首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolates of Phytophthora from pepper, produced in Tunisia, were characterised according to molecular and pathogenicity criteria. Polymerase chain reaction amplification of the ITS1 region in the ribosomal DNA resulted in different sized fragments. The pepper isolates and P. nicotianae yielded a fragment of 310bp that distinguished it from P. capsici with a fragment of 270bp. The ribosomal RNA gene amplicons of both internal transcribed spacers and the 5.8 S of the pepper Phytophthora and P. nicotianae were digested with 8 endonucleases. The patterns generated, with the 2 enzymes that cut, were identical for both taxa. This molecular analysis corroborated the morphological and biological characteristics and suggests strongly that the isolates of Phytophthora from pepper belong to the species P. nicotianae. Inoculation of pepper, tomato, eggplant and tobacco plants with the isolates of P. nicotianae from pepper showed they were highly pathogenic on pepper but not on tobacco, while their pathogenicity was weak on tomato and eggplant and was associated with atypical symptoms not observed in the field. These pathogenicity tests suggest that pepper isolates of P. nicotianae are particularly adapted to their host and may thus constitute a forma specialis of P. nicotianae.  相似文献   

2.
Approximately 30,000 fluorescent bacterial strains isolated from tomato, lettuce, eggplant, Chinese cabbage, and Japanese pepper plants at seven different locations in Hyogo Prefecture, were screened for plant-growth-promoting (PGP) activity to induce disease resistance against bacterial wilt in tomato. The 37 strains that had higher PGP activity were subjected to molecular phylogenetic analyses using the sequences of the 16S rRNA, gyrB and rpoD genes. Most of the strains were identified as Pseudomonas fluorescens or its close relative, P. putida, while a few strains were grouped with more distantly related bacterial species such as Enterobacter and Stenotrophomonas. The phylogenetic relationships among tomato and lettuce isolates mostly coincided with the source locality and host plants, with a few exceptions. In contrast, isolates from Japanese pepper plants did not form their own cluster but represented several different bacterial species.  相似文献   

3.
Yigal Elad 《Phytoparasitica》1991,19(3):201-209
Difluoromethylornithine (DFMO) — an inhibitor of polyamine biosynthesis, and the polyamine spermidine (Spd) reduced gray mold of tomato, pepper, eggplant, bean andSenecio sp. leaves, and of rose petals by 37–88% when applied at 0.1–1.0 mM each. Higher doses did not result in better control. The disease was also reduced significantly on tomato fruits by 1.0 inM DFMO and by 0.1–1.0 mM Spd, and on cucumber fruits by 0.1–1.0 mM of both compounds, but not on grape berries. The combination of 0.2 mM DFMO with 1.0 mM Spd controlled gray mold ofSenecio sp. and tomato leaves additively better than either treatment alone, whereas this effect was not observed in leaves of lettuce and pepper. Ethylene production was reduced significantly by Spd applied to leaves of tomato and pepper, but not by DFMO. Linear growth and germination of the fungus were affected by lower concentrations of DFMO (ED50 0.12–0.97 and 1.4, respectively) as compared with Spd. Spermidine and DFMO controlled white mold(Sclerotinia sclerotiorum) as effectively as did the fungicide benomyl. Contribution from the Agricultural Research Organization. No. 3195-E, 1991 series.  相似文献   

4.
The biocontrol agent Pythium oligandrum (PO) can suppress bacterial wilt caused by Ralstonia solanacearum (RS) in tomato. To understand the primary biocontrol mechanisms of bacterial wilt by PO, we pretreated tomato plants with sterile distilled water or preinoculated them with PO, followed by inoculation with RS, then observed PO and RS in fixed sections of tomato tissues using a confocal laser-scanning microscope and fluorescence labeling until 14 days after the inoculation with RS. Horizontal and vertical movement of RS bacteria was frequently observed in the xylem vessels of roots and stems of tomato plants (cv. Micro-Tom) that had not been inoculated with PO. In plants that were preinoculated with PO, the movement of RS was suppressed, and bacteria appeared to be restricted to the pit of vessels, a reaction similar to that observed in resistant rootstocks. PO colonization was mainly observed at the surfaces of taproots, the junctions between taproots and lateral roots, and the middle sections of the lateral roots. PO was not observed near wound sites or root tips where RS tended to colonize. However, RS colonization was significantly repressed at these sites in PO preinoculated plants. These observations suggest that the induction of plant defense reactions is the main mechanism for the control of tomato bacterial wilt by PO, not direct competition for infection sites.  相似文献   

