首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strategies for Using eFSH for Superovulating Mares   总被引:1,自引:0,他引:1  
The standard treatment for superovulation of mares is to administer equine follicle-stimulating hormone (eFSH) for 4 to 5 days to stimulate multiple follicles and human chorionic gonadotropin (hCG) to induce synchronous ovulations. Objectives of this study were: (1) to determine whether a short-term (3-day) eFSH treatment protocol would result in similar ovulation and embryo recovery rates compared with the standard eFSH protocol; (2) to determine the efficacy of a decreasing dose of eFSH (step-down protocol) on ovulation rate and embryo recovery; (3) to compare the efficacy of hCG and recombinant equine luteinizing hormone (reLH) for inducing ovulation in FSH-treated mares; and (4) to compare embryo recovery rates and embryo size when mares are flushed at 6.5 or 7.0 days after ovulation. Forty light-horse mares were used in 2005 (experiment 1) and 20 different mares were used in 2006 (experiment 2). In experiment 1, mares were randomly assigned to one of three treatment groups: (1) untreated controls, (2) standard eFSH treatment (12.5 mg intramuscularly twice daily), and (3) 3-day eFSH treatment. In experiment 2, mares were randomly assigned to one of four treatments: (1) untreated controls, (2) standard eFSH protocol, (3) 3-day eFSH treatment, and (4) step-down eFSH treatment (12.5 mg twice daily day 1, 8.0 mg twice daily day 2, 4.0 mg twice daily day 3). Within each treatment, mares were given either hCG (2,500 IU) or equine LH (750 mg, EquiPure LH; reLH) to induce synchronized ovulations. Embryo recovery was performed either 6.5 or 7.0 days after ovulation. In experiment 1, numbers of preovulatory follicles and ovulations were less for mares in the 3-day treatment group than the standard group, but were greater than for controls. Embryo recovery per flush was higher in the standard group (2.6) than the 3-day eFSH treatment (0.8) or control groups (0.8). In experiment 2, the number of preovulatory follicles and number of ovulations were greater in the standard and 3-day treatment groups than in control and step-down groups. The percent embryo recovery per ovulation and mean embryo grade were similar for all groups; however, the embryo recovery per flush was higher for mares in the standard treatment than controls (1.3 vs 0.6) but was similar to the 3-day (1.1) and step-down (0.8) treatments. Embryo recovery was similar for flushes performed on days 6.5 and 7.0 post-ovulation. The percentage of control mares ovulating within 48 hours in response to hCG or reLH was similar. In contrast, a higher percentage of eFSH-treated mares ovulated within 48 hours in response to reLH than hCG (92% vs 71%). In both years, the 3-day eFSH treatment protocol resulted in a greater number of preovulatory follicles and a greater number of ovulations than untreated controls. Unfortunately, the increased ovulation rate for mares administered eFSH for 3 days did not result in a greater number of embryos recovered per flush in either year. Use of a step-down eFSH treatment protocol resulted in fewer preovulatory follicles, fewer ovulations, and fewer embryos as compared with the standard eFSH treatment. In conclusion, the standard eFSH treatment resulted in a greater embryo recovery rate per cycle than either the 3-day or step-down treatment protocols. Recombinant equine LH was more effective than hCG in causing ovulation in eFSH-treated mares.  相似文献   

2.
The objective of Experiment 1 was to determine a dose and frequency of gonadotropin-releasing hormone (GnRH) antagonist administration to effectively suppress serum luteinizing hormone (LH) concentration and to delay ovulation when administered to mares. The objectives of Experiment 2 were 1) to determine the effects of subcutaneous or intravenous administration of a GnRH antagonist or oral altrenogest on serum LH concentration in the estrual mare; and 2) to determine the effectiveness of human chorionic gonadotropin (hCG) in inducing ovulation in mares with suppressed LH concentrations. In Experiment 1, mares (N = 20) were randomly assigned and treated with either 5% mannitol (control, single subcutaneous injection, 1 mL, at time 0; n = 5); low-dose GnRH antagonist (single subcutaneous injection, 0.01 mg/kg, at time 0; n = 5); frequent low-dose GnRH antagonist (subcutaneous injections, 0.01 mg/kg, at 0, 6, 18, and 24 hours; n = 5); or high-dose GnRH antagonist (single subcutaneous injection, 0.04 mg/kg, at time 0; n = 5). Both the frequent low-dose and high-dose GnRH antagonist treatments resulted in significantly lower LH concentrations compared with controls at 90, 102, and 114 hours after treatment (P < .05). In Experiment 2, mares (N = 38) were randomly assigned and treated with subcutaneous sterile saline (control), altrenogest (oral), subcutaneous GnRH antagonist, or intravenous GnRH antagonist. LH concentration for the altrenogest group was lower than the control group at 3, 4, 18, and 30 hours after treatment (P < .05). LH concentration for both the subcutaneous and intravenous GnRH antagonist groups were lower compared with the control group at several time points (P < .05). Based on these data, dose but not frequency of administration of a GnRH antagonist lowered LH concentration in the estrous mare but did not delay ovulation. In addition, serum LH concentrations can be lowered and ovulation effectively postponed in mares treated with altrenogest followed by administration of hCG. This indicates that serum LH concentrations can be lowered and ovulation effectively postponed in mares treated with altrenogest followed by administration of hCG.  相似文献   

