首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To measure the nutritive value of pasture in terms of digestible energy (DE) intake (DEI) and dry matter (DM) digestibility, and to determine the apparent absorption of macroelements in lactating Thoroughbred mares grazed on pasture. METHODS: DM intake (DMI) and DEI were determined from daily faecal DM output measured in grazing mares, divided by the DM indigestible fraction (1-digestible DM), measured in a digestibility trial using pasture-fed mares. Eight lactating mares and their foals, that had a mean age of 40 days, were grazed separately on 50x100 m areas of pasture and daily faecal DM outputs were recorded for 8 days. Five mares and their foals were then placed in individual bare 20x20 m corrals containing custom-made feeding stations for 14 days to determine the indigestible DM fraction. DM, gross energy content, crude protein (CP), soluble carbohydrate, acid detergent fibre (ADF), neutral detergent fibre (NDF), lipid, and macroelement composition of the pasture offered and faeces were determined and their digestibility and/or apparent absorption calculated. RESULTS: DM digestibility of the pasture was 0.6 and the DMI and DEI of a grazing 560 kg mare in early lactation nursing a foal growing at 1.34 kg/day was 13.6 (SE 0.8) kg/day and 146.9 (SE 8.4) MJ DE/day, respectively. Apparent absorptions of the macroelements measured were: Ca 0.75, P 0.43, Mg 0.63, Na 0.78, and K 0.72. CONCLUSIONS: Good quality ryegrass-white clover pasture that had a DE content of 10.8 MJ/kg DM, and a macroelement composition (g/kg) of Ca 3.33, P 3.0, Mg 1.67, Na 1.67, and K 24.2, will provide adequate DMI, DEI, and macroelement intake to lactating Thoroughbred mares.  相似文献   

2.
AIMS: To measure the nutritive value of pasture in terms of digestible energy intake (DEI) and dry matter (DM) digestibility, and the effects of increased calcium (Ca) intakes on apparent mineral absorption and bone characteristics in grazing weanling Thoroughbreds. METHODS: DM intake (DMI) and DEI were determined in 16 weanling Thoroughbreds grazing pasture from their daily faecal DM output, measured over 8 days, divided by the DM indigestible fraction (1-digestible DM) determined in a 6-day digestibility trial. The DM, gross energy content, crude protein, soluble carbohydrate, acid detergent fibre, neutral detergent fibre, lipid, Ca, phosphorus (P), sodium (Na), potassium(K), sulphur (S) and magnesium (Mg) composition of perennial ryegrass/white clover pasture and faeces were determined and their digestibility and/or apparent absorption calculated. Calcium intake and bone growth studies used 17 weanlings, randomly divided into three groups and fed perennial ryegrass/white clover pasture and 0.5 kg grain, with or without a CaCO3 supplement, for 84 days. The animals in Group 1 (n=6) were on a low Ca diet (3.5 g/kg DM) and were fed pasture only; those in Group 2 (n=5) were on a medium Ca diet (6.3 g/kg DM);and those in Group 3 (n=6) were on a high Ca diet (12.0 g/kg DM). After 44 days the apparent absorption of Ca was determined from the differences between the Ca intakes and faecal Ca outputs. At periods just before and after Ca supplementation the horses were anaesthetised and the left radius, third metacarpus(Mc3) and first phalanx of the left foreleg were scanned using a peripheral quantitative computed tomography scanner to determine cortical mineral content, density, area, periosteal circumference and bone strength. To investigate gastrointestinal tract transit time and DM digestibility, five randomly selected horses were administered Swiss screen bags on several occasions via a nasogastric tube. Each 60 x 10mm bag contained 3.21 (SE 0.37) g of frozen minced grass. Bags were recovered from the freshly passed faeces and frozen until analysis. RESULTS: The DM digestibility of the pasture was 0.62, while the DMI and DEI of weanlings (300 kg, gaining 0.7 kg/day) were 5.5 kg/day and 63 MJ/day, respectively. Increasing Ca intake had no significant effect on DEI, DM digestibility or on the apparent absorption of Ca, P, Na and K, but decreased the apparent absorption of Mg from 0.50 to 0.38. Regardless of Ca intake, the apparent absorption of Ca was 0.56. During the Ca administration trial there were significant increases overtime in the bone strength (strain stress index) of the proximal phalanx, Mc3 and radial diaphysis. However, the increase in bone strength was not associated with increase in dietary Ca, as neither the medium- nor high-Ca intake groups differed significantly from the low-Ca controls. The mean transit time for the Swiss screen bags was 25.46 (SE 0.09) h, and transit times were similar whether the horses were grazing or confined in loose boxes, being 26.64 (SE 0.23) h and 24.33 (SE 0.13) h, respectively. The DM digestibility determined using the bags was 0.54, which was significantly lower than the 0.62 determined by direct faeces collection. CONCLUSIONS: Good growth rates were achieved in Thoroughbred weanlings grazing perennial ryegrass/white clover pasture containing 3.5 g Ca/kg DM and a DE of 11.4 MJ/kg DM. Increasing dietary Ca intake 3.5-fold for 3 months had negligible impact on bone growth and development.  相似文献   