5.
In the Philippines, bacterial wilt caused by Ralstonia solanacearum is one of the most important diseases affecting vegetables and banana. In this study, 89 strains of R. solanacearum isolated from various hosts were screened for their biovar, phylotype, pathogenicity, and genetic diversity. Foreign strains were included for comparison with these Philippine strains. Results of the biochemical and multiplex-PCR tests divided the Philippine strains into five biovars (1, 2, 3, 4, and N2) and three phylotypes (I, II, and IV). Three potato strains belonged to biovar N2/phylotype IV. Pathogenicity tests divided the strains into five pathogenicity types based on their virulence in tomato, potato, eggplant, sweet pepper, and tobacco. Strains classified as biovar N2 were weakly pathogenic to potato (pathogenicity type III) and almost all strains isolated from banana were not pathogenic to the test plants except potato (pathogenicity type V). The results of AFLP analysis divided the strains into four clusters. Cluster 1 was composed of strains isolated from solanaceous crops, ginger (Zingiber officinale), and Morus sp. from the Philippines and other Asian countries. Cluster 2 grouped the potato strains (biovar N2) from the Philippines and Japan and blood disease bacterium strains from Indonesia. Cluster 3 contained the local and foreign strains isolated from potato (biovar 2) and banana (biovar 1). Cluster 4 consisted only of the tomato strain from the USA.  相似文献   

6.
为评价非致病性尖孢镰刀菌FJAT-9290对不同植物的致病性和定殖能力,利用该菌株所含的无毒基因SIX1特异性检测引物P12-R1/P12-F2跟踪其在不同植物中的侵入与定殖情况,并研究其对番茄植株生长特性的影响及对番茄枯萎病的防治效果。结果显示,接种120 d内,菌株FJAT-9290对所供试的11种植物均未造成危害,但在侵入时间与定殖方面存在差异。该菌株最易侵入番茄植株,接种第5天即可在茎基部检测到;其次为甜椒、甜瓜、西瓜和香蕉等植株,接种10 d时可在茎基部检测到;但在韭菜、香葱和马唐草上均未检测到。该菌株在番茄与茄子植株的定殖时间最长,达90 d;其次为甜椒、香蕉和粉蕉,至少60 d;在甜瓜、西瓜和黄瓜上为40~50 d。该菌株能促进番茄植株生长,显著提高其株高和叶片数量,对番茄枯萎病的盆栽与田间防治效果分别达76.70%和69.56%。表明菌株FJAT-9290具有良好的定殖能力且对番茄枯萎病具有较好的防治效果。  相似文献   

7.
Phytophthora root rot of sweet pepper   总被引:1,自引:0,他引:1  
Phytophthora capsici proved to be the causal agent of a root and crown rot of sweet pepper in the Netherlands.P. capsici was pathogenic on sweet pepper, tomato and sometimes on eggplant but not on tobacco Xanthi. Of these test plants only tomato was infected byP. nicotianae.No different symptoms in plants infected with eitherP. capsici orP. nicotianae were found. Dipping the roots of tomato and sweet pepper plants in a suspension ofP. capsici resulted in a more severe attack than pouring the suspension on the stem base.Resistance in tomato toP. nicotianae did not include resistance toP. capsici. A method to distinguishP. capsici fromP. nicotianae after isolation from soil is described. Both species were able to infect green fruits of tomato and sweet pepper.p. capsici survived in moist soil in the absence of a host for at least 15 months.Samenvatting Phytophthora capsici bleek de oorzaak te zijn van een voet-en wortelrot in paprika op twee bedrijven in 1977 in Nederland.P. capsici was pathogeen op paprika, tomaat en soms op aubergine maar niet op tabak Xanthi.P. nicotianae tastte van deze toetsplanten alleen tomaat aan. Verschillen in symptomen tussenP. nicotianae enP. capsici werden bij tomaat niet waargenomen.Het dompelen van de wortels in eenP. capsici suspensie gaf een ernstiger aantasting dan het begieten van de wortelhals met deze suspensie.Resistentie in tomaat tegenP. nicotianae bleek geen resistentie tegenP. capsici in te houden. P. capsici kan in grond worden aangetoond door groene paprikavruchten als vangsubstraat te gebruiken.P. capsici enP. nicotianae kunnen beide zowel vruchten van tomaat als paprika aantasten. P. capsici overleefde een periode van 15 maan den in vochtige grond waarop geen waardplant werd geteeld.  相似文献   