3.
The GnRH antagonist antarelix (Teverelix™) was administered to mares (0.01 mg/kg, i.v., twice a day) during the periovulatory period. In Experiment 1, 20 mares were divided into a treated (A3d−) and a control (Control−) group. A3d− mares received antarelix for 3 days from the day when the dominant follicle (F1) reached 32 mm (D0). In Experiment 2, 10 mares were divided into a treated (A6d+) and a control (Control+) group. A6d+ mares received antarelix for 6 days from D0 and hCG was injected in all animals (1600 IU, i.v.) on D1. Pregnancies were determined 13 days after ovulation. In both experiments, antarelix interrupted or totally abolished the LH surge. In Experiment 1, 5/10 of the A3d− mares (with maximum LH concentrations of 11.6 ng/ml at the beginning of treatment) ovulated at the same time as the Control− mares; the other five mares (with LH concentrations under 5.4 ng/ml) ovulated 13.4±0.6 days later. In Experiment 2, all the A6d+ mares ovulated at the same time as the Control+ mares. In treated mares which ovulated during the treatment, progesterone concentrations and fertility did not differ from control mares. These results demonstrate that in mares: (1) a small elevation of endogenous LH can induce ovulation, (2) ovulation can be postponed approximately 13 days after a 3-day antarelix treatment if initiated just before the preovulatory LH surge, (3) ovulation can be induced by hCG on depressed levels of endogenous LH, (4) the inhibition of the post ovulatory LH surge has no effect either on the corpus luteum or on fertility.  相似文献   

4.
Natural GnRH and its analog have potential for hastening ovulation in mares. A study was conducted to evaluate the efficacy of a GnRH agonist given either as an injectable or s.c. implant for induction of ovulation in mares. Forty-five seasonally anestrous mares (March) were assigned to one of three groups (n = 15/group): 1) untreated controls; 2) i.m. injection of the GnRH agonist buserelin at 12-h intervals (40 micrograms/injection for 28 d or until ovulation) and 3) GnRH agonist administered as a s.c. implant (approximately 100 micrograms/24 h for 28 d). Six mares per group were bled on d 0, 7, 14 and 21 after injection or insertion of implant. Samples were taken at -1, -.5 and 0 h and at .5, 1, 1.5, 2, 4, 6 and 8 h after GnRH. Additional daily samples were drawn for 28 d after injection or until ovulation. Samples were assayed for concentration of LH and FSH. Progesterone concentrations were determined in samples collected on d 4, 6 and 10 after ovulation. Number and size of follicles and detection of ovulation were determined by ultrasonography. Number of mares induced to ovulate within 30 d was 0 of 15, 7 of 15 and 9 of 15 for groups 1, 2 and 3, respectively. During treatment, follicle sizes were smaller for mares in group 3 (implant). The LH response to GnRH agonist (area under curve) was similar among groups at d 0 but was greater (P less than .05) for mares in group 3 on d 7 and 14 and groups 2 and 3 on d 21 than for controls. A similar pattern was detected for peak concentrations of LH after GnRH on d 0, 7, 14 and 21. Daily concentrations of LH remained low in untreated control mares compared with GnRH-treated mares throughout the sampling period. Concentrations of LH for mares in group 3 that ovulated were elevated greatly above those for group 2 mares, whereas concentrations of FSH were similar in both treatment groups prior to ovulation.  相似文献   

5.
Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation.In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation.Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares.In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3).In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.

