首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induced (traumatic) resin in white spruce (Picea glauca (Moench) Voss) leaders resistant or susceptible to the white pine weevil (Pissodes strobi Peck) was analyzed for volatile terpenes and diterpene resin acids after simulated white pine weevil damage. Leaders from 331 trees were wounded just below the apical bud with a 1-mm diameter drill, coinciding with the natural time of weevil oviposition in the spring. Leaders were removed in the fall, and the bark and xylem from the upper and lower regions of the leader extracted and analyzed by gas chromatography. Unwounded trees had low amounts of resin in xylem compared with bark. In response to wounding, volatile terpenes and diterpene resin acids increased in the upper xylem (area of wounding), with resistant trees showing a greater increase than susceptible trees. Wounding caused monoterpenes in particular to decrease in the lower region of the leader (away from the drilled area) in greater amounts in susceptible trees than in resistant trees. In response to wounding, the proportion of monoterpene to resin acid increased in the upper and lower xylem of resistant trees, and slightly increased in the upper xylem of susceptible trees. Monoterpene-enriched resin is more fluid than constitutive resin, and probably flows more readily into oviposition cavities and larval mines, where it may kill immature weevils. Loss of resin components in the lower xylem suggested catabolism and transport of these materials to the site of wounding; however, energetic and regulatory data are necessary to confirm this hypothesis. This study provides a basis for measuring the ability of a tree to undergo traumatic resinosis that could be used to screen for resistance to white pine weevil.  相似文献   

2.
Tree defense against bark beetles (Curculionidae: Scolytinae) and their associated fungi generally comprises some combination of constitutive (primary) and induced (secondary) defenses. In pines, the primary constitutive defense against bark beetles consists of preformed resin stored in resin ducts. Induced defenses at the wound site (point of beetle entry) in pines may consist of an increase in resin flow and necrotic lesion formation. The quantity and quality of both induced and constitutive defenses can vary by species and season. The inducible defense response in ponderosa pine is not well understood. Our study examined the inducible defense response in ponderosa pine using traumatic mechanical wounding, and wounding with and without fungal inoculations with two different bark beetle-associated fungi (Ophiostoma minus and Grosmannia clavigera). Resin flow did not significantly increase in response to any treatment. In addition, necrotic lesion formation on the bole after fungal inoculation was minimal. Stand thinning, which has been shown to increase water availability, had no, or inconsistent, effects on inducible tree defense. Our results suggest that ponderosa pine bole defense against bark beetles and their associated fungi is primarily constitutive and not induced.  相似文献   

3.
To study the effect of chemical pretreatment on conifer resistance, 13-year-old Norway spruce (Picea abies (L.) Karst.) trees were treated with methyl jasmonate (MJ) or oxalic acid (OxA) on the outer bark and inoculated with the pathogenic blue-stain fungus Ceratocystis polonica (Siem.) C. Moreau 4 weeks later. Both chemicals significantly reduced symptoms of fungal infection, but MJ was more effective than OxA (51 versus 18% reduction in length of necrotic lesions in the phloem relative to untreated control trees). Anatomical examination of treated stem tissues showed that MJ induced extensive formation of traumatic resin ducts in the xylem and extra polyphenolic parenchyma (PP) cells in the secondary phloem between the cambium and the regular annual PP cell layer. No traumatic resin ducts were formed after treatment with OxA, and the coverage of extra PP cells in OxA-treated tissues was not significantly higher than in the controls. The anatomically based defense reactions induced by MJ were similar to the reactions observed after pathogen infection, mechanical wounding and bark beetle attack. Neither MJ nor OxA had apparent phytotoxic effects on Norway spruce at the concentrations used, with needle and stem tissues of all trees appearing normal without visible symptoms of toxicity. However, trees treated with MJ had 30% less radial sapwood growth than control trees. In conclusion, MJ treatment of Norway spruce appears to have practical potential as a tool for increasing plant resistance to fungal infection, but with a modest reduction in sapwood growth.  相似文献   

