首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interpolar methane gradient (IPG) data from ice cores suggest the "switching on" of a major Northern Hemisphere methane source in the early Holocene. Extensive data from Russia's West Siberian Lowland show (i) explosive, widespread peatland establishment between 11.5 and 9 thousand years ago, predating comparable development in North America and synchronous with increased atmospheric methane concentrations and IPGs, (ii) larger carbon stocks than previously thought (70.2 Petagrams, up to approximately 26% of all terrestrial carbon accumulated since the Last Glacial Maximum), and (iii) little evidence for catastrophic oxidation, suggesting the region represents a long-term carbon dioxide sink and global methane source since the early Holocene.  相似文献   

2.
Ice age paleotopography   总被引:4,自引:0,他引:4  
A gravitationally self-consistent theory of postglacial relative sea level change is used to infer the variation of surface ice and water cover since the Last Glacial Maximum (LGM). The results show that LGM ice volume was approximately 35 percent lower than suggested by the CLIMAP reconstruction and the maximum heights of the main Laurentian and Fennoscandian ice complexes are inferred to have been commensurately lower with respect to sea level. Use of these Ice Age boundary conditions in atmospheric general circulation models will yield climates that differ significantly from those previously inferred on the basis of the CLIMAP data set.  相似文献   

3.
We use pore fluid measurements of the chloride concentration and the oxygen isotopic composition from Ocean Drilling Program cores to reconstruct salinity and temperature of the deep ocean during the Last Glacial Maximum (LGM). Our data show that the temperatures of the deep Pacific, Southern, and Atlantic oceans during the LGM were relatively homogeneous and within error of the freezing point of seawater at the ocean's surface. Our chloride data show that the glacial stratification was dominated by salinity variations, in contrast with the modern ocean, for which temperature plays a primary role. During the LGM the Southern Ocean contained the saltiest water in the deep ocean. This reversal of the modern salinity contrast between the North and South Atlantic implies that the freshwater budget at the poles must have been quite different. A strict conversion of mean salinity at the LGM to equivalent sea-level change yields a value in excess of 140 meters. However, the storage of fresh water in ice shelves and/or groundwater reserves implies that glacial salinity is a poor predictor of mean sea level.  相似文献   

4.
Early reactivation of European rivers during the last deglaciation   总被引:1,自引:0,他引:1  
During the Last Glacial Maximum, the sea-level lowstand combined with the large extent of the Fennoscandian and British ice sheets led to the funneling of European continental runoff, resulting in the largest river system that ever drained the European continent. Here, we show an abrupt and early reactivation of the European hydrological cycle at the onset of the last deglaciation, leading to intense discharge of the Channel River into the Bay of Biscay. This freshwater influx, probably combined with inputs from proglacial or ice-dammed lakes, dramatically affected the hydrology of the region, both on land and in the ocean.  相似文献   

5.
The stable carbon isotope ratio of atmospheric CO(2) (δ(13)C(atm)) is a key parameter in deciphering past carbon cycle changes. Here we present δ(13)C(atm) data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in δ(13)C(atm) during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the δ(13)C(atm) evolution. During the Last Glacial Maximum, δ(13)C(atm) and atmospheric CO(2) concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then.  相似文献   

6.
The circulation of the deep Atlantic Ocean during the height of the last ice age appears to have been quite different from today. We review observations implying that Atlantic meridional overturning circulation during the Last Glacial Maximum was neither extremely sluggish nor an enhanced version of present-day circulation. The distribution of the decay products of uranium in sediments is consistent with a residence time for deep waters in the Atlantic only slightly greater than today. However, evidence from multiple water-mass tracers supports a different distribution of deep-water properties, including density, which is dynamically linked to circulation.  相似文献   

7.
A detailed record of sea surface temperature from sediments of the Cape Basin in the subtropical South Atlantic indicates a previously undocumented progression of marine climate change between 41 and 18 thousand years before the present (ky B.P.), during the last glacial period. Whereas marine records typically indicate a long-term cooling into the Last Glacial Maximum (around 21 ky B.P.) consistent with gradually increasing global ice volume, the Cape Basin record documents an interval of substantial temperate ocean warming from 41 to 25 ky B.P. The pattern is similar to that expected in response to changes in insolation owing to variations in Earth's tilt.  相似文献   