Introduction

Induction of multiple ovulations or superovulation has been an elusive goal in the mare. Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates.[1 and 2] Superovulation also has been suggested as a critical requirement for other types of assisted reproductive technology in the horse, including oocyte transfer and gamete intrafallopian transfer. [2 and 3] Unfortunately, techniques used successfully to superovulate ruminants, such as administration of porcine follicle stimulating hormone and equine chorionic gonadotropin have little effect in the mare. [4 and 5]The most consistent therapy used to induce multiple ovulations in mares has been administration of purified equine pituitary gonadotropins. Equine pituitary extract (EPE) is a purified gonadotropin preparation containing approximately 6% to 10% LH and 2% to 4% FSH.[6] EPE has been used for many years to induce multiple ovulations in mares [7, 8 and 9] and increase the embryo recovery rate from embryo transfer donor mares. [10] Recently, a highly purified equine FSH product has become available commercially.The objectives of this study were to evaluate the efficacy of purified eFSH in inducing superovulation in cycling mares and to determine the relationship between ovulation rate and pregnancy rate or embryo collection rate in superovulated mares.

Materials and methods

Experiment 1

Forty-nine normally cycling mares, ranging in age from 3 to 12 years, were used in a study at Colorado State University. Group 1 (control) mares (n = 29) were examined daily when in estrus by transrectal ultrasonography. Mares were administered an implant containing 2.1 mg deslorelin (Ovuplant, Ft. Dodge Animal Health, Ft. Dodge, IA) subcutaneously in the vulva when a follicle 35 mm in diameter was detected. Mares were bred with frozen semen (800 million spermatozoa; minimum of 30% progressive motility) from 1 of 4 stallions 33 and 48 hours after deslorelin administration. The deslorelin implants were removed after detection of ovulation.[11] Pregnancy status was determined at 14 and 16 days after ovulation.Group 2 mares (n = 10) were administered 25 mg of eFSH (Bioniche Animal Health USA, Inc., Athens, GA) intramuscularly twice daily beginning 5 or 6 days after ovulation was detected. Mares received 250 g cloprostenol (Estrumate, Schering-Plough Animal Health, Omaha, NE) intramuscularly on the second day of eFSH treatment. Administration of eFSH continued until a majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Mares were subsequently bred with the same frozen semen used for control mares, and pregnancy examinations were performed as described above.Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting 5 or 6 days after ovulation and were administered 250 μg cloprostenol on the second day of treatment. Mares were randomly selected to receive either a deslorelin implant (n = 5) or 2500 IU of human chorionic gonadotropin (hCG) intravenously (n = 5) to induce ovulation when a majority of follicles reached a diameter of 35 mm. Mares were bred with frozen semen and examined for pregnancy as described above.

Experiment 2

Sixteen cycling light-horse mares were used during the physiologic breeding season in Brazil. Reproductive activity was monitored by transrectal palpation and ultrasonography every 3 days during diestrus and daily during estrus. On the first cycle, mares were administered 2500 IU hCG intravenously once a follicle 35 mm was detected. Mares were subsequently inseminated with pooled fresh semen from 2 stallions (1 billion motile sperm) daily until ovulation was detected. An embryo collection procedure was performed 7 days after ovulation. Mares were subsequently administered cloprostenol, and eFSH treatment was initiated. Mares received 12 mg eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time hCG was administered. Mares were inseminated and embryo collection attempts were performed as described previously.

Statistical analysis

In experiment 1, 1-way analysis of variance with F protected LSD was used to analyze quantitative data. Pregnancies per ovulation were analyzed by x2 analysis. In experiment 2, number of large follicles, ovulation rate, and embryo recovery rate were compared by Student,'s t-test. Data are presented as the mean S.E.M. Differences were considered to be statistically significant at p < .05, unless otherwise indicated.

Results

In experiment 1, mares treated with 25 mg eFSH twice daily developed a greater number of follicles 35 mm in diameter (p = .001) and ovulated a greater number of follicles (p = .003) than control mares (Table 1). However, the number of pregnancies obtained per mare was not significantly different between the control group and the group receiving 25 mg eFSH (p = .9518). Mares treated with 12 mg eFSH and administered either hCG or deslorelin to induce ovulation also developed more follicles 35 mm (p = .0016 and .0003, respectively) than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles (p = .003) than control mares, whereas the number of ovulations for mares receiving eFSH followed by deslorelin was similar to that of control mares (p = .3463). Pregnancy rate for mares induced to ovulate with hCG was higher (p = .0119) than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of controls (p = .692). Pregnancy rate per ovulation was not significantly different between control mares (54.5%) and mares treated with eFSH followed by hCG (52.9%). The lowest pregnancy rate per ovulation was for mares stimulated with 25 mg eFSH and induced to ovulate with deslorelin. The mean number of days mares were treated with 25 mg or 12 mg of eFSH was 7.8 ± 0.4 and 7.5 ± 0.5 days, respectively. Overall, 80.0% of mares administered eFSH had multiple ovulations compared with 10.3% of control mares.  相似文献   