4.
The effect of Trichoderma (T. atrobrunneumFCC320 and T. atrovirideLU633) and/or methyl jasmonate (MJ) on resistance to terminal crook (Colletotrichum acutatum) and on seedling biochemistry was investigated in radiata pine (Pinus radiata) seedlings. Seedlings were germinated and grown in Trichoderma‐amended or non‐amended media for 3 months and then sprayed with 2.25 mM MJ 1 week before inoculation with C. acutatum. The incidence and severity of terminal crook in the seedlings treated with MJ and Trichoderma+MJ were lower than in Trichoderma‐treated and Trichoderma‐untreated seedlings. The MJ‐induced resistance response was concomitant with an increase in the concentrations of the monoterpenes α‐pinene, β‐pinene, β‐phellandrene, camphene and myrcene in needles, and also α‐pinene, β‐pinene and camphene in stems. The concentrations of α‐pinene, β‐pinene and camphene were elevated from at least 1 week until 4 weeks after MJ application, compared with those in non‐MJ counterparts. Trichoderma alone did not affect monoterpenes, but the concentrations of α‐pinene, β‐pinene and camphene were greater in needles of Trichoderma+MJ than in MJ‐treated seedlings after 28 days. Total phenolic concentration in needles and peroxidase activity in stems were twofold greater in MJ‐treated seedlings than in non‐MJ seedlings over the same period. None of the treatments affected the activity of peroxidase in needles. It is proposed that the accumulation of monoterpene and phenolics and the induction of peroxidases contribute, in part, to MJ‐induced resistance to terminal crook in radiata pine seedlings.  相似文献   

5.
6.
Oleoresin flow is an important factor in the resistance of pines to attack by southern pine beetle, Dendroctonus frontalis Zimm., and its associated fungi. Abiotic factors, such as nutrient supply and water relations, have the potential to modify this plant-insect-fungus interaction; however, little is known of the effects of inoculation with beetle-associated fungi on oleoresin flow. We observed that constitutive and induced resin yield in loblolly pine, Pinus taeda L., were affected by either fungal inoculation (with the southern pine beetle-associated fungus Ophiostoma minus (Hedgcock) H. & P. Sydow) or silvicultural treatment. The effects of mass wounding (400 wounds m(-2)) and mass wounding and inoculation with O. minus were assessed by comparison with untreated (control) trees. The treatments were applied to trees in a 2 x 2 factorial combination of fertilizer and irrigation treatments. Fertilization did not significantly affect constitutive resin yield. Even as long as 105 days post-treatment, however, mass-inoculated trees produced higher induced resin yields than control or wounded-only trees, indicating a localized induced response to fungal inoculation. We noted no systemic induction of host defenses against fungal colonization. Although beetles attacking previously attacked trees face a greater resinous response from their host than beetles attacking trees that had not been previously attacked, the effect of an earlier attack may not last more than one flight season. Despite mass inoculations, O. minus did not kill the host trees, suggesting that this fungus is not a virulent plant pathogen.  相似文献   

7.
Norway spruce trees (Picea abies (L.) Karst.) pretreated by wounding and fungal infection showed highly enhanced resistance to a subsequent challenge inoculation with the pathogenic bluestain fungus Ceratocystis polonica (Siem.) C. Moreau. This is the first time the effectiveness of the constitutive and inducible defenses has been shown to depend on prior wounding and infection in conifers, although such acquired resistance has previously been found in several angiosperms. Trees that were pretreated with a combination of 12 bark wounds (1.6 x 10 cm), four fungal inoculations and four sterile inoculations 1-15 days before mass inoculation with C. polonica at 400 inoculations per square meter over a 0.8 m stem section had significantly shorter necroses in the phloem, less bluestained sapwood, and less dead cambium than untreated control trees. Pretreatment with four fungal or sterile inoculations alone did not lead to enhanced resistance. Pretreatment by bark wounding alone seemed to provide an intermediate degree of resistance compared to bark wounding, fungal inoculations and sterile inoculations combined. All trees had a marked increase in the number of resin ducts in the year of inoculation compared with previous years, suggesting that formation of traumatic resin ducts play an important role in the development and maintainance of enhanced resistance.  相似文献   

8.
Resin flow is the primary means of natural defense against southern pine beetle (Dendroctonus frontalis Zimm.), the most important insect pest of Pinus spp. in the southern United States. As a result, factors affecting resin flow are of interest to researchers and forest managers. We examined the influence of fertilization, artificial wounding and fungal inoculation on resin flow in 6- and 12-year-old stands of loblolly pine (Pinus taeda L.) and determined the extent of that influence within and above the wounded stem area and through time. Fertilization increased constitutive resin flow, but only the younger trees sustained increased resin flow after wounding and inoculation treatments. An induced resin flow response occurred between 1 and 30 days after wounding and inoculation treatments. Wounding with inoculation resulted in greater resin flow than wounding alone, but increasing amounts of inoculum did not increase resin flow. Increased resin flow (relative to controls) lasted for at least 90 days after wounding and inoculation. This increase appeared to be limited to the area of treatment, at least in younger trees. The long-lasting effects of fungal inoculation on resin flow, as well as the response to fertilization, suggest that acquired resistance through induced resin flow aids in decreasing susceptibility of loblolly pine to southern pine beetle.  相似文献   