8.
When the biocontrol agent Pythium oligandrum (PO) colonizes the rhizosphere, it suppresses bacterial wilt disease in tomato (Solanum lycopersicum cv. Micro‐Tom) caused by Ralstonia solanacearum, and a homogenate of its mycelia exhibits elicitor activity, inducing an ethylene (ET)‐dependent defence response in Micro‐Tom. Since salicylic acid (SA) and jasmonic acid (JA) play an important role in plant defence responses to pathogens, the involvement of SA‐ and JA‐dependent signal transduction pathways in resistance to R. solanacearum was investigated in tomato roots treated with a mycelial homogenate of PO. Bacterial wilt disease was also suppressed in tomato cv. Moneymaker treated with the PO homogenate. However, the SA‐inducible PR‐1(P6) gene was not up‐regulated in either Micro‐Tom or Moneymaker. SA did not accumulate in homogenate‐treated roots in comparison with distilled water‐treated controls, even 24 h after inoculation. Induced resistance against R. solanacearum was not compromised in SA‐non‐accumulating NahG transgenic plants treated with the PO homogenate. On the other hand, the expression of the JA‐responsive gene for the basic PR‐6 protein was induced in both tomato cultivars treated with the PO homogenate. Furthermore, quantitative disease assays showed that the induced resistance against R. solanacearum was compromized in PO homogenate‐treated jai1‐1 mutant plants defective in JA signalling. These results indicated that the JA‐dependent signalling pathway is required for PO‐induced resistance against R. solanacearum in tomato.  相似文献   

9.
Experiments were designed to analyze the relationships between the root-knot nematodeMeloidogyne incognita and resistant tomato and pepper genotypes. From a natural avirulent isolate, near-isogenic nematode lineages were selected with virulence either against the tomatoMi resistance gene or the pepperMe3 resistance gene. Despite the drastic selection pressure used, nematodes appeared unable to overcome the pepperMe1 gene, therefore suggesting some differences in the resistance conferred byMe1 andMe3 in this species. Nematodes virulent onMi-resistant tomatoes were not able to reproduce onMe1-resistant nor onMe3-resistant peppers, and nematodes virulent onMe3-resistant peppers were not able to reproduce onMi-resistant tomatoes nor onMe1-resistant peppers. These results clearly demonstrate the specificity ofM. incognita virulence against resistance genes from both tomato and pepper, and indirectly suggest that gene-for-gene relationships could occur between these two solanaceous crops and the nematode.  相似文献   

10.
We isolated 629 fungi from 1296 berry seeds of solanaceous plants, including tomato (Lycopersicon esculentum), eggplant (Solanum melongena), bell pepper (Capsicum annuum), and red pepper (Capsicum annuum var. annuum) preserved for long and short terms. The isolates were classified into 22 genera excluding unidentified fungi, and the fungal floras were divided into two types: the tomato–eggplant and pepper groups. The results of cluster analysis with unweighted pair-group method with arithmetic average also supported these groups. Most tomato seeds infested with Geotrichum candidum germinated and grew the same as uninfested seeds. Cladosporium sphaerospermum and Arthrinium sp. isolated from eggplant seeds strongly suppressed germination, and Penicillium variabile suppressed seminal root elongation on eggplant. Alternaria alternata, Botrytis cinerea, and Myrothecium verrucaria detected from red pepper or bell pepper seeds were pathogenic to the fruits and the seedlings after artificial inoculation.  相似文献   

11.
Ralstonia solanacearum causes a lethal bacterial wilt disease in many plants by colonizing the vascular tissues of the hosts. Upon inoculation of tomato seedlings through either leaf or root, the wilting symptoms occur first at the apical region and then proceed downward along the shoot. The systemic order of the disease initiation and progression in the host, independent of the site of pathogen inoculation, is yet to be investigated. To understand the disease progression more clearly, we have carried out a systematic study of the pathogen localization by GUS staining of inoculated tomato seedlings, at 24-hour intervals from 0 days post-inoculation (dpi) to 5 dpi. In both inoculation methods, pathogen colonization was observed at 1 dpi at the apical meristem as well as the cotyledon leaves, where the disease initiates. As the disease progressed, colonization by the pathogen towards the lower region of the shoot was observed. Disease consistency and pathogenicity magnitude were observed to be higher using the leaf inoculation method than the root inoculation method. Several R. solanacearum transposon-induced mutants that were reduced in virulence by root inoculation but virulent by leaf inoculation were obtained. Using GUS staining, it was observed that these mutants were unable to localize in the shoot region when inoculated in the root. Our study indicates that the apical meristem and the cotyledon leaves are the first regions to be colonized in inoculated tomato seedlings, which might explain the disease initiation from this region.  相似文献   