6.
The influence of varying doses of human chorionic gonadotropin (hCG) on the preovulatory luteinizing hormone (LH) surge, estradiol-17 beta (E2) and progesterone (P4) was studied in synchronized gilts. Altrenogest (AT) was fed (15 mg X head-1 X d-1) to 24 cyclic gilts for 14 d. Pregnant mares serum gonadotropin (PMSG; 750 IU) was given im on the last day of AT feeding. The gilts were then assigned to one of four groups (n = 6): saline (I), 500 IU hCG (II), 1,000 IU hCG (III) and 1,500 IU hCG (IV). Human chorionic gonadotropin or saline was injected im 72 h after PMSG. No differences in ovulation rate or time from last feeding of AT to occurrence of estrus were observed. All gilts in Groups I and II expressed a preovulatory LH surge compared with only four of six and three of six in Groups III and IV, respectively. All groups treated with hCG showed a rapid drop (P less than .01) in plasma levels of E2 11, 17, 23 h after hCG injection when compared with the control group (35 h). The hCG-treated gilts exhibited elevated P4 concentrations 12 h earlier than the control group (3.1 +/- .5, 3.4 +/- .72, 3.1 +/- .10 ng/ml in groups II, III and IV at 60 h post-hCG vs .9 +/- .08 ng/ml in group I; P less than .05). These studies demonstrate that injections of ovulatory doses of hCG (500 to 1,500 IU) had three distinct effects on events concomitant with occurrence of estrus in gilts: decreased secretion of E2 immediately after hCG administration, failure to observe a preovulatory LH surge in some treated animals and earlier production of P4 by newly developed corpora lutea.  相似文献   

7.
The objective of this study was to evaluate various equine follicle-stimulating hormone (eFSH) treatment protocols and the effect of “follicle coasting” on ovulation and embryo recovery rates in mares. Cycling mares (n = 40) were randomly assigned to one of four groups 7 days after ovulation: (1) 12.5 mg eFSH twice daily until follicles were 35 mm or larger; (2) 12.5 mg eFSH twice daily until follicles were 32 mm or larger; (3) 12.5 mg eFSH twice daily for 3.5 days followed by 12.5 mg eFSH enriched with luteinizing hormone (LH) twice daily until follicles were 35 mm or larger; and (4) 25 mg eFSH once daily until follicles were 32 mm or larger. Mares in groups 1 and 3 were injected with human chorionic gonadotropin (hCG) (2500 IU intravenously) at the end of eFSH treatment, whereas mares in groups 2 and 4 were given hCG approximately 42 and 54 hours, respectively, after the last eFSH treatment (“follicle coasting”). Nonsurgical embryo collection was performed 6.5 to 7.5 days after ovulation. Each mare experienced a nontreated estrous cycle before being reassigned to a second treatment. Ovulation rates for mares in treatment groups 1 to 4 were 3.3 ± 0.4, 4.1 ± 0.4, 3.5 ± 0.4, and 2.8 ± 0.4 (mean ± SEM; P < .05), respectively. One or more embryos were recovered from more than 80% of mares in each treatment group, and embryo recovery rate per flush was similar among treatment groups (1.9 ± 0.3, 2.6 ± 0.3, 1.9 ± 0.3 and 1.9 ± 0.3, respectively; P > .05). The overall embryo recovery rate was 2.1 ± 1.5 embryos per flush. In summary, ovulation rate was higher for mares treated with eFSH (3.4 ± 0.4) compared with non-treated controls (1.1 ± 0.2). Ovulation rate in mares in which hCG was delayed (follicle coasting) was higher (P < .05) when treatments were given twice per day versus once per day. Administration of equine luteinizing hormone (eLH) in conjunction with eFSH did not have an advantage over mares treated only with eFSH.  相似文献   

8.
Sixty nonlactating light-horse mares were used to compare the efficacy of hCG, buserelin (a GnRH analog) and luprostiol (a PGF2α analog) for induction of ovulation in cycling mares. Mares were assigned to 1 of 4 treatments: 1) controls; 2) 40 μg buserelin IM at 12 hr intervals during estrus until ovulation; 3) 7.5 mg IM luprostiol; and 4) 3,300 IU hCG. Treatments were given once a mare obtained a ≥35mm follicle and had been in estrus ≥2 days. Both buserelin and hCG shortened (p<0.05) the interval from treatment to ovulation compared to controls; whereas, luprostiol failed to hasten ovulation. Number of follicles ovulated was similar among all 4 groups. Although buserelin and hCG were equal in their ability to induce ovulation, an average of 3.8 injections of buserelin was required for hastening of ovulation.  相似文献   