9.
Six 25- to 30-year-old slash pine, Pinus elliottii Englm. var. elliottii, trees were inoculated with Ophiostoma minus (Hedgc.) H.P. Sydow, O. ips (Rumb.) Nannf or sterile water. Two, 4 and 6 weeks after inoculation, the lengths of developing lesions and the monoterpene concentration of the necrotic tissue within each lesion were measured. Both sterile and fungal wounding resulted in the development of lesions in the phloem-outer xylem. At both 4 and 6 weeks after inoculation, lesions induced by O. minus were significantly larger than lesions induced by O. ips or sterile water, whereas the lesions induced by O. ips and sterile water were similar in size at all sampling periods. At 2, 4 and 6 weeks after inoculation, lesions induced by O. minus had significantly greater concentrations of monoterpenes than lesions induced by O. ips or sterile water. The monoterpene concentration of lesions induced by O. ips was significantly greater than that of lesions induced by sterile water only at the 6-week sampling period. Visual examination of the lesions indicated that O. minus but not O. ips was inhibiting the development of callus tissue, suggesting that the strain of O. ips was either nonpathogenic or avirulent.  相似文献   

10.
Bark beetles Tomicus yunnanensis and T. minor are two important pests of Pinus yunnanensis and can cause massive death of pine trees. In this study, we examined several traits related to photosynthesis in P.yunnanensis and their relationship with antibiotic defense responses after joint attack by the two bark beetles at the shoot and the trunk stages. When shoots were attacked by the beetles, the abundance of chlorophylls, carotenoids, and the rates of net photosynthesis(Pn) and transpiration(E) decreased in needles, while the levels of superoxide dismutase and malondialdehyde remained unchanged in both needles and phloem. The activity of peroxidases also remained unchanged in needles, but increased in phloem.The activity of catalases increased in both needles and phloem. When trunks were attacked by the bark beetles,chlorophyll abundance, Pn, E, and antioxidative enzyme activities all declined, and the declines were more pronounced than in the attacked shoots. A decrease in protein concentrations was also observed in needles and phloem from the attacked pines. Attack on shoots by the bark beetles suppressed host defense and provided a favorable environment for larval growth and development, resulting in long-term decline of pine growth potential. The results suggest that attacks on trunks by beetles caused more severe damage to host trees than attacks on shoots.  相似文献   

11.
We investigated the cellular responses of stem tissues of mature Scots pine (Pinus sylvestris L.) trees to inoculations with two fungal pathogens. The bark beetle vectored fungus, Leptographium wingfieldii Morelet, induced longer lesions in the bark, stronger swelling of polyphenolic parenchyma cells, more polyphenol accumulation and increased ray parenchyma activity compared with the root rot fungus, Heterobasidion annosum (Fr.) Bref., or mechanical wounding. Axial resin ducts in the xylem are a general feature of the preformed defenses of Scots pine, but there was no clear induction of additional traumatic axial resin ducts in response to wounding or fungal infection. The anatomical responses of Scots pine to pathogen infection were localized to the infection site and were attenuated away from bark lesions. The responses observed in Scots pine were compared with published studies on Norway spruce (Picea abies (L.) Karst.) for which anatomically based defense responses have been well characterized.  相似文献   

12.
North American jack pine (Pinus banksiana Lamb.) stands are generally characterized by an even-aged structure resulting from high intensity fires (HIF). However, non-lethal fires of moderate intensity (MIF), which leave behind surviving trees, have also been reported. The objectives of this study were two-fold: (1) assess the concurrent dynamics of live trees, understory vegetation and different types of coarse woody debris (CWD) during succession after HIF; and (2) document how MIF affects stand structure component dynamics compared to HIF. Stands affected by both HIF and MIF were selected. Tree characteristics and age structure, understory biomass, and CWD volume were assessed. Our results suggest that the structural succession of jack pine stands following HIF comprises three stages: young stands (<48 years), premature and mature stands (58–100 years) and old stands (>118 years). Canopy openness and jack pine density significantly decreased with time since HIF, while black spruce density and CWD volume significantly increased. The highest structural diversity was measured in the premature and mature stands. Compared to HIF, MIF increased mean jack pine basal area, decreased average stand density, delayed the replacement of jack pine by black spruce replacement in the canopy, decreased CWD volume, and significantly increased bryophytes mass. MIF increased the diversity of live trees and generally decreased CWD structural diversity. The study confirms the diversity of natural disturbance magnitude and successional processes thereby initiated. Thereafter, it appeared to be relevant for adjustment of disturbance emulating forest-management systems.  相似文献   