8.
为预测不同时期气候情景下尼泊尔芒的适生区,探讨制约其适生区分布的主导气候因子,基于60条尼泊尔芒现代地理分布记录和9个生物气候变量,利用ENMeval数据包对Maxent模型进行了优化,并利用优化后的Maxent模型对末次冰盛期、全新世中期、现代(1970~2000年)和未来(2061~2080年)4个时期的尼泊尔芒适生区进行了模拟,综合使用贡献率、置换重要性和Jackknife检验对气候变量的重要性进行了评估。结果显示:最优模型设置参数为特征组合选取LQH,调控倍频设置为3,在该设置参数下模型的测试集受试者工作特征曲线下的面积为(0.963±0.028),模拟准确度极高;温度季节性标准差、最冷月最低温度、年温度变化范围和年降水量是影响尼泊尔芒分布的主导气候因子;尼泊尔芒的现代中、高适宜区大面积分布于中国的西藏东部、四川南部、贵州西部和云南大部分地区;末次冰盛期,其适生区面积最大,在东海和南海的沿海地区存在其他时期所没有的适生区;全新世中期,其适生区轮廓与现代适生区的相似;2070年,其适生区整体北移;从末次冰盛期到未来,尼泊尔芒的适生区可能会先后经历了向内收缩、基本稳定和整体北移3个过程。  相似文献   

9.
Atmospheric CO2 concentrations over the last glacial termination   总被引:1,自引:0,他引:1  
A record of atmospheric carbon dioxide (CO2) concentration during the transition from the Last Glacial Maximum to the Holocene, obtained from the Dome Concordia, Antarctica, ice core, reveals that an increase of 76 parts per million by volume occurred over a period of 6000 years in four clearly distinguishable intervals. The close correlation between CO2 concentration and Antarctic temperature indicates that the Southern Ocean played an important role in causing the CO2 increase. However, the similarity of changes in CO2 concentration and variations of atmospheric methane concentration suggests that processes in the tropics and in the Northern Hemisphere, where the main sources for methane are located, also had substantial effects on atmospheric CO2 concentrations.  相似文献   

10.
Two ice cores from the col of Huascarán in the north-central Andes of Peru contain a paleoclimatic history extending well into the Wisconsinan (Würm) Glacial Stage and include evidence of the Younger Dryas cool phase. Glacial stage conditions at high elevations in the tropics appear to have been as much as 8 degrees to 12 degrees C cooler than today, the atmosphere contained about 200 times as much dust, and the Amazon Basin forest cover may have been much less extensive. Differences in both the oxygen isotope ratio zeta(18)O (8 per mil) and the deuterium excess (4.5 per mil) from the Late Glacial Stage to the Holocene are comparable with polar ice core records. These data imply that the tropical Atlantic was possibly 5 degrees to 6 degrees C cooler during the Late Glacial Stage, that the climate was warmest from 8400 to 5200 years before present, and that it cooled gradually, culminating with the Little Ice Age (200 to 500 years before present). A strong warming has dominated the last two centuries.  相似文献   

11.
In order to investigate rapid climatic changes at mid-southern latitudes, we have developed centennial-scale paleoceanographic records from the southwest Pacific that enable detailed comparison with Antarctic ice core records. These records suggest close coupling of mid-southern latitudes with Antarctic climate during deglacial and interglacial periods. Glacial sections display higher variability than is seen in Antarctic ice cores, which implies climatic decoupling between mid- and high southern latitudes due to enhanced circum-Antarctic circulation. Structural and temporal similarity with the Greenland ice core record is evident in glacial sections and suggests a degree of interhemispheric synchroneity not predicted from bipolar ice core correlations.  相似文献   

12.
Evidence from high-sedimentation-rate South Atlantic deep-sea cores indicates that global and Southern Ocean carbon budget shifts preceded thermohaline circulation changes during the last ice age initiation and termination and that these were preceded by ice-sheet growth and retreat, respectively. No consistent lead-lag relationships are observed during abrupt millennial warming events during the last ice age, allowing for the possibility that ocean circulation triggered some millenial climate changes. At the major glacial-interglacial transitions, the global carbon budget and thermohaline ocean circulation responded sequentially to the climate changes that forced the growth and decline of continental ice sheets.  相似文献   

13.
Sedimentation filling space beneath ice shelves helps to stabilize ice sheets against grounding-line retreat in response to a rise in relative sea level of at least several meters. Recent Antarctic changes thus cannot be attributed to sea-level rise, strengthening earlier interpretations that warming has driven ice-sheet mass loss. Large sea-level rise, such as the approximately 100-meter rise at the end of the last ice age, may overwhelm the stabilizing feedback from sedimentation, but smaller sea-level changes are unlikely to have synchronized the behavior of ice sheets in the past.  相似文献   