9.
Sixteen estrous cycles from 10 cyclic mares were randomly assigned to a control or sulpiride group (n = 8 each). All mares received 1,500 IU of human chorionic gonadotropin (hCG) (hour 0) during estrus with a follicular diameter ≥32 mm. Mares were scanned every 12 hours until ovulation. In the treatment group, beginning at hour 0, each mare received 1.5 mg/kg of sulpiride every 12 hours intra-muscularly until ovulation or formation of a luteinized unruptured follicle (LUF). Concentrations of luteinizing hormone (LH) and prolactin (PRL) were measured by radioimmunoassay. In each group, there were 10 preovulatory follicles for the eight cycles. The ovulation rate (9/10, 90%) was similar in the control and sulpiride groups. Two mares formed an LUF, which was first detected at hours 48 and 72 for the sulpiride and control mares, respectively. The interval from hCG to ovulation was 49.5 ± 11.1 and 43.5 ± 5.8 hours, for the control and sulpiride groups, respectively (P > .5). LH followed the typical preovulatory surge pattern, with no difference between groups (P > .5). Sulpiride administration increased PRL concentration in treated mares at 24 (P < .1), 36, and 48 hours (P < .05) after treatment. In conclusion, sulpiride administration every 12 hours increased PRL concentration in treated mares after 24 hours of the beginning of treatment. However, at this time window and concentration, PRL did not have any effect on ovulation. The control mare that developed an LUF had a PRL concentration similar to other ovulatory control mares (always ≤10 ng/mL).  相似文献   

10.
Soon after Ovuplant™, the sustained-release implant containing the gonadotropin releasing hormone (GnRH) agonist deslorelin, was approved for commercial use in the United States for induction of ovulation in mares, anecdotal field observations were reported that some Ovuplant™—treated mares that did not become pregnant experienced a delayed return to estrus and prolonged inter-ovulatory interval. Although those observations have been subsequently confirmed, further data on how mares respond to Ovuplant™ compared to human chorionic gonadotropin (hCG) during the post-treatment period is needed. The objective of this study was to further evaluate the clinical use of Ovuplant™ by comparing the reproductive performance of commercial broodmares treated with hCG or Ovuplant™. This retrospective study was completed by examining the 1999 reproductive records of 106 mares treated with hCG during 134 estrous cycles and 117 mares treated with Ovuplant™ during 151 estrous cycles. There were no differences (P > 0.10) in follicle size at the time of treatment (39.4 ± 0.5 vs. 38.9 ± 0.5 mm), interval from treatment to ovulation (2.2 ± 0.1 vs. 2.2 ± 0.1 days), proportion of mares that failed to ovulate after treatment (3.0 vs. 4.6 %), or per-cycle pregnancy rate (47.7 vs. 51.4 %) between hCG-and Ovuplant™-treated mares, respectively. The interval from ovulation to return to estrus (25.8 ± 1.3 vs. 15.5 ± 0.6 days) and the inter-ovulatory interval (30.4 ± 1.5 vs. 20.8 ± 0.6 days) were longer (P<0.001) for Ovuplant™-compared to hCG-treated mares, and the proportion of non-pregnant mares that failed to return to estrus within 30 days after ovulation (31.4 vs. 1.5 %) was higher (P<0.001) for Ovuplant™-compared to hCG-treated mares, respectively. For Ovuplant™—treated mares, follicle size at the time of treatment tended (P<0.1) to be smaller for mares that failed to return to estrus within 30 days compared to mares that returned to estrus within 30 days (37.1 ± 1.1 vs. 40.1 ± 0.6 mm, respectively). Also, the average date of ovulation during the calendar year was later (P < 0.05) for Ovuplant™—treated mares that failed to return to estrus within 30 days compared to those that returned to estrus within 30 days (May 15 ± 4 vs. April 30 ± 4 days). The results of this study confirm previous reports that although the ovulatory response and fertility were not different for hCG- and Ovuplant™—treated mares, mares treated with Ovuplant™ that did not become pregnant had a significantly delayed return to estrus and prolonged inter-ovulatory interval. Based on recently published information, it appears this effect is due to Ovuplant™—induced down-regulation of the pituitary gland, which suppresses subsequent follicular growth and development. This study also demonstrated that follicle size and/or season may influence the probability that Ovuplant™—treated mares would experience a delayed return to estrus/ovulation; therefore, further work is needed to determine whether these or other factors are related to this specific outcome following Ovuplant™—treatment.  相似文献   