3.
The effects of a mineral block for horses on in vivo digestibility and in vitro fermentability with equine fecal inoculum were evaluated. Fifty healthy horses from three groups (lactating mares n = 19, working horses n = 18, and maintenance horses n = 13) were randomly assigned to two treatment groups (with or without the mineral block; Ca 10.0%, P 12.0%, Zn 12.1 mg/kg, Cu 2,050 mg/kg, Mn 4,050 mg/kg, Se 30 mg/kg, and I 105 mg/kg). Dry matter digestibility was estimated with an internal marker. Samples of diet were incubated with equine fecal bacteria with varying amounts of mineral block (0, 1.1, 3.6, and 6.2 mg/g dry matter [DM]) to record gas production and to estimate in vitro DM digestibility. The results showed that mineral supplementation with the blocks increased in vivo DM digestibility (P < .01) in all groups, but there was an interaction (P < .01) with a greater response in the maintenance horses (55.5% vs. 78.0%) compared to lactating mares (62.8% vs. 79.6%) and working (70.3% vs. 75.1%). Block consumption was lowest in the lactating mares (12.8 g/d), intermediate in the working horses (44.6 g/d), and highest in the maintenance horses (74.2 g/d). The mineral supplementation did not affect the kinetics of gas production but tended (P = .10) to improve the in vitro DM digestibility (37.01% vs. 38.34%). Mineral block supplementation increased dry matter digestibility in horses. The unsupplemented control diet was deficient in several minerals, and block intake was not proportional to the mineral requirements.  相似文献   

4.
Forty-six Thoroughbred and Quarter Horse yearlings were used in two experiments to evaluate the effect of mineral supplementation on growth and skeletal development. In the first experiment, concentrate and bermuda-grass hay diets providing 2.82 Mcal DE/kg (estimated), 13.0% CP, .62% Ca and .43% P on a DM basis were supplemented with trace minerals (TM) by adding 0, .5 or 1.0% TM premix to the concentrate. The TM content of the three diets (concentrate and hay) in mg/kg DM were: Fe 150, 162 and 176; Mn 56, 60 and 64; Zn 36, 53 and 69; and Cu 7, 8 and 11 for the low, medium and high TM levels, respectively. No effects of TM intake on feed intake, weight gain or body measurements were detected, but bone mineral deposition was increased by the high TM intake (P less than .02). No gross skeletal abnormalities were detected. In the second experiment, a basal diet with Ca and P concentrations near NRC (1978) recommendations was supplemented with no TM, TM or TM + Ca + P. The basal diet had TM concentrations similar to the highest TM levels in the first experiment. The two groups fed added minerals consumed more concentrate and total feed (P less than .1) than those receiving the basal diet. Weight gain was increased by the TM supplementation (P less than .1). There was no other diet effect on growth or development of the animals. Colts gained more height than fillies did (P less than .05). Results of these two experiments suggest that TM supplementation may have a positive effect on bone mineral deposition in yearling horses, but only when the TM content of the natural diet is below NRC (1978) recommendations.  相似文献   

5.
Matua bromegrass (Bromus willdenowii Kunth. cv. Grasslands Matua) was introduced in 1973, but little information exists concerning its potential as a hay for horses. Thus, voluntary intake and apparent digestibility of OM, CP, and fiber components of Matua by 18 Quarter Horse yearlings (mean initial BW 354 kg; SE 5.8) were compared with alfalfa (Medicago sativa L.) and coastal bermudagrass (Cynodon dactylon L.) as hays in a randomized block design. A 15-d adjustment period was followed by a 5-d collection period during which the hays were consumed ad libitum. Voluntary intake of DM was greater (P<.01) for alfalfa (10.9 kg/d) than for the mean of the grasses, and intake of Matua (10.0 kg/d) was greater (P<.001) than that of bermudagrass (7.4 kg/d). Apparent digestibility of OM was greater (P<.001) for alfalfa (74%) than for the mean of the grasses but did not differ between Matua (64%) and bermudagrass (60%). At the end of the digestion trial, each yearling was offered each of the three forage hays during an 11-d period to determine subsequent preference and effect of previous hay experience. Yearlings preferred alfalfa over the grass hays and generally selected more Matua than bermudagrass. All yearlings consumed less of the forage species to which they had been previously exposed compared with unadapted yearlings. The Matua hay fed in this trial was palatable and met most of the nutritional needs for yearling horses.  相似文献   

