首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaporation and canopy conductance of citrus orchards   总被引:2,自引:0,他引:2  
Evaporation of citrus orchards has been widely studied, but differences in methodologies and management conditions have led to conflicting results, mainly due to differences in ground cover and soil evaporation. In this work the contribution of transpiration and soil evaporation has been studied in a drip-irrigated, clean cultivated mandarin (Citrus reticulata Blanco) orchard on a sandy soil in Southern Spain. Evapotranspiration (ET) was measured using eddy covariance while soil evaporation was determined with microlysimeters, during August 2000 and May 2001. Average ET was 2.6 mm day−1 in August and 2.1 mm day−1 in May. The crop coefficient (Kc) was 0.44 and 0.43 in 2000 and 2001, respectively. The coefficient of transpiration (Kp) was 0.30 in 2000 and 0.25 in 2001. The daily bulk canopy conductance (gc) ranged from 1.2 to 2.2 (average 1.8) mm s−1 in 2000 and from 1.2 to 2.7 (average 1.9) mm s−1 in 2001. A model of daily canopy conductance as a function of intercepted radiation was derived and applied to calculate the transpiration of orchards with different values of ground cover (GC). The ratio of transpiration over reference ET of mandarin orchards is linearly related to ground cover (Kp = 0.7 GC). Calculated crop coefficients agree with values suggested by FAO for mature orchards (around 0.65) but are substantially lower than FAO values for young plantations.  相似文献   

2.
The hypothetical effects of drainage water management operational strategy on hydrology and crop yield at the Purdue University Water Quality Field Station (WQFS) were simulated using DRAINMOD, a field-scale hydrologic model. The WQFS has forty-eight cropping system treatment plots with 10 m drain spacing. Drain flow observations from a subset of the treatment plots with continuous corn (Zea mays L.) were used to calibrate the model, which was then used to develop an operational strategy for drainage water management. The chosen dates of raising and lowering the outlet during the crop period were 10 and 85 days after planting, respectively, with a control height of 50 cm above the drain (40 cm from the surface). The potential effects of this operational strategy on hydrology and corn yield were simulated over a period of 15 years from 1991 to 2005. On average, the predicted annual drain flows were reduced by 60% (statistically significant at 95% level). This is the most significant benefit of drainage water management since it may reduce the nitrate load to the receiving streams. About 68% of the reduced drain flow contributed to an increase in seepage. Drainage water management increased the average surface runoff by about 85% and slightly decreased the relative yield of corn crop by 0.5% (both are not statistically significant at 95% level). On average, the relative yield due to wet stress (RYw) decreased by 1.3% while relative yield due to dry stress (RYd) increased by 1%. Overall, the relative crop yield increased in 5 years (within a range of 0.8-6.9%), decreased in 8 years (within a range of 0.2-5.5%), and was not affected in the remaining 2 years. With simulated drainage water management, the water table rose above the conventional drainage level during both the winter and the crop periods in all years (except 2002 crop season). The annual maximum winter period rise ranged between 47 cm (1995) and 87 cm (1992), and the annual maximum crop period rise ranged between no effect (2002) and 47 cm (1993).  相似文献   

3.
The effects of controlled drainage on N and P losses from soil were examined in a 4-year field drainage experiment on a loamy sand in Southern Sweden. Of the three plots (0.2 ha each), one was drained by conventional subsurface drainage (CD), and two by controlled drainage (CWT1 and CWT2). The groundwater level in the CWT plots was naturally drained to at least 70 cm below the soil surface during the vegetation period between early spring and harvest but allowed to rise to 20 cm below the soil surface during the rest of the year. Measurements of precipitation, drain outflow, weir depths and air and soil temperatures were carried out hourly. Groundwater levels were measured and samples of drain outflow for analyses were collected twice a month. Mineral N contents in soil were measured three times a year and grain yields and N uptake in crops after harvest.  相似文献   