13.
14.
Zhao C  Chen L  Ma F  Yao B  Liu J 《Tree physiology》2008,28(1):133-141
In many plant species, leaf morphology varies with altitude, an effect that has been attributed to temperature. It remains uncertain whether such a trend applies equally to juvenile and mature trees across altitudinal gradients in semi-arid mountain regions. We examined altitude-related differences in a variety of needle characteristics of juvenile (2-m tall) and mature (5-m tall) alpine spruce (Picea crassifolia Kom.) trees growing at altitudes between 2501 and 3450 m in the Qilian Mountains of northwest China. We found that stable carbon isotope composition (delta(13)C), area- and mass-based leaf nitrogen concentration (N(a), N(m)), number of stomata per gram of nitrogen (St/N), number of stomata per unit leaf mass (St/LM), projected leaf area per 100 needles (LA) and leaf mass per unit area (LMA) varied nonlinearly with altitude for both juvenile and mature trees, with a relationship reversal point at about 3100 m. Stomatal density (SD) of juvenile trees remained unchanged with altitude, whereas SD and stomatal number per unit length (SNL) of mature spruce initially increased with altitude, but subsequently decreased. Although several measured indices were generally found to be higher in mature trees than in juvenile trees, N(m), leaf carbon concentration (C(m)), leaf water concentration (LWC), St/N, LA and St/LM showed inconsistent differences between trees of different ages along the altitudinal gradient. In both juvenile and mature trees, delta(13)C correlated significantly with LMA, N(m), N(a), SNL, St/LM and St/N. Stomatal density, LWC and LA were only significantly correlated with delta(13)C in mature trees. These findings suggest that there are distinct ecophysiological differences between the needles of juvenile and mature trees that determine their response to changes in altitude in semi-arid mountainous regions. Variations in the fitness of forests of different ages may have important implications for modeling forest responses to changes in environmental conditions, such as predicted future temperature increases in high altitude areas associated with climate change.  相似文献   

15.
When conifers such as Picea abies Karst. (Norway spruce) are attacked by insects or pathogens, they often respond by producing increased quantities of terpenoid oleoresin. This response can be mimicked in young P. abies seedlings by treatment with methyl jasmonate (MJ). In this study, we determined the effects of MJ on terpenoids and other chemical defenses of mature P. abies, and investigated whether this treatment protected trees against attack by the blue-stain fungus Ceratocystis polonica (Siem.) C. Moreau, the most important fungal associate of the spruce bark beetle Ips typographus L. Methyl jasmonate treatment induced the formation of traumatic resin ducts in the developing xylem, enhanced resin flow and stimulated increased accumulation of monoterpenes, sesquiterpenes and diterpene resin acids. However, only minor changes were detected in terpene composition in response to MJ treatment and no changes in soluble phenolic concentration were measured. There was much variability in the timing and degree of response to MJ among clones. The observed chemical and anatomical changes in response to MJ treatment were correlated with increased resistance to C. polonica, suggesting that terpenoid oleoresin may function in defense against this pathogen.  相似文献   

16.
Among the most devastating pests of Norway spruce (Picea abies) are the European spruce bark beetle (Ips typographus) and the associated pathogenic blue-stain fungus Ceratocystis polonica. Following attack and colonization, the beetle and the fungus must cope with induced host chemical defenses, such as monoterpenes that are generally thought to be toxic to both symbionts. The goal of this study was to better understand the response of Norway spruce following C. polonica inoculation at low density that does not overwhelm the tree and to identify monoterpenes mobilized toward the fungus. We inoculated healthy mature trees and monitored monoterpene profiles 2, 3, and 5 months post-inoculation. We also exposed three different C. polonica strains to the most abundant or significantly up-regulated monoterpenes to determine differences in monoterpene toxicity and resistance among strains. Total monoterpene levels, including limonene, were increased at 2 and 3 months after inoculation and had dropped after 5 months. In in vitro assays, all monoterpenes were inhibitory to C. polonica. Limonene and β-pinene were the most potent inhibitors of fungal growth. The extent of inhibition varied between the three strains tested. These results showed a defense response of Norway spruce to C. polonica, in which limonene may play a critical role in inhibiting the spread of the fungus. We also showed that differences between strains of C. polonica must be taken into account when assessing the role of the fungus in this bark beetle–symbiont system.  相似文献   