6.
A digestion study with 28 yearling heifers (428 +/- 9.9 kg; Exp. 1) and a 2-yr winter grazing trial with 60 crossbred cows (552 +/- 6.9 kg; Exp. 2) were used to determine the effects of level of nonstructural carbohydrate (NSC) supplementation on intake and digestibility of low-quality forage. Treatments were as follows: 1) control, no supplement; 2) 0.32 kg of NSC (1.8 kg/d of soybean hulls and soybean meal; DM basis); 3) 0.64 kg of NSC (1.7 kg/d of wheat middlings; DM basis); and 4) 0.96 kg of NSC (1.7 kg/d of barley and soybean meal; DM basis). Supplements provided 0.34 kg of CP/d and 5.1 Mcal of ME/d. In Exp. 1, heifers were individually fed hay (5.5% CP, DM basis) and their respective supplements in Calan gates for 28 d. Data were analyzed as a completely randomized design. In Exp. 2, cows were individually fed supplement on alternate days, and grazed a single rangeland pasture stocked at 1.8 ha/ animal unit month. Two ruminally cannulated cows were used per treatment to obtain forage extrusa and to measure in situ DM disappearance (DMD) and carboxymethylcellulase (CMCase) activity of particle-associated ruminal microbes. Data were analyzed as a completely randomized design with the effects of treatment, year, and their interaction. In both experiments, Cr2O3 boluses were used to determine fecal output, individual animal was the experimental unit, and contrasts were used to test linear and quadratic effects of NSC level and control vs. supplemented treatments. In Exp. 1, hay and diet DM, NDF, and CP intakes and digestibilities were increased (P < 0.01) by NSC supplementation compared with the control. In Exp. 2, 72-h in situ DMD and CMCase were decreased linearly (P < 0.08) with increasing NSC supplementation. Intake of forage DM, NDF, and CP was decreased linearly (P < 0.01) with increasing NSC supplementation during both years. Supplementation with NSC decreased (P = 0.01) cow BW loss compared with the control in yr 1, whereas in yr 2, cow BW loss was linearly increased (P = 0.03) by increasing NSC supplementation. Supplements containing NSC improved forage digestion and intake when heifers consumed forage deficient in CP relative to energy (digestible OM:CP > 7), but decreased forage digestion and intake when cows grazed forage with adequate CP relative to energy (digestible OM:CP < 7). Forage and supplement digestible OM:CP seemed to be superior predictors of response to supplementation with NSC compared with forage CP levels alone.  相似文献   

7.
Near-infrared reflectance spectroscopy (NIRS) was used to predict the chemical composition, apparent digestibility and digestible nutrients and energy content of commercial extruded compound foods for dogs. Fifty-six foods of known chemical composition and in vivo apparent digestibility were analysed overall and 51 foods were used to predict gross energy digestibility and digestible energy content. Modified partial least square calibration models were developed for organic matter (OM), crude protein (CP), ether extract (EE), crude fibre (CF), nitrogen free extracts (NFE) and gross energy (GE) content, the apparent digestibility (OMD, CPD, EED, NFED and GED) and the digestible nutrient and energy content (DOM, DCP, DEE, DNFE and DE) of foods. The calibration equations obtained were evaluated by the standard error and the determination coefficient of cross-validation. The cross-validation coefficients of determination (R) were 0.61, 0.99, 0.91, 0.96, 0.94 and 0.92 for OM, CP, EE, CF, NFE and GE, the corresponding standard error of cross-validation (SECV) being 5.80, 3.51, 13.35, 3.64 and 16.95 g/kg dry matter (DM) and 0.29 MJ/kg DM respectively. The prediction of apparent digestibility was slightly less accurate, but NIRS prediction of digestible nutrient (g/kg DM) and DE (MJ/kg DM) gave satisfactory results, with high R (0.93, 0.97, 0.93, 0.83 and 0.93 for DOM, DCP, DEE, DNFE and DE respectively) and relatively low SECV (11.55, 6.85, 12.14 and 22.98 g/kg DM and 0.47 MJ/kg DM). It is concluded that the precision of NIRS in predicting the energy value of compound extruded foods for dogs is similar or better than by proximate analysis, as well as being faster and more accurate.  相似文献   