11.
AIM: To determine the effect of hCG dose on ovulation and pregnancy rate in Thoroughbred mares experiencing their first ovulation of the breeding season. METHODS: Over 3 successive breeding seasons, a total of 101 mares were randomly assigned to 1 of 4 treatment groups (intravenous injection of either saline, 1500, 3000, or 6000 IU hCG), as they approached their first ovulation of the breeding season. Mares were bred 1 day post-injection to 1 of 11 stallions, and every other day until ovulation occurred. Data were analysed using multivariable logistic regression with correction for over-dispersion due to clustering. RESULTS: Mares treated with hCG were more likely to ovulate within 72 h of treatment than mares treated with saline (p<0.001); there was no significant difference between doses of hCG on risk of ovulation (p>0.15). Farm also had a significant impact on the risk of ovulation (p=0.027). Mares treated with hCG were more likely to be diagnosed pregnant 14 days post ovulation than saline-treated mares (p=0.081, p=0.029 and p=0.026 for the 1500, 3000 and 6000 IU doses, respectively); there was no significant difference between doses of hCG on risk of pregnancy (p>0.45). CONCLUSIONS: A single injection of hCG (1500-6000 IU) is effective at inducing ovulation in late transitional mares and increases the likelihood of pregnancy at 14 days post ovulation. This paper supports the use of hCG as an integral part of optimal broodmare management.  相似文献   

12.
Studies were conducted to compare continuous vs pulsatile i.v. infusion of GnRH on serum gonadotropin concentrations and ovulation in seasonally anestrous mares and in cycling mares. Anestrous mares (Exp. 1) received no treatment (control; n = 3), 2, or 20 micrograms of GnRH/h continuous infusion (CI) (n = 4 and n = 6, respectively), or 20 micrograms of GnRH/h pulsatile infusion (PI) (n = 5). After initiation of GnRH infusion, serum LH levels increased earlier, and to a greater extent, in the PI group than in other groups (P less than .05). In contrast, serum FSH concentrations did not differ among groups. The number of days to development of the first 35-mm follicle was not different among GnRH treatment groups; however, mares receiving PI ovulated on d 9.4 of treatment, 2.8 d earlier than those receiving 20 micrograms of GnRH/h CI (P less than .05). Mares given 2 micrograms of GnRH/h CI failed to ovulate spontaneously after 16 d of treatment, but each one ovulated within 2 to 4 d after injection of 2,000 IU of hCG on d 16. Control mares did not ovulate or show any significant follicular development throughout the experiment. Cycling mares (Exp. 2) received no treatment (control; n = 6), 20 micrograms of GnRH/h CI, or 20 micrograms of GnRH/h PI (n = 4) beginning on d 16 of an estrous cycle (d 0 = day of ovulation). Serum LH concentrations in all groups increased after initiation of treatment; however, on the day of ovulation LH concentrations were lower in the CI group than in the PI or control groups (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
With the objective of controlling the day of ovulation, 40 mares were assigned to a control or three treated groups: A3d, A4d, and A5d. The treated groups received antarelix (Teverelix 0.01 mg/kg, i.v., twice a day) for 3, 4, or 5 days from the day the dominant follicle (F1) reached 28 mm (=D0), and one injection of hCG (1600 IU, i.v.) on D1, D2, or D3, respectively. Control mares received one injection of hCG when F1 reached 35 mm. Plasma LH, FSH, progesterone, and total estrogens were assayed. In the A3d, A4d, and A5d groups, 9 (90%), 6 (60%), and 5 (50%) out of 10 mares, respectively, ovulated on the expected day (i.e. between 24 and 48 h after hCG injection). In the control group, 7/10 (70%) presented the typical response to hCG. For 3 mares in both the A4d and A5d groups, the dominant follicle at the time the treatment was started did not ovulate and ovulation was postponed for between 11 and 15 days after the end of treatment. In the treated mares, the LH surge was abolished, and total estrogens were depressed during the preovulatory peak but the concentrations of FSH were not modified. Endocrine parameters were not altered in postponed cycles. Fertility did not differ in treated and control cycles. These results demonstrate that in mares: (1) ovulation can be programmed on a specific day of a 3-day period, with a success rate of 67%, by a treatment associating antarelix and one injection of hCG; (2) nevertheless in 20% of cases the dominant follicle regresses and does not ovulate; (3) for these mares ovulation is postponed by approximately 2 weeks; (4) terminal growth of the preovulatory follicle only requires low circulating concentrations of LH but atresia induced by a GnRH antagonist is significant when this treatment is administrated for more than 18 h.  相似文献   