4.
The evapotranspiration of hedge-pruned olive orchards (Olea europaea L. cv. Arbequina) was measured under the semiarid conditions of the middle Ebro River Valley in a commercial olive orchard (57 ha) during 2004 and 2005. No measured ETc values for this type of olive orchards have previously been reported. An eddy covariance system (krypton hygrometer KH20 and 3D sonic anemometer CSAT3, Campbell Scientific) was used. The eddy covariance measurements showed a lack of the energy balance closure (average imbalance of 26%). Then sensible and latent heat (LE) flux values were corrected using the approach proposed by Twine et al. (2000) in order to get daily measured olive evapotranspiration (ETc) and crop coefficient (Kc) values. The highest measured monthly ETc averages were about 3.1-3.3 mm day−1, while the total seasonal ETc during the irrigation period (March-October) was about 585 mm (in 2004) and 597 mm (in 2005). Monthly Kc values varied from about 1.0 (Winter) to 0.4-0.5 (Spring and Summer). These Kc values were similar to Kc values reported for round-shape canopy olive orchards, adjusted for ground cover, particularly during late Spring and Summer months when differences among measured and published Kc values were about less than 0.1.  相似文献   

5.
The DRAINMOD-N II model (version 6.0) was evaluated for a cold region in south-east Sweden. The model was field-tested using four periods between 2002 and 2004 of climate, soil, hydrology and water quality data from three experimental plots, planted to a winter wheat-sugarbeet-barley-barley crop rotation and managed using conventional and controlled drainage. DRAINMOD-N II was calibrated using data from a conventional drainage plot, while data sets from two controlled drainage plots were used for model validation. The model was statistically evaluated by comparing simulated and measured drain flows and nitrate-nitrogen (NO3-N) losses in subsurface drains. Soil mineral nitrogen (N) content was used to evaluate simulated N dynamics. Observed and predicted NO3-N losses in subsurface drains were in satisfactory agreement. The mean absolute error (MAE) in predicting NO3-N drainage losses was 0.16 kg N ha−1 for the calibration plot and 0.21 and 0.30 kg N ha−1 for the two validation plots. For the simulation period, the modelling efficiency (E) was 0.89 for the calibration plot and 0.49 and 0.55 for the validation plots. The overall index of agreement (d) was 0.98 for the calibration plot and 0.79 and 0.80 for the validation plots. These results show that DRAINMOD-N II is applicable for predicting NO3-N losses from drained soil under cold conditions in south-east Sweden.  相似文献   

6.
A ratio of crop evapotranspiration (ETC) to reference evapotranspiration (ETO) determines a crop coefficient (KC) value, which is related to specific crop phenological development to improve transferability of the KC values. Development of KC can assist in predicting crop irrigation needs using meteorological data from weather stations. The objective of the research was conducted to determine growth-stage-specific KC and crop water use for maize (Zea Mays) and sorghum (Sorghum bicolor) at Texas AgriLife Research field in Uvalde, TX, USA from 2002 to 2008. Seven lysimeters, weighing about 14 Mg, consisted of undisturbed 1.5 m × 2.0 m × 2.2 m deep soil monoliths. Six lysimeters were located in the center of a 1-ha field beneath a linear-move sprinkler system equipped with low energy precision application (LEPA). A seventh lysimeter was established to measure reference grass ETO. Crop water requirements, KC determination, and comparison to existing FAO KC values were determined over a 3-year period for both maize and sorghum. Accumulated seasonal crop water use ranged between 441 and 641 mm for maize and between 491 and 533 mm for sorghum. The KC values determined during the growing seasons varied from 0.2 to 1.2 for maize and 0.2 to 1.0 for sorghum. Some of the values corresponded and some did not correspond to those from FAO-56 and from the Texas High Plains and elsewhere in other states. We assume that the development of regionally based and growth-stage-specific KC helps in irrigation management and provides precise water applications for this region.  相似文献   

7.
A combined methodology of basal crop coefficient (Kcb) derived from vegetation indices (VI) obtained from satellite images and a daily soil water balance in the root zone of the crop was proposed to accurately estimate the daily grape crop coefficient and actual evapotranspiration. The modeled values were compared with field measurements of crop evapotranspiration (ET) using an energy balance eddy-covariance flux tower and adjusted for closure using the measured Bowen ratio. A linear relation between Kcb and VI for vineyard was obtained, Kcb = 1.44 × NDVI-0.10 and Kcb = 1.79 × SAVI-0.08. The correlation of the measured crop coefficient (Kc) and modeled (Kcrf) exhibits a linear tendency, Kc = 0.96Kcrf, r2 = 0.67. Other derived parameters such as weekly Kc and daily and weekly ET show good consistency with measurements and higher coefficients of determination. The study of the soil water balance suggests the importance of soil water storage in grapes within the La Mancha region. These results validate the use of remote sensing as a tool for the estimation of evapotranspiration of irrigated wine grapes planted on trellis systems.  相似文献   