8.
Eight mature Icelandic geldings were used in an experiment arranged as a change‐over design to evaluate the effect of feeding level on the digestibility of a high‐energy haylage‐only diet. The horses were fed a low feeding level 10.7 g dry matter (DM)/kg body weight (BW) (maintenance) and a high feeding level 18.1 g DM/kg BW (1.5 × maintenance) during two 23 days experimental periods. Total collection of faeces was performed for 6 days at the end of each period to determine the coefficient of total tract apparent digestibility (CTTAD). The CTTAD for DM, organic matter, neutral detergent fibre (NDF), acid detergent fibre and energy was higher in horses fed at the low level of feed intake, while feeding level did not affect the CTTAD of crude protein. The largest difference in CTTAD between feeding levels was found for NDF. The content (/kg DM) of digestible energy in the haylage was 11.3 MJ at the low level of feed intake and 10.6 MJ at the high level of feed intake. It can be concluded that feeding level has a large impact on the digestibility and energy value of early cut haylage in Icelandic horses.  相似文献   

9.
To establish the effect of sward height, concentrate feeding time, and restricted time for grazing on forage utilization by grazing cattle, 32 crossbred beef (24 Angus and eight Hereford) cows (632 kg BW) and calves (104 kg BW) were grouped by weight and calving date. They were assigned randomly to two sward height treatments (4 to 8 or 8 to 12 cm), replicated four times. The herbage comprised mainly Kentucky bluegrass, orchardgrass, some forbs, and white clover. The cows were restricted to 12 h/d grazing (0700 to 1900) or unrestricted to 24 h/d grazing and fed a concentrate supplement (4.1 kg DM.cow(-1).d(-1), approximately 0.65% of BW or 33% of total DMI) either at 0700 or 1800. The experiment was repeated over three 15-d periods in May, June/July, and August 2000. The herbage on high sward height pasture was higher (P = 0.06) in NDF and ADF and lower (P < 0.01) in CP than low sward height herbage. For cows restricted to 12 h/d grazing, supplementing at 0700 as opposed 1800 resulted in greater (P = 0.04) forage DMI (8.6 vs. 8.1 kg/d), whereas cows that were unrestricted showed little change (8.2 kg/d at 0700 vs. 8.4 kg/d at 1800). Supplementing at 1800 as opposed to 0700 resulted in greater (P = 0.03) herbage DM digestibility (67.7 vs. 64.5%) for cows on high sward height, whereas cows on low sward height exhibited minimal differences (65.4% at 1800 vs. 66.3% at 0700). Cows restricted to 12 h/d grazing and supplemented at 0700 as opposed to 1800 resulted in greater (P = 0.06) digestible DMI (5.0 vs. 4.7 kg/d), whereas unrestricted cows exhibited the opposite response (4.6 kg/d digestible DMI at 0700 vs. 4.9 kg/d at 1800). Supplementing at 1800 as opposed to 0700 increased the time spent grazing to a greater (P = 0.09) extent for restricted than for unrestricted cows. When forage availability or grazing time was limiting (due to a low forage allowance and restricted access to forage, respectively) supplementing concentrates at 0700 resulted in greater forage utilization and intake rate because of increased forage DMI, DM digestibility, and digestible DMI. However, when forage or grazing time was not limiting, supplementing concentrates at 1800 resulted in greater forage utilization because of increased forage DM digestibility.  相似文献   

10.
Twenty growing Small East African goats were used to determine the effects of feeding sun-dried leaves of the browse forages Berchemia discolor and Zizyphus mucronata as supplements to low-quality basal diet, Rhodes grass (Chloris gayana) hay, on voluntary feed intake (VFI), digestibility and growth performance. The grass hay and maize bran were used as a control. The dried leaves were then included at the rates of 15% and 30% of the dry matter intake (DMI). Berchemia discolor had the highest crude protein (CP) content of 195.5 g/kg DM, while Z. mucronata had CP content of 169.5 g/kg DM. The grass hay had the lowest CP content of 50.9 g/kg DM. The browse forages had low fibre content [Neutral detergent fibre (NDF); 257.9-369.5 g/kg DM], while the grass hay had high fibre content (NDF; 713.1 g/kg DM). Goats in the groups supplemented with either of the browse forages had higher total DMI, nitrogen (N) intake and retention and live-weight gains than those in the control diet group. The digestibility of DM and organic matter (OM) was not affected by supplementation, but the CP digestibility increased with supplementation. The use of the browse forages as supplements for goats fed on poor-quality basal diets would enhance the performance of the animals.  相似文献   