14.
Equine clinicians rely on ovulation induction agents to provide a timed ovulation in mares for optimal breeding management. Numerous studies have been performed on the efficacy of human chorionic gonadotropin (hCG) to induce ovulation in the mare, but limited clinical data are available for the new deslorelin acetate product SucroMate. This study was designed to evaluate the efficacy of SucroMate (deslorelin) in comparison with hCG to induce ovulation. American Quarter horse mares (n = 256) presented to Colorado State University for breeding management were used in this study. Mares received either deslorelin or hCG when a follicle ≥35 mm was detected by transrectal ultrasound in the presence of uterine edema. Ultrasonographic examinations were subsequently performed once daily until ovulation was detected. Deslorelin was administered to 138 mares during168 estrous cycles, and hCG was given to 118 mares during 136 estrous cycles. Mares administered deslorelin had a similar (P < .05) higher ovulation rate (89.9%) within 48 hours following drug administration than mares administered hCG (82.8%). There are no effects of season or age on ovulation rates in either treatment group. Twenty-one mares administered deslorelin and 11 mares administered hCG were monitored by transrectal ultrasound every 6 hours to detect ovulation as part of a frozen semen management program. Average intervals from deslorelin or hCG administration to ovulation were 41.4 ± 9.4 and 44.4 ± 16.5 hours, respectively. Results of this study indicate that SucroMate is effective at inducing a timed ovulation in the mare.  相似文献   

15.
Recombinant equine luteinizing hormone (reLH) was evaluated for its ability to stimulate production of progesterone in cell lines from three species including murine Leydig tumor (MA-10), equine granulosal, and ovine small luteal cells (SLC). The response to reLH was compared with that obtained with human chorionic gonadotropin (hCG), equine chorionic gonadotropin, ovine luteinizing hormone, and equine luteinizing hormone (eLH). Media were collected hourly for 6 hours and assayed for progesterone content through radioimmunoassay. In MA-10 cells, production of progesterone was stimulated above baseline by reLH and hCG (P < .05). Ovine SLC responded to treatment with eLH, reLH, ovine luteinizing hormone, and hCG by increasing production of progesterone above that stimulated by vehicle control (P < .05). Production of progesterone in equine granulosal cells was maximally stimulated by treatment with hCG (P < .05), followed by reLH and eLH (P < .05). In conclusion, reLH elicited a progesterone response in MA-10, ovine SLC, and equine granulosal cells. Thus, reLH stimulates the production of progesterone in cell lines from three species.  相似文献   

16.
The purpose of this research was to determine whether treatment with varying doses of recombinant equine follicle stimulating hormone (reFSH) stimulates the development of multiple follicles and ovulations and increases the number of embryos recovered in the mare. Therefore, because reFSH can be cloned in repeatable, sizeable quantities, it could be used as a tool to enhance superovulation in mares. In experiment 1, the number of preovulatory follicles, ovulations, and embryos recovered per flush was greater in the 0.85 mg reFSH group than in the control group; however, the embryo per ovulation rates were similar. Plasma inhibin and estradiol concentrations were greater in treated mares around the time of ovulation as compared with the control group, whereas concentrations of luteinizing hormone remained low throughout the treatment, ovulation, and postovulation. In treated mares, concentrations of follicle stimulating hormone increased during therapy and before ovulation, but decreased postovulation. In experiment 2, varying doses of reFSH (0.35, 0.50, and 0.65 mg) and 12.5 mg of Bioniche equine follicle stimulating hormone (eFSH) increased the number of preovulatory follicles as compared with control group. The greatest number of ovulations was induced by treatment with 12.5 mg eFSH, 0.5 mg reFSH, and 0.65 mg reFSH. The highest number of embryos recovered per flush was found with treatments of eFSH and 0.65 mg reFSH. However, the embryo per ovulation rates were similar in all treatment groups, including the control group. In experiment 3, reFSH (0.5 and 0.85 mg) and eFSH (12.5 mg) given twice daily showed a similar increase in the number of pre-ovulatory follicles and ovulations. A single daily treatment of reFSH (0.85 mg) as well as the twice daily dose of eFSH was determined to increase follicular activity. In conclusion, reFSH was as effective as eFSH in increasing the number of follicles ≥35 mm, ovulation rates, and embryo recovery rates per flush compared with the control group.  相似文献   