8.
Pomegranate (Punica granatum L.) is a drought-hardy crop, suited to arid and semi-arid regions, where the use of marginal water for agriculture is on the rise. The use of saline water in irrigation affects various biochemical processes. For a number of crops, yields have been shown to decrease linearly with evapotranspiration (ET) when grown in salt-stressed environments. In the case of pomegranate, little research has been conducted regarding the effect of salt stress. Our study focused on the responses of ET, crop coefficient (Kc) and growth in pomegranate irrigated with saline water. Experiments were conducted using lysimeters with two varieties of pomegranate, P. granatum L. vars. Wonderful and SP-2. The plants were grown with irrigation water having an electrical conductivity (ECiw) of 0.8, 1.4, 3.3, 4.8 and 8 dS m−1. Plants were irrigated with 120% of average lysimeter-measured ET. Seasonal variation in ET, crop coefficient (Kc) and growth were recorded. Variation in daily ET was observed 1 month after initiation of the treatments. While significant seasonal ET variation was observed for the EC-0.8 treatment, it remained more stable for the EC-8 treatment. Salinity treatment had a significant effect on both daily ET (F = 131, p < 0.01) and total ET (F = 112.68, p = 0.001). Furthermore, the electrical conductivity of the drainage water (ECdw) in the EC-8 treatment was five times higher than that of the EC-0.8 treatment in the peak season. Fitting the relative ET (ETr) to the Maas and Hoffman salinity yield response function showed a 10% decrease in ET per unit increase in electrical conductivity of the saturated paste extract (ECe) with a threshold of 1 dS m−1. If these parameters hold true in the case of mature pomegranate trees, the pomegranate should be listed as a moderately sensitive crop rather than a moderately tolerant one. Fitting 30-day interval ETr data to the Maas and Hoffman salinity yield response function showed a reduction in the slope as the season progressed. Thus using a constant slope in various models is questionable when studying crop-salinity interactions. In addition, both of the varieties showed similar responses under salt stress. Moreover, the calculated value of Kc is applicable for irrigation scheduling in young pomegranate orchards using irrigation water with various salinities.  相似文献   

9.
The management of irrigated agricultural fields requires reliable information about soil hydraulic properties and their spatio-temporal variability. The spatial variability of saturated hydraulic conductivity, Ks and the alpha-parameter αvG-2007 of the van Genuchten equation was reviewed on an agricultural loamy soil after a 17-year period of repeated conventional agricultural practices for tillage and planting. The Beerkan infiltration method and its algorithm BEST were used to characterize the soil through the van Genuchten and Brooks and Corey equations. Forty field measurements were made at each node of a 6 m × 7.5 m grid. The soil hydraulic properties and their spatial structure were compared to those recorded in 1990 on the same field soil, through the exponential form of the soil hydraulic conductivity given by the Gardner equation, using the Guelph Pressure Infiltrometer technique. No significant differences in the results obtained in 1990 and 2007 were observed for either particle-size distribution or dry bulk density. The mean value of αvG-2007 was found to be identical to that of αG-1990, while that of Ks-2007 was significantly smaller than that of Ks-1990. In contrast to the Gardner equation, the van Genuchten/Brooks and Corey expression was found to be more representative of a well-graded particle-size distribution of a loamy soil. The geostatistical analysis showed the two parameters, Ks and αvG-2007, were autocorrelated up to about 30 and 21 m, respectively, as well as spatially positively correlated within a range of 30 m. Despite the difference in the mean values of Ks between the two studies, the spatial structures were similar to those found in the 1990 experiment except for the covariance sign. The similarity in autocorrelation ranges indicate that the spatial analysis of soil hydraulic properties is independent of the infiltration methods (i.e., measurement of an infiltration flux) used in the two studies, while the difference in the covariance sign may be linked to the use of two different techniques of soil hydraulic parameterization. The covariance values found in the 2007 campaign indicates a positive relationship between the two parameters, Ks and αvG-2007. The spatial correlations of soil hydraulic parameters appear to be temporally stabilized, at least within the agro-pedo-climatic context of the study. This may be attributed to the soil textural properties which remain constant in time and to the structural properties which are constantly renewed by the cyclic agricultural practices. However, further experiments are needed to strengthen this result.  相似文献   