11.
Holstein steer calves (101 to 350 kg BW) consumed bermudagrass hay ad libitum without or with supplemental ground corn up to 1.0% of BW. As BW increased, total DMI increased quadratically (-2.459 + .05448 [BW]-.000073 [BW2] + .540 [corn DMI]; R2 = .83, sy.x = .655). Each kilogram of corn DM decreased bermudagrass DMI by .46 kg. Total digestible OM intake (kg) increased with BW and corn supplementation (.314 + .0127 [BW] + .441 [corn OM intake]; R2 = .79, sy.x = .444). Feed intake level accounted for approximately 2.5 times more variability in total digestible OM intake than digestion did. Corn supplementation decreased digestion of bermudagrass NDF (62.50 - 8.468 [corn DMI, % BW]; R2 = .13, sy.x = 8.121), with a similar decrease across BW. Increasing bermudagrass DMI (% of BW) decreased bermudagrass NDF digestion slightly, but variation accounted for was only 33% of that attributable to corn DMI (% of BW). Concentrations of common fiber fractions (NDF, ADF, cellulose, hemicellulose, and ADL) in bermudagrass explained very little variation in feed intake and digestion, indicating considerable influence of other factors. Bermudagrass intake and digestion were not related, and no substantial interactions were observed among steer BW, corn level, and bermudagrass composition.  相似文献   

12.
Five groups of horses were fed different diets of known trace mineral concentration for a minimum of six months. Copper (Cu), zinc (Zn) and manganese (Mn) concentrations were measured in livers of 125 yearling horses and kidneys of 81 yearling horses as an assessment of trace mineral status. Plasma Cu and Zn determinations were made for all horses.

Mean hepatic Cu concentrations of horses fed diets containing 6.9 to 15.2 mg Cu/kg dry matter (DM) feed were 0.27 to 0.33 μmol/g DM tissue. Plasma Cu concentrations ranged between 22.8 to 28.3 μmol/L. There was no simple mathematical relationship between plasma and hepatic Cu concentrations. Mean hepatic Zn concentrations in horses fed diets containing 25.6 to 52.2 mg Zn/kg DM feed were determined to be between 2.75 to 2.91 μmol/g DM tissue. Mean plasma Zn concentrations in groups of horses were between 11.7 to 13.5 μmol/L. Plasma Zn concentrations were not indicative of hepatic Zn concentration. Hepatic Mn concentrations ranged between 0.13 and 0.14 μmol/g DM tissue.

Renal Zn concentrations ranged between 1.55 to 1.63 μmol/g DM tissue and did not differ with diet. Mean renal Mn concentrations were 0.09 μmol/g DM tissue for all groups of horses. Renal Cu concentrations ranged from 0.36 to 0.47 μmol/g DM tissue and differed with diet.

  相似文献   

13.
Thousands of hectares of timothy (Phleum pretense L.) grown in the Mid-Atlantic region are infected by cereal rust mite (Abacarus hysterix) that causes discoloration and curling of leaves, decreased nutritional quality, and substantial decreases in yield. A decline in production of timothy hay can lower income for hay producers and cause horse owners to search for alternative hays. Low alkaloid reed canarygrass (Phalaris arundinacea L.) hay has potential as an alternative to timothy hay because it grows well in the Mid-Atlantic region, is believed to have a similar nutrient quality to timothy, and is not as susceptible to cereal rust mite. Eleven mature, stalled Thoroughbred geldings (549 +/- 12.1 kg) that were exercised daily were used to compare voluntary DMI and apparent nutrient DM digestibility of timothy and low-alkaloid Chiefton variety reed canarygrass hay. Horses were paired by age and BW and randomly assigned to timothy or reed canarygrass hay during a 14-d period to measure voluntary DMI followed by a 4-d period to measure apparent DM digestibility. Both hays met the minimum requirements for DE, CP, Ca, P, K, Fe, and Mn, but they did not meet the minimum requirements for Cu, Zn, and Na for horses at maintenance and averaging 550 kg of BW. Timothy hay seemed to have a lower CP concentration (14.4%) compared with reed canarygrass hay (17.1%) and a more desirable Ca:P ratio at 1.6:1 compared with 0.8:1 for reed canarygrass hay. Horses fed timothy consumed more hay (P <0.001) during the voluntary DMI period compared with horses fed reed canarygrass. Greater voluntary DMI of timothy occurred on d 1, 3, and 5 (P <0.05), but DMI was similar for other days. Apparent DM digestibility was greater in horses fed timothy hay by 9.6% compared with horses fed reed canarygrass hay (P <0.05). Horses fed timothy had greater DM digestibility of ADF (P = 0.001), NDF (P = 0.001), sugar (P = 0.05), and Ca (P = 0.001) but lower apparent DM digestibility of CP (P = 0.012) and crude fat (P = 0.004). Timothy hay was superior in voluntary DMI and apparent DM digestibility compared with low-alkaloid reed canarygrass hay fed to horses.  相似文献   