12.
Classification of 32 Verticillium dahliae isolates originating from 19 plant species in eight different botanical families to races and determination of host range pathogenicity were carried out. The physiological races of isolates were identified using the two differential tomato cultivars ??Belladonna?? (susceptible to both races 1 and 2 of V. dahliae) and ??Ace 55VF?? (resistant to race 1, susceptible to race 2 of V. dahliae). Among these isolates, 14 were race 2 (43.8%), 12 race 1 (37.5%) and six nonpathogenic (18.7%) on tomato. The host range pathogenicity of isolates was determined using four differential hosts (eggplant, turnip, tomato (Ve ? ) and sweet pepper). Among isolates, five were pathogenic to both eggplant and turnip (15.6%), 21 to eggplant, turnip and tomato (65.6%), five to eggplant, turnip, tomato and sweet pepper (15.6%) and one was pathogenic to eggplant, turnip and sweet pepper (3.2%). The pathogenicity of isolates on the aforementioned five hosts was investigated on the basis of external symptoms and by calculating the relative areas under disease progress curves (relative AUDPC). Results showed that eggplant was the most susceptible, followed by turnip and tomato cv. Belladonna, while sweet pepper and tomato cv. Ace 55VF were less susceptible to all the isolates used. The pathogenicity of isolates varied from highly to mildly virulent on eggplant and turnip while on Belladonna, Ace 55VF and sweet pepper it varied from highly virulent to nonpathogenic. Belladonna exhibited a similar level of susceptibility to races 1 and 2 of V. dahliae, but was more susceptible than Ace 55VF to race 2. Interestingly, the isolates originating from eggplant were clearly more virulent than those originating from tomato and black nightshade on all solanaceous plants tested.  相似文献   

13.
A sensitive and specific assay, based on a Nested-PCR-RFLP protocol, was developed for the detection of biovars of Ralstonia solanacearum, the causal agent of bacterial wilt. Oligonucleotide primer pairs were selected within the hrp gene region. Specific amplification of the hrp fragments was obtained for all R. solanacearum strains and also for two closely related species, Pseudomonas syzygii and the blood disease bacterium. No amplification was observed for a wide range of other bacterial species, including R. pickettii and Burkholderia cepacia. Digestion with HindII provided four distinct restriction profiles specific to biovars or groups of biovars of R. solanacearum: one for biovar 1 strains originating from the Southern part of Africa, one for American biovar 1 and biovars 2 and N2 strains, one for biovars 3 and 4 strains, and one for biovar 5 strains. When applied to either pure culture or infected plant tissues, Nested-PCR allowed detection as low as 103cfu ml–1, which corresponds to 1cfu per reaction. Amplification was partially or completely inhibited by compounds contained in plant extracts (potato plant and potato tuber, tomato, tobacco, eggplant, pepper and Pelargonium asperum). A combined PVPP/BSA treatment prior to amplification permitted reliable Nested-PCR detection of R. solanacearum strains in plant samples. Nested-PCR-RFLP, assessed with isolates from Reunion Island but also applicable to any R. solanacearum strain, provides a wide range of possible uses for identification, detection and epidemiological investigations.  相似文献   

14.
Twenty isolates of fluorescent pseudomonads were evaluated for their ability to control damping-off in tomato (Lycopersicon esculentum) and hot pepper (Capsicum annuum). These isolates were characterized as Pseudomonas fluorescens and Pseudomonas putida. Two isolates, PFATR and KKM 1 belonged to P. putida and the remaining 18 isolates belonged to P. fluorescens. Among these isolates, P. fluorescens isolate Pf1 showed the maximum inhibition of mycelial growth of Pythium aphanidermatum and increased plant growth promotion in tomato and hot pepper. P. fluorescens isolate Pf1 was effective in reducing the damping-off incidence in tomato and hot pepper in greenhouse and field conditions. Isolate Pf1 was further tested for its ability to induce production of defense-related enzymes and chemicals in plants. Earlier and increased activities of phenylalanine ammonia lyase (PAL), peroxidase (PO) and polyphenol oxidase (PPO) were observed in P. fluorescens Pf1 pretreated tomato and hot pepper plants challenged with Pythium aphanidermatum. Moreover, higher accumulation of phenolics was noticed in plants pretreated with P. fluorescens isolate Pf1 challenged with Pythium aphanidermatum. Thus, the present study shows that in addition to direct antagonism and plant growth-promotion, induction of defense-related enzymes involved in the phenyl propanoid pathway collectively contributed to enhance resistance against invasion of Pythium in tomato and hot pepper.  相似文献   

