei stand ecosystem was 227.59 t/hm2, among which the arbor layer accounted for 40.13% (91.33 t/hm2), the shrub layer accounted for 0.17% (0.38 t/hm2), the herb layer accounted for 0.76% (1.71 t/hm2), the lichen layer accounted for 0.28% (0.63 t/hm2), and the litter layer accounted for 0.29% (0.66 t/hm2). Carbon content (0–80 cm) of the forest soil was 58.40% (132.88 t/hm2). Spatial distribution ranking of carbon storage was: soil layer (0–80 cm) > arbor layer > herb layer > litter layer > lichen layer > shrub layer. Net production of the forest stand was 8.5706 t/(hm2·a), in which the arbor layer was 6.6691 t/(hm2·a), and it accounted for 77.82%. Net annual carbon sequestration of the P. bournei stand was 4.2536 t/(hm2·a), and the arbor layer was 3.5736 t/(hm2·a), which accounted for 84.01%. __________ Translated from Scientia Silvae Sinicae, 2008, 44(3): 34–39 [译自: 林业科学]  相似文献   

15.
以广州市黄埔区南亚热带常绿阔叶木荷(Schima superba)风水林群落为对象,用样地生物量法对乔木、灌草、凋落物、细根和土壤层的碳库储量进行计量,并用碳税率法参数估算了群落碳库价值.结果表明:(1)3个样地的生态系统碳储量密度在138.00~176.56 t C·hm-2之间,平均为155.34±11.30 t C·hm-2,但与地带性顶级群落碳储量密度相比,该风水林还具有较大的增汇空间;(2)乔木层、灌木层、草本层、凋落物层、细根层和土壤层的碳储量密度占生态系统总碳储量密度的比例分别为70.17%、2.74%、1.43%、0.88%、0.81%和23.97%,乔木层是生态系统碳库的主要贡献者;(3)广州市典型木荷风水林总碳资产价值平均为18.64万元 ·hm-2,其中植被层为14.17万元 ·hm-2,土壤层为4.47万元 ·hm-2,前者是后者的3.17倍,植被层碳是风水林碳汇价值的主体部分.  相似文献   

16.
内蒙古森林碳储量估算及其变化特征   总被引:2,自引:0,他引:2  
根据内蒙古第六次森林资源连续清查资料,利用优势树种基础数据计算了内蒙古森林碳储量的变化。结果表明:内蒙古森林总碳储量为7.48亿t,占同期国家森林资源总碳储量的9.59%。优势树种的平均碳密度为28.73t/hm2,同时优势树种固碳能力差异明显。其中,阔叶混交林固碳能力最大(80.98t/hm2),其次是樟子松(67.44t/hm2),第三是白桦(49.13t/hm2);每公顷固碳40t以上的优势树种依次为云杉(45.16t/hm2)、落叶松(44.69t/hm2)、针阔叶混交林(44.15t/hm2)、栎树(40.37t/hm2)。固碳量10t以下的优势树种依次为槐树(7.78t/hm2)、榆树(7.32t/hm2)、山丁子(5.70t/hm2)和椴树(4.36t/hm2)。  相似文献   

17.
通过建立不同优势树种生物量与蓄积量之间的回归模型,以树种含碳率作为生物量转换为碳储量的系数,利用2007年河南省森林资源规划设计调查资料,对南阳市南水北调中线工程渠首水源地乔木林生物量和碳储量进行推算。结果表明:水源区总生物量为2 212.25万t,总碳储量为1 103.35万t;阔叶林碳储量占乔木林碳储量的96.5%,其中栎类最多占82.1%;幼龄林碳储量占用材树种的90.9%;研究区乔木林平均碳密度为22.08t/hm2。研究可为当地生态环境改造提供借鉴参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号