10.
Water use efficiency and crop coefficients of dry season oilseed crops   总被引:1,自引:0,他引:1  
Eastern India receives higher average annual rainfall (1000–2000 mm) but 80% of it occurs within the June–September (rainy season), whereas the winter season (November–March) is dry. Due to a shortage of soil moisture, most rainfed areas of the region remain fallow during the winter season and cultivation (mainly rice) is confined to the rainy season only (June–September). To explore the possibility of double cropping in the rainfed rice areas, three oilseed crops, viz., linseed (Linum usitatissimum L.), safflower (Carthamous tinctorious L.), mustard (Brassica juncea L.), were grown in a representative rainfed area of eastern India, i.e. Dhenkanal, Orissa, during the dry/winter season by applying irrigation water at phonological stages. Study revealed that with three supplemental irrigations, the highest WUE was achieved by safflower followed by linseed with the mean values being 3.04 and 2.59 kg ha−1 mm−1, respectively. Whereas, with one irrigation, the highest water use efficiency (WUE) was achieved for safflower (1.23 kg ha−1 mm−1) followed by linseed (0.93 kg ha−1 mm−1). Of the three crops studied, safflower withdrew maximum water followed by mustard and crops were shown to use 90–105 mm more water than linseed. With three irrigations, average maximum rooting depths were 1.66, 1.17 and 0.67 m for safflower, mustard and linseed, respectively, which were 13.5, 10.6 and 11.4% higher than for single irrigated crops because of more wet sub soils and decrease of soil strength. The crop growth parameters like leaf area, dry biomass were also recorded with different levels of irrigation. The research work amply revealed the potential of growing these low water requiring oilseed crops in rice fallow during dry/winter season utilizing limited irrigation from harvested rainwater of rainy season. Crop coefficients (Kc) of three winter season oilseed crops were derived using field water balance approach. Study showed that LAI was significantly correlated with Kc values with the R2 values of 0.91, 0.89 and 0.94 in linseed, safflower and mustard, respectively. When LAI exceeded 3.0, the Kc value was 1 in safflower and mustard whereas in linseed corresponding LAI was 2.5. Study revealed that the Kc values for the development and mid season stage were slightly higher to that obtained by the procedure proposed by FAO, which might be due to local advection.  相似文献   

11.
Free-drainage or “open” substrate system used for vegetable production in greenhouses is associated with appreciable NO3 leaching losses and drainage volumes. Simulation models of crop N uptake, N leaching, water use and drainage of crops in these systems will be useful for crop and water resource management, and environmental assessment. This work (i) modified the TOMGRO model to simulate N uptake for tomato grown in greenhouses in SE Spain, (ii) modified the PrHo model to simulate transpiration of tomato grown in substrate and (iii) developed an aggregated model combining TOMGRO and PrHo to calculate N uptake concentrations and drainage NO3 concentration. The component models simulate NO3-N leached by subtracting simulated N uptake from measured applied N, and drainage by subtracting simulated transpiration from measured irrigation. Three tomato crops grown sequentially in free-draining rock wool in a plastic greenhouse were used for calibration and validation. Measured daily transpiration was determined by the water balance method from daily measurements of irrigation and drainage. Measured N uptake was determined by N balance, using data of volumes and of concentrations of NO3 and NH4+ in applied nutrient solution and drainage. Accuracy of the two modified component models and aggregated model was assessed by comparing simulated to measured values using linear regression analysis, comparison of slope and intercept values of regression equations, and root mean squared error (RMSE) values. For the three crops, the modified TOMGRO provided accurate simulations of cumulative crop N uptake, (RMSE = 6.4, 1.9 and 2.6% of total N uptake) and NO3-N leached (RMSE = 11.0, 10.3, and 6.1% of total NO3-N leached). The modified PrHo provided accurate simulation of cumulative transpiration (RMSE = 4.3, 1.7 and 2.4% of total transpiration) and cumulative drainage (RMSE = 13.8, 6.9, 7.4% of total drainage). For the four cumulative parameters, slopes and intercepts of the linear regressions were mostly not statistically significant (P < 0.05) from one and zero, respectively, and coefficient of determination (r2) values were 0.96-0.98. Simulated values of total drainage volumes for the three crops were +21, +1 and −13% of measured total drainage volumes. The aggregated TOMGRO-PrHo model generally provided accurate simulation of crop N uptake concentration after 30-40 days of transplanting, with an average RMSE of approximately 2 mmol L−1. Simulated values of average NO3 concentration in drainage, obtained with the aggregated model, were −7, +18 and +31% of measured values.  相似文献   