15.
Members of the Ralstonia solanacearum species complex (RSSC), causing potato bacterial wilt or brown rot, are highly contagious and there are no known cultivars with durable resistance to the pathogen. This study hypothesized (a) that crops intercropped or rotated with potato, plants in the same family, and plants grown in the neighbouring fields can host the pathogen and they can be potential sources of primary inoculum, and (b) that potato cultivars currently multiplied by the public tissue culture laboratory in Rwanda are less susceptible to the pathogen. Fourteen plant species and potato, and nine potato cultivars were tested for susceptibility to an RSSC phylotype II strain under greenhouse conditions. The bacteria induced symptoms on potato, tomato, tree tomato, sweet pepper, and eggplant only. Among the plant species with symptoms, potato, tomato, and tree tomato wilted completely. There was a significant difference in days to symptom expression and to complete wilting (p < .0001). While all tested potato cultivars were found to be susceptible, the number of days to first symptom expression, days to complete wilting, area under the disease progress curve (AUDPC), and the number and weight of harvested tubers varied considerably. Cultivars Cruza, Kinigi, and CIP-58 were less susceptible whereas the cultivars Gikungu, Kirundo, and Victoria were highly susceptible. There is a strong need to search for other sources of resistance. The results indicate that some plant species that might serve as a reservoir of the bacterium should be avoided in the vicinity of potato crops.  相似文献   

16.
Control ofSclerotinia sclerotiorum in muskmelons was obtained by a single soil drench with benomyl. The material was found in the apical parts of the plant and in the soil until the end of the growing season. Benomyl [methyl l-(butylcarbamoyl)-2-benzi-midazolecarbamate] and thiophanate methyl-NF 44 [1.2- bis (3 methoxycarbonyl-2-thioureido) benzene], applied to seedbeds, were taken up by and then persisted in tomato, pepper and eggplant for approximately 8 weeks after application. Thiophanate-NF 35 [1.2-bis (ethoxycarbonyl-2-thioureido) benzene] could be detected only in the bottom leaves of pepper and eggplant, for up to 4 weeks after application.  相似文献   

17.
Bacterial wilt is a serious problem affecting many important food crops. Recent studies have indicated that treatment with biotic or abiotic stress factors may increase the resistance of plants to bacterial infection. This study investigated the effects of magnesium oxide nanoparticles (MgO NP) on disease resistance in tomato plants against Ralstonia solanacearum, as well as its antibacterial activity. The roots of tomato seedlings were inoculated with R. solanacearum and then immediately treated with MgO NP; the treated plants showed very little inhibition of bacterial wilt. In contrast, when roots were drenched with a MgO NP suspension prior to inoculation with the pathogen, the incidence of disease was significantly reduced. Rapid generation of reactive oxygen species such as O2 radicals was observed in tomato roots treated with MgO NP. Further O2 was rapidly generated when tomato plant extracts or polyphenols were added to the MgO NP suspension, suggesting that the generation of O2 in tomato roots might be due to a reaction between MgO NP and polyphenols present in the roots. Salicylic acid‐inducible PR1, jasmonic acid‐inducible LoxA, ethylene‐inducible Osm, and systemic resistance‐related GluA were up‐regulated in both the roots and hypocotyls of tomato plants after treatment of the plant roots with MgO NP. Histochemical analyses showed that β‐1,3‐glucanase and tyloses accumulated in the xylem and apoplast of pith tissues of the hypocotyls after MgO NP treatment. These results indicate that MgO NP induces systemic resistance in tomato plants against R. solanacearum.  相似文献   

18.
The chromosome number and electrophoretic karyotype of Japanese isolates of Verticillium dahliae were investigated. In a genomic Southern blot analysis of seven isolates probed with a telomere consensus sequence (TTAGGG)5, 12 or 14 bands were observed. Furthermore, pulsed-field gel electrophoresis (PFGE) of these isolates revealed five or six chromosomal bands. A band (approx. 3.5 Mbp) common to all isolates apparently contained more than two chromosomes. From these results, we concluded that each isolate’s chromosome number is six (an eggplant pathotype isolate) or seven (all isolates of tomato and sweet pepper pathotypes). Although the chromosome sizes differed among isolates, karyotypes were similar within tomato and sweet pepper pathotypes. A small chromosome (approx. 1.8 Mbp) was observed only in the sweet pepper pathotype. Subsequent PFGE-Southern hybridization analyses revealed that the three DNA fragments specific to tomato pathotype are located on the same chromosome. These results