14.
The development of a metabolizable energy (ME) system for horses is described. Predictive equations for gross energy and digestible energy (DE) are revisited. The relationship between feed protein content and renal energy losses and the relationship between feed fibre content and methane energy losses were analysed in a literature review to develop predictive equations for ME. In horses, renal energy losses are much higher than losses by methane energy. Renal energy losses were correlated more strictly to protein intake than to digestible protein intake. The reason probably is that per gram of digestible crude protein energy losses are higher for roughage than for concentrates presumably because phenolic acids of forage cell walls contribute to higher urinary energy losses. However, digestibility of protein is lower in forages than in concentrates. The net result is a rather constant urinary energy loss of 0.008 MJ/g of crude protein in the feed. Methane losses in horses are smaller than in ruminants, presumably because of reductive acidogenesis in hind gut fermentation. Methane energy losses in equines are closely related to crude fibre intake. The mean methane energy losses amount to 0.002 MJ ME/g of crude fibre which can be used to correct for methane losses. Both corrections can be made for any predictive equation for DE. Metabolizable energy is then calculated as follows: ME MJ/kg = DE MJ/kg – 0.008 MJ/g crude protein – 0.002 MJ/g crude fibre. The equation of Zeyner and Kienzle (2002) to predict DE was adapted as mentioned above to predict ME: ME (MJ/kg dry matter) = ?3.54 + 0.0129 crude protein+0.0420 crude fat?0.0019 crude fibre+0.0185 N‐free extract (crude nutrients in g/kg dry matter).  相似文献   

15.
Four nonlactating, nonpregnant, mature ewes equipped with multiple venous and arterial catheters were used to evaluate the influence of propionate as a satiety signal in ruminants. Our experiment was a 4 x 4 Latin square with portal infusion (physiological saline [Sa] or sodium propionate [Pr]) and DE intake (Lo, 63% of maintenance requirement, or Hi, 200% of maintenance requirement) as factors. One 240-min infusion of Pr (1 mmol/min) or Sa into the portal vein began at approximately 0800 on d 8 of each 8-d period. Feed intake was measured and hepatic blood was sampled every 30 min during infusion. Intake of DM and digestible energy (DEI) during infusion were not affected by infusion or diet and were most rapid at 30 min postfeeding. Average 30-min DMI and DEI were 539 g and 1,484 kcal, respectively, at 240 min. Cumulative DMI and DEI were unaffected by infusion but tended to be greater with Lo. After 30 min, animals tended to consume Lo at a greater rate than Hi, suggesting that satiety was delayed. Insulin concentration was increased (P less than .02) when animals consumed Hi (36.1 mU/liter) vs Lo (16.8 mU/liter) and was elevated (P less than .01) at 30 and 60 min postfeeding when animals were infused with Pr. Plasma acetate tended to be reduced with Pr infusion. Plasma Pr tended to increase with Pr infusion, especially when sheep were fed Lo. Satiety, DMI, and DEI were not affected by Pr infusion in this study.  相似文献   