17.
Spring needle cast (SNC) in Tasmania is defined by the early casting of pine needles and appears in 6‐ to 7‐year‐old pine plantations after canopy closure. The severity of SNC can vary significantly among trees growing within the same plantation. Fungal communities were surveyed in a Pinus radiata family trial, using DNA extraction from needles, PCR with fungal‐specific primers and sequencing to detect the presence of fungal species. Samples were taken at the same time as the trees were scored for disease severity. Trees with contrasting levels of SNC disease severity have significantly different needle fungal communities, but family pedigree and different ages of needle are not clearly distinguished by their fungal communities. All common fungal pathogens previously implicated in causing SNC were identified from the study, but of these, only Lophodermium pinastri was correlated with high levels of disease. Several species of Teratosphaeriaceae were detected, and one of these was also strongly associated with needle cast.  相似文献   

18.
Photosynthesis in evergreen conifers is characterized by down-regulation in autumn and rapid up-regulation in spring. This seasonal pattern is largely driven by temperature, but the light environment also plays a role. In overwintering Scots pine (Pinus sylvestris L.) trees, PSII is less down-regulated and recovers faster from winter stress in shaded needles than in needles exposed to full sunlight. Because the effect of light on the seasonal acclimation of PSII has not been quantitatively studied under field conditions, we used the rate constants for sustained thermal energy dissipation and photochemistry to investigate the dynamics and kinetics of the seasonal acclimation of PSII in needles exposed to different light environments. We monitored chlorophyll fluorescence and needle pigment concentration during the winter and spring in Scots pine seedlings growing in the field in different shading treatments, and within the crowns of mature trees. The results indicated that differences in acclimation of PSII in overwintering Scots pine among needles exposed to different light environments can be chiefly attributed to sustained thermal dissipation. We also present field evidence that zeaxanthin-facilitated thermal dissipation and aggregation of thylakoid membrane proteins are key mechanisms in the regulation of sustained thermal dissipation in Scots pine trees in the field.  相似文献   

19.
Conifers have evolved constitutive and inducible defense mechanisms to help in both wound healing and defense against attack by bark beetles and other organisms. These defenses include oleoresin, phenolics, and static structures in secondary phloem, such as lignified cells and calcium oxalate crystals, that create physical barriers. We used a phylogenetic approach to investigate the defense anatomy of conifer stems of 13 species from five families following treatment with methyl jasmonate (MJ), a compound that induces defense responses in stems of several Pinaceae species. Methyl jasmonate induced a response similar to wounding except that the response was not accompanied by lesion formation, necrosis or a hypersensitive response. In the Pinaceae species studied, MJ induced polyphenolic parenchyma (PP) cell activation and xylem traumatic resin duct (TD) formation. Members of the Taxodiaceae, which are not known to produce large quantities of resin, showed massive xylem TD formation and surface resinosis following MJ treatment. Treatment with MJ caused members of the Araucariaceae and Cupressaceae to form axial phloem resin ducts but not xylem ducts, whereas Podocarpaceae species showed no induction of resin-producing structures. All species treated with MJ showed phenolic deposition in PP cells, and early lignification of phloem fibers was observed in most of the non-Pinaceae species. We conclude that, although evolution of resin-producing structures occurred independently in conifer lineages, MJ seems to induce resin production regardless of tissue location, as well as inducing deposition of phenolic compounds. Co-evolution of conifer defensive strategies and bark beetle pests is discussed.  相似文献   

20.
Conifers have defenses such as the production of phenolic compounds and resins that can be induced by bark beetles and other invading organisms, but the signaling agents involved are unknown. The anatomical effects of methyl jasmonate (MJ), a potent inducer of certain plant defenses, were compared with wounding of the bark of 12-15-year-old trees of five conifer species. Wounding in all species resulted in tissue necrosis and wound periderm development immediately around the wound site. One cm from the wound, swelling of phloem polyphenolic parenchyma cells and phenolic accumulation were observed in Pseudotsuga menziesii (Mirb.) Franco, Picea pungens Engelman, Larix occidentalis Nutt. and Pinus monticola Douglas ex D. Don, but not in Taxus brevifolia Nutt. Traumatic resin ducts were formed in response to wounding in three species of Pinaceae, but not in P. monticola, which formed irregular clusters of cells rather than ducts. Taxus brevifolia did not form resin ducts in response to either wounding or MJ treatment. In the Pinaceae species studied, surface application of 100 mM MJ caused similar anatomical changes to those observed in response to wounding, including phenolic accumulation, cell swelling and traumatic resin duct formation, but it did not induce a wound periderm. Traumatic resin ducts differed in size among the study species, ranging from small in L. occidentalis to very large in P. menziesii. In P. menziesii, P. pungens and L. occidentalis, traumatic resin ducts were more abundant after MJ treatment than after wounding. We conclude that the octadecanoid pathway is likely involved in defense responses in stems of the Pinaceae, but not necessarily in other taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号