12.
Long-term hydrologic simulations are presented predicting the effects of drainage water management on subsurface drainage, surface runoff and crop production in Iowa's subsurface drained landscapes. The deterministic hydrologic model, DRAINMOD was used to simulate Webster (fine-loamy, mixed, superactive, mesic) soil in a Continuous Corn rotation (WEBS_CC) with different drain depths from 0.75 to 1.20 m and drain spacing from 10 to 50 m in a combination of free and controlled drainage over a weather record of 60 (1945-2004) years. Shallow drainage is defined as drains installed at a drain depth of 0.75 m, and controlled drainage with a drain depth of 1.20 m restricts flow at the drain outlet to maintain a water table at 0.60 m below surface level during the winter (November-March) and summer (June-August) months. These drainage design and management modifications were evaluated against conventional drainage system installed at a drain depth of 1.20 m with free drainage at the drain outlet. The simulation results indicate the potential of a tradeoff between subsurface drainage and surface runoff as a pathway to remove excess water from the system. While a reduction of subsurface drainage may occur through the use of shallow and controlled drainage, these practices may increase surface runoff in Iowa's subsurface drained landscapes. The simulations also indicate that shallow and controlled drainage might increase the excess water stress on crop production, and thereby result in slightly lower relative yields. Field experiments are needed to examine the pathways of water movement, total water balance, and crop production under shallow and controlled drainage in Iowa's subsurface drained landscapes.  相似文献   

13.
A field study (1999-2000 to 2001-2002) was carried out to optimize the irrigation frequency and suitable water application methods for cauliflower with a view to increase curd yield (CY) and water use efficiency (WUE). Check Basin (CB), Each Furrow (EF) and Alternate Furrow (AF) methods were tested with three irrigation frequencies depending on the attainment of soil matric potential (Ψm) value at 0.2 m depth as: −0.03 MPa (F1), −0.05 MPa (F2) and −0.07 MPa (F3). Maximum CY was recorded under F1 and decreased by 10.4 and 31.4%, respectively under F2 and F3 frequencies. In contrast, WUE decreased by 9.3% from F3 to F1. Highest CY and WUE obtained under CB followed by EF and AF methods. Furrow application methods saved 12-24% irrigation water over CB method. Maximum soil water stress coefficient (Ks) recorded at curd development stage in comparison to other stages. Both seasonal evapotranspiration (ETa) and yield-moisture stress index (Kys) recorded positive linear relationships with CY. Present study shows a crop response factor of 0.822 for cauliflower. In this region, cauliflower should be irrigated with check basin method at an interval of 8-10 days.  相似文献   

14.
Soil water supply is the main limiting factor to crop production across the Loess Plateau, China. A 2-year field experiment was conducted at the Changwu agro-ecosystem research station to evaluate various water management practices for achieving favorable grain yield (GY) with high water use efficiency (WUE) of spring maize (Zea mays L.). Four practices were examined: a rain-fed (RF) system as the control; supplementary irrigation (SI); film mulching (FM); and straw mulching (SM) (in 2008 only). The soil profile water storage (W) and the crop evapotranspiration (ET) levels were studied during the maize growing season, and the GY as well as the WUE were also compared. The results showed that mean soil water storage in the top 200 cm of the profile was significantly (P < 0.05) increased in the SI (380 mm in 2007, 411 mm in 2008) and SM (414 mm in 2008) compared to the FM (361 mm in 2007, 381 mm in 2008) and RF (360 mm in 2007, 384 mm in 2008) treatments. The soil water content was lower at the end of growing season than before planting in the 60-140 cm part of the profile in both the RF and FM treatments. Cumulative ET and average crop coefficiency (Kc) throughout the whole maize growing season were significantly (P < 0.05) higher in the SI (ET, 501 mm in 2007, 431 mm in 2008; Kc, 1.0 in 2007, 0.9 in 2008) treatment than in the other treatments. Both FM and SI significantly improved the GY. The WUE were increased significantly (23-25%; P < 0.05) under the FM treatment. It was concluded that both SI and FM are beneficial for improving the yield of spring maize on the Loess Plateau. However, FM is preferable because of the shortage of available water in the area.  相似文献   