16.
AIM: To determine changes in serum and liver copper concentrations in postnatal, weaner, yearling, and mature deer after grazing pasture topdressed with copper (Cu) at two rates of application of copper sulphate (CuSO4(.)5H2O), and following oral administration of copper oxide (CuO) wire particles to some of the deer. METHODS: In mid-March 2000 (Year 1), 1.1-ha paddocks (two/treatment) of ryegrass/white clover pasture received either 0 (Control), 6 (Low) or 12 (High) kg CuSO4(.)5H2O /ha applied with 250 kg potash superphosphate/ha. They were grazed by 4-month-old red deer hinds (n=11/treatment) from mid-April 2000 until early March 2001. In mid-March 2001 (Year 2), the pastures were topdressed again as for Year 1, and the original hinds, now yearlings which had grazed as a single group between studies, were returned to their respective treatments in mid-April 2001 and remained on the trial until mid-March 2002. They were mated during April/May. The pastures were also grazed by pregnant mature hinds (n=8/treatment) from mid-May 2001. As the Cu status (i.e. liver Cu concentration) of the yearling hinds on the pasture treated with 6 kg CuSO4(.)5H2O/ha was not significantly different from the untreated animals, in late July 2001 the yearling and mature deer on this treatment were treated orally with 10 g CuO wire particles. The mature hinds calved in November and the yearling hinds in December. Pasture samples were collected at about monthly intervals to determine concentrations of Cu and other minerals. In Year 1, liver biopsies and blood samples were collected at 4-6-weekly intervals for determination of Cu concentrations. In Year 2, samples were collected similarly at 6-12-weekly intervals. Liver biopsies and blood were also collected from progeny, along with milk from their dams. Liveweights were determined at 3-7-monthly intervals, as well as data on calving/mortality rates. RESULTS: Pasture Cu concentrations before the application of CuSO4(.)5H2O were 6-9 mg Cu/kg dry matter (DM) and remained at this level in the untreated Control paddocks throughout the study. In Year 1, 28 days after treatment, pasture Cu concentration was 25 and 35 mg Cu/kg DM for the Low and High treatments, respectively; while at the same time for the same treatments in Year 2 it was 20 and 60 mg/kg DM, respectively. A second 60 mg Cu/kg DM peak also occurred on Day 85 in Year 2 with the High treatment. The pasture Cu concentration returned to 6-9 mg/kg DM, and there were no differences between treatments at Days 80 and 150 in Years 1 and 2, respectively. In Years 1 and 2, the Low treatment had no significant effect on the Cu status of the weaner and yearling hinds, respectively, when compared with that of animals grazing the untreated Control pastures. Weaner (Year 1) and yearling (Year 2) deer on the High treatment had significantly higher mean serum and liver Cu concentrations in the late winter and spring period when compared with those on untreated Control pastures. CuO wire particles increased the mean serum Cu concentration at Days 60 and 180, and liver Cu concentration at Day 60, in yearling hinds. A similar effect was observed in mature hinds. Regardless of Cu treatment, the liver Cu concentration of the 1-4-week-old progeny was markedly greater (p<0.001) than that of their dams, and then decreased significantly until weaning in March. In progeny of treated yearling hinds, but not mature hinds, serum and liver Cu concentrations were significantly higher (p=0.013) than progeny of untreated dams. CONCLUSION: Topdressing pastures with CuSO4(.)5H2O at a rate of 12 kg/ha, but not 6 kg/ha, in mid-March was effective in increasing the Cu status of weanling hinds; while pastures topdressed with 12 kg CuSO4(.)5H2O /ha in mid-March and dosing hinds with 10 g CuO in late July were effective in increasing the Cu status of pregnant hinds, and in the case of the yearling hinds, significantly improved the Cu status of their progeny from birth to weaning.  相似文献   

17.
In this study, we evaluated the effects of supplementation with peanut and sunflower oils on intake and digestibility, milk yield and composition, energy balance (EB), changes in weight and body condition score (BW and BCS), and blood metabolites of Jersey cows on pasture in early lactation. Twenty-four cows were distributed in a randomized block design where they received the following treatments: concentrate without oil (CON), concentrate plus 59.6 g/kg DM peanut oil (PEA), concentrate plus 59.6 g/kg DM sunflower oil (SUN), and concentrate plus 59.6 g/kg DM of a 1:1 mixture of peanut oil and sunflower oil (MIX). The data were analyzed at 30 and 60 days in milk (DIM). Oil supplementation did not affect total dry matter intake or forage intake. The treatment SUN reduced daily milk yield, 4% fat-corrected milk yield, and milk fat, while the other treatments generated similar results. The treatment SUN reduced the milk net energy and the use efficiency of the NEL for milk production and BW and BCS changes, and improved EB up to 60 DIM. On tropical pastures, supplementation with unsaturated oils for cows in early lactation does not result in better milk performance. The supplementation with sunflower oil improves the energy balance in early lactation.  相似文献   