17.
The effects of compounded medroxyprogesterone acetate (MPA) on follicular activity and estrous behavior were evaluated. Eighteen cycling mares were assigned to one of three treatment groups. Mares in the MPA group (n = 6) were injected intramuscularly with 1,600 mg MPA (week 1), then 400 mg weekly for the next 5 weeks. Saline mares (n = 6) were injected intramuscularly weekly for 6 weeks. Altrenogest mares (n = 6) received 10 mL orally daily for 7 weeks. Mares were teased daily for 60 days and categorized as displaying estrous, diestrous, or neutral behavior. Transrectal ultrasound examinations were performed three times weekly, or daily when a 30-mm follicle was identified, until ovulation. Blood samples were harvested weekly for analysis of progesterone concentration and daily from days 14 to 23 for analysis of luteinizing hormone (LH) concentration. Mares treated with saline or MPA showed normal intervals of diestrus and estrus during the study. All altrenogest mares showed behavioral diestrus during treatment. All mares in the saline and MPA groups showed normal follicular development and ovulations. No altrenogest mares ovulated during treatment; four mares returned to estrus and resumed normal follicular development after treatment ceased. Progesterone analyses agreed with transrectal ultrasonographic ovarian activity for all mares. LH levels were lower for altrenogest-treated mares compared with MPA-treated and saline-treated mares during the treatment period. In conclusion, compounded MPA at dose rates and intervals used in this study was not effective in suppression of estrus, follicular development, or LH secretion in mares.  相似文献   

18.
Estrogen from a growing follicle stimulates the preovulatory surge of luteinizing hormone (LH) while progesterone (P) is known to suppress LH. The possibility exists that administration of P, in the presence of an ovulatory follicle, would sufficiently suppress LH and, therefore, delay ovulation. The objective of this research was to elucidate the potential for oral administration of altrenogest (17-Allyl-17β-hydroxyestra-4,9,11-trien-3-one) to postpone ovulation of a preovulatory follicle (35 mm) for approximately two days. Fourteen light-horse mares, ranging in age from two to 19 years, were randomly assigned to one of three treatments (A-.044 mg/kg BW altrenogest for two days; B-.088 mg/kg BW altrenogest for two days; and C- no altrenogest). Mares began treatment when a 35-mm or greater follicle was observed via real-time transrectal ultrasonography. Both number of days until ovulation and follicular maintenance differed between treated and control mares. Number of days until ovulation was increased (P<.05) for mares in treatment A when compared with the control mares. Follicular diameter maintenance, a measurement of follicular diameter throughout treatment, also increased (P<.05) for mares in treatment A when compared with the control mares. Mean LH concentration was not different between mares treated with altrenogest at either treatment dose when compared with the control mares. Pregnancy rates and embryonic vesicle size change were also measured to determine potential effects of altrenogest administration. No differences (P>.05) were found in either characteristic.Short-term administration of altrenogest increased the number of days to ovulation. Further study is warranted to prove conclusively that altrenogest increases follicular maintenance, alters the preovulatory LH surge, and has no detrimental effects upon reproductive efficiency.  相似文献   

19.
马属动物属季节性单胎动物,从母马或母驴出现发情表现到排卵,持续3~13 d不等,该生理特征极大地影响其繁殖效率。hCG作为LH类似物不会受性激素反馈调节机制的制约,广泛应用于马属动物卵泡发育和排卵。从性激素在哺乳动物卵泡发育过程中的作用、马属动物主卵泡波与LH诱导的优势卵泡排卵、外源性激素对马属动物卵泡发育的影响、hCG的结构与功能、hCG在延长母马黄体期的应用和hCG在马属动物超数排卵中的应用6个方面内容阐述hCG促进马属动物排卵的研究进展。  相似文献   

20.
The object of this investigation was to study luteinizing hormone (LH) response to different doses of synthetic gonadotropin-releasing hormone (GnRH) in prepubertal gilts. Four crossbred prepubertal gilts, 128–134 days old and body weight 57–63 kg, were used in this study. Four doses, 0. 5, 25 and 125 μg, of GnRH were administered via a jugular vein catheter in a latin square design. Each treatment consisted of 3 injections at 90 min intervals. Frequent blood samples were taken during a period of 90 min before up to 90 min after treatment. Total LH responses were measured from post-treatment samples as the area under the curve above base level obtained from pre-treatment samples. A positive relationship between GnRH dose and LH release was obtained in all gilts, except for 1 treatment given to a gilt with high plasma level of oestradiol-17β on the day of treatment. This study has demonstrated the responsiveness of the pituitary gland by LH release to different doses of GnRH in 4.5-month-old prepubertal gilts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号