15.
Gas exchange was measured in potatoes (cv. Folva) grown in lysimeters (4.32 m2) in coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI and started after tuber bulking and lasted for six weeks until final harvest. Midday photosynthesis rate (An) and stomatal conductance (gs) of fully irrigated (FI) plants were lowest in coarse sand and mean An of diurnal measurements in FI, PRD and DI tended to be lower in this soil as compared with the loamy sand and sandy loam. The results revealed that diurnal values of An and gs in PRD and DI were consistently lower than FI without reaching significant differences in accordance with findings that xylem [ABA] in PRD was significantly higher than FI, and tended to be higher than in DI. Diurnal measurements showed that An reached peak values during mid-morning and midday, while gs were highest during the morning. Intrinsic water use efficiency (An/gs) correlated linearly well with the leaf to air vapor pressure deficit (VPD) and the slope of the line revealed the rate of An/gs increase per each kPa increase in VPD, i.e. approximately 10 μmol mol−1. Transpiration efficiency (An/T) of PRD was higher than DI, which shows slightly better efficient water use than DI. The slope of the linear relationship between transpiration efficiency and VPD decreased from −2.03 to −1.04 during the time course of the growing season, indicating the negative effect of leaf ageing on photosynthesis and thus on plant water use efficiency. This fact shows the possibility to save water during last growth stages through applying water-saving irrigations without much effect on transpiration efficiency.  相似文献   

16.
Large areas of vineyards have been established in recent years in arid region of northwest China, despite limited water resources. Water to support these vineyards is mainly supplied by irrigation. Accurate estimation of vineyard evapotranspiration (ET) can provide a scientific basis for developing irrigation management. Transpiration and soil evaporation, as two main components of ET, were measured separately in a vineyard in this region by heat balance sap flow system and micro-lysimeters during the growing season of 2009. Diurnal and seasonal dynamics of sap flow and its environmental controls were analyzed. Daily sap flow rate (SRl) increased linearly with solar radiation (Rs), but showed an exponential increase to its maximum curve as a function of vapor pressure deficit (VPD). Residuals of the two regressions both depended on volumetric soil water content to a depth of 1.0 m (VWC). VWC also significantly influenced SRl. The relationship of them could be expressed by a piecewise regression with the turnover point of VWC = 0.188 cm3 cm−3, which was ∼60% of the field capacity. Conversely, soil evaporation (Es) increased exponentially with VWC. Thus, we recommended keeping VWC in such vineyards slightly above ∼60% of the field capacity to maintain transpiration while reducing soil evaporation. Vineyard transpiration (Ts) was scaled from sap flow by using leaf area (Al) as it explained 60% of the spatial variability of sap flow. Vine transpiration was 202.0 mm during the period from April 28 to October 5; while that of Es was 181.0 mm. The sum of these two components was very close to ET estimated by the Bowen ratio energy balance method (386.9 mm), demonstrating the applicability of sap flow for measuring grape water use in this region.  相似文献   

17.
A field study on cotton (Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI70, DI50 and DI00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI00) to 584 ± 80 mm (I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI00) to 3397 ± 508 kg ha−1 (I100). The average water use efficiency (WUEET) ranged from 6.0 ± 1.6 (I100) to 4.8 ± 0.9 kg ha−1 mm−1 (DI00), while average irrigation water use efficiency (WUEI) was between 9.4 ± 3.0 (I100) and 14.4 ± 4.8 kg ha−1 mm−1 (DI50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 (I100) to 0.32 ± 0.052 kg kg−1 (DI50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment (I100) should be used for semiarid conditions with no water shortage. However, DI70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.  相似文献   