18.
To examine whether type of maize silage is important for milk production performances, maize silage LG30224 (LG) was compared with Falkone (FA), the latter having a 4.0% points lower rumen NDF digestibility and 19 g/kg dry matter (DM) more starch. To bridge the lower energy content of FA, a third treatment was involved by adding maize meal (MM) in a ratio of 92/8 on DM (FA+MM). Maize and grass silage were fed ad libitum in a ratio of 65/35 on DM basis. Concentrates were supplemented individually to meet energy and protein requirements. The experiment was set up as a Latin square with three groups of nine Holstein cows during three periods of 3 weeks. In the last 2 weeks of each period, DM intake (DMI) and milk performances were measured. Each group included one cannulated cow to study effects on rumen fermentation. During the last 4 days of each period, two cows from each group were placed in gas exchange chambers to measure nutrient digestibility and methane production. Total DMI was higher (p < 0.05) for FA+MM (20.8 kg/day) than for FA (20.3 kg/day), while DMI for LG was intermediate (20.6 kg/day). Treatment did not affect milk production nor composition, whereas fat–protein‐corrected milk was higher for LG (30.5 kg/day) and FA+MM (30.3 kg/day) than for FA (29.9 kg/day). The ration did not affect pH nor volatile fatty acid composition in the rumen. Further, total tract digestibility of OM, crude protein, NDF and starch did not differ among treatments. The ration with LG gave higher methane production per day and per kg NDF intake than both rations with FA, but the difference was not significant when expressed per kg DMI or FPCM. Thus, maize silage type is of little importance for milk production if energy and physical structure requirements are met.  相似文献   

19.
Two metabolism trials were conducted with 12 yearling crossbred wethers per trial (34 and 38 kg for trials 1 and 2, respectively). The wethers, equipped with ruminal, abomasal and ileal cannulae, were randomly allotted for each trial to the following treatments: 1) hay alone or hay supplemented with 2) .9% urea, 3) 1% urea and 6.5% molasses or 4) 1% urea and 5.2% corn. Two digestive flow markers were used: Cr2O3 powder and Co-ethylenediaminetetraacetic acid (Co-EDTA). Urea and Co-EDTA were infused continuously into the rumen via cannula. Daily dry matter (DM) intake averaged 517 g. Urea supplementation improved N retention (P less than .01). Apparent digestibility of DM, acid detergent fiber (ADF) and energy was not affected by treatment. Urea and carbohydrate supplementation increased ruminal propionic acid molar proportions (P less than .05). Apparent ruminal DM digestion accounted for 41% of the total DM degraded, whereas 77.4% of the digestible ADF was degraded in the rumen. Urea supplementation increased ADF digestion in the large intestine (P less than .01). Urea and carbohydrate supplementation resulted in a stepwise increase in N flowing with the liquid phase at the abomasum. Mean retention times of the solid and liquid phases of digestive contents were similar across treatments. Overall, benefits of supplementation of poor-quality fescue hay diets by small amounts of urea and readily available carbohydrates remain questionable for sheep fed at a fixed level of intake below maintenance.  相似文献   

20.
Eight mature horses weighing 576 ± 32 kg (mean ± SD) were used to compare differences in pasture dry matter (DM) intake rate in October (period 1), February (period 2), and May (period 3). Horses were randomly assigned to a pair of adjacent 5 m × 5 m grazing cells containing nontoxic, endophyte-infected tall fescue. Horses had access to each cell for 4 hours. Pasture DM intake rate was estimated over the entire 8-hour period by measuring the pre- and postgrazing herbage mass within each cell and was expressed as kg DM/100 kg body weight (BW)/hr. Mean 8-hour DM intake rate in period 1 (0.17 ± 0.01 kg DM/100 kg BW/hr) was greater (P < .001) than for period 2 (0.09 ± 0.01 kg DM/100 kg BW/hr) and period 3 (0.11 ± 0.01 kg DM/100 kg BW/hr), but it was not different (P = .274) between periods 2 and 3. A second experiment using the same eight horses was conducted immediately after the first experiment, within each season, to determine whether the DM intake rates derived from the first experiment could be used along with estimates of maintenance digestible energy (DE) requirements and pasture DE concentrations to predict the amount of grazing time required for a horse to consume only its maintenance DE requirement and maintain zero BW change over a 6-week period. Grazing time necessary to maintain zero BW change was accurately predicted for period 1 only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号