14.
Concentrations of atmospheric noble gases (neon, argon, krypton, and xenon) dissolved in groundwaters from northern Oman indicate that the average ground temperature during the Late Pleistocene (15,000 to 24,000 years before present) was 6.5 degrees +/- 0.6 degrees C lower than that of today. Stable oxygen and hydrogen isotopic groundwater data show that the origin of atmospheric water vapor changed from a primarily southern, Indian Ocean source during the Late Pleistocene to a dominantly northern, Mediterranean source today. The reduced northern water vapor source is consistent with a drier Last Glacial Maximum through much of northern Africa and Arabia.  相似文献   

15.
All Australian land mammals, reptiles, and birds weighing more than 100 kilograms, and six of the seven genera with a body mass of 45 to 100 kilograms, perished in the late Quaternary. The timing and causes of these extinctions remain uncertain. We report burial ages for megafauna from 28 sites and infer extinction across the continent around 46,400 years ago (95% confidence interval, 51,200 to 39,800 years ago). Our results rule out extreme aridity at the Last Glacial Maximum as the cause of extinction, but not other climatic impacts; a "blitzkrieg" model of human-induced extinction; or an extended period of anthropogenic ecosystem disruption.  相似文献   

16.
The effects of climate change on biodiversity should depend in part on climate displacement rate (climate-change velocity) and its interaction with species' capacity to migrate. We estimated Late Quaternary glacial-interglacial climate-change velocity by integrating macroclimatic shifts since the Last Glacial Maximum with topoclimatic gradients. Globally, areas with high velocities were associated with marked absences of small-ranged amphibians, mammals, and birds. The association between endemism and velocity was weakest in the highly vagile birds and strongest in the weakly dispersing amphibians, linking dispersal ability to extinction risk due to climate change. High velocity was also associated with low endemism at regional scales, especially in wet and aseasonal regions. Overall, we show that low-velocity areas are essential refuges for Earth's many small-ranged species.  相似文献   

17.
Current biogeographic models hypothesize that brown bears migrated from Asia to the New World ~100 to 50 thousand years ago but did not reach areas south of Beringia until ~13 to 12 thousand years ago, after the opening of a mid-continental ice-free corridor. We report a 26-thousand-year-old brown bear fossil from central Alberta, well south of Beringia. Mitochondrial DNA recovered from the specimen shows that it belongs to the same clade of bears inhabiting southern Canada and the northern United States today and that modern brown bears in this region are probably descended from populations that persisted south of the southern glacial margin during the Last Glacial Maximum.  相似文献   

18.
Glaciation in the humid tropical Andes is a sensitive indicator of mean annual temperature. Here, we present sedimentological data from lakes beyond the glacial limit in the tropical Andes indicating that deglaciation from the Last Glacial Maximum led substantial warming at high northern latitudes. Deglaciation from glacial maximum positions at Lake Titicaca, Peru/Bolivia (16 degrees S), and Lake Junin, Peru (11 degrees S), occurred 22,000 to 19,500 calendar years before the present, several thousand years before the B?lling-Aller?d warming of the Northern Hemisphere and deglaciation of the Sierra Nevada, United States (36.5 degrees to 38 degrees N). The tropical Andes deglaciated while climatic conditions remained regionally wet, which reflects the dominant control of mean annual temperature on tropical glaciation.  相似文献   

19.
A simulation with a coupled atmosphere-ocean general circulation model configured for the Last Glacial Maximum delivered a tropical climate that is much cooler than that produced by atmosphere-only models. The main reason is a decrease in tropical sea surface temperatures, up to 6 degrees C in the western tropical Pacific, which occurs because of two processes. The trade winds induce equatorial upwelling and zonal advection of cold water that further intensify the trade winds, and an exchange of water occurs between the tropical and extratropical Pacific in which the poleward surface flow is balanced by equatorward flow of cold water in the thermocline. Simulated tropical temperature depressions are of the same magnitude as those that have been proposed from recent proxy data.  相似文献   

20.
Ice cores from Penny Ice Cap, Baffin Island, Canada, provide continuous Holocene records of oxygen isotopic composition (delta18O, proxy for temperature) and atmospheric impurities. A time scale was established with the use of altered seasonal variations, some volcanic horizons, and the age for the end of the Wisconsin ice age determined from the GRIP and GISP2 ice cores. There is pre-Holocene ice near the bed. The change in delta18O since the last glacial maximum (LGM) is at least 12.5 per mil, compared with an expected value of 7 per mil, suggesting that LGM ice originated at the much higher elevations of the then existing Foxe Dome and Foxe Ridge of the Laurentide Ice Sheet. The LGM delta18O values suggest thick ice frozen to the bed of Hudson Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号