18.
Spring maize under plastic mulch is the staple food crop in northwest China. Studying its evapotranspiration (ET) and crop coefficient (Kc) is important for managing water-saving irrigation in the region. Eddy covariance (EC) was applied to measure spring maize ET in 2007 in northwest China, focusing on the characteristics of the maize ET and Kc processes under plastic mulch. An interesting result was that a higher Kc in this study relative to the value of FAO 56 was presented in the mid and late season, e.g. average Kc was 1.46, 1.39 and 1.22 during the heading, filling and maturity stage, respectively. This result was mainly due to that (1) the plastic mulch had an effect on anti-senescence of maize and great green leaf still existed before the harvest; (2) the FAO 56 PM model may underestimate the reference crop ET in the mid and late season of maize in the region; (3) the planting density was higher in the study, which was about 374,800 plants ha−1. Though Kc during the mid and late season was high, a high water use efficiency of 25.2 kg ha−1 mm−1 was still obtained in the study. Our study confirmed that plastic mulch has beneficial effect on improving maize water use efficiency in this severe water shortage region of northwest China.  相似文献   

19.
In the design of wood-based, enhanced-denitrification bioreactors to treat nitrate in agricultural drainage, the consideration of the highly variable flow rates and nitrate concentrations inherent to many drainage systems is important. For optimized mitigation of these nitrate loads, it may be best to contain drainage water prior to treatment in order to facilitate longer, more constant retention times rather than to allow cycles of flushing and dry periods in the denitrification bioreactor. Simulated containment prior to bioreactor treatment compared to passing drainage directly through a bioreactor was investigated with the use of six pilot-scale denitrification bioreactors constructed with plywood and filled with Pinus radiata woodchips at Massey University No. 4 Dairy Farm (Palmerston North, New Zealand). Initial bromide tracer tests were followed with a series of five simulated drainage events each at successively declining inflow nitrate concentrations. During each drainage event, three pilot bioreactors received a simulated hydrograph lasting 1.5 days (Non-Containment treatment) and three pilot bioreactors received the same total drainage volume treated over 4 days at a constant flow rate (i.e. constant retention time; Containment treatment). Results showed significantly different total mass removal efficiencies of 14.0% vs. 36.9% and significantly different removal rates of 2.1 g N m−3 day−1 vs. 6.7 g N m−3 day−1 for the Non-Containment and Containment treatments, respectively, which indicated that treating drainage at constant retention times provided more optimized nitrate removal. While this work was done to evaluate treatment under New Zealand drainage conditions, it also provides valuable information for optimizing agricultural drainage denitrification bioreactor performance in general.  相似文献   

20.
The objective of the study was to determine the effects of different emitter spaces and water stress on crop yield, such that the tomatoes would be suitable for processing and paste output (Lycopersicon esculentum Mill cv. Shasta). Such variables were also analyzed with respect to crop quality characteristics (e.g., mean fruit weight - MFW, fruit diameter - FD, penetration value of fruit - PV, pH, total soluble solids - TSS, and ascorbic acid contents - AA). The experiment was conducted under ecological conditions typical of the Konya Plain, a semi-arid climate, in 2004 and 2005. Drip irrigation laterals were arranged in such a way that every row had one lateral. Emitters were spaced at 25, 50, and 75 cm intervals in the main plots, while four levels of water supply, irrigation at 7-day intervals with enough water to fill the soil depth of 0-60 cm until capacity was reached (I1), and 25, 50, and 75% decreased water supply levels were applied as subplots of the experiment. Results of the field experiments showed that yield suitable for processing (68.7-72.7 t ha−1) and paste output (12.2-12.9 t ha−1) were obtainable under conditions of I1 application (p < 0.01). MFW, FD, PV, and TSS were significantly affected from treatments (p < 0.05). High stress resulted in the highest soluble solids. The total irrigation water amount and water consumptive use of the mentioned application (I1) were determined as 426 and 525 mm in 2004. In 2005, the total irrigation water amount and water consumptive use of the same treatment were 587 and 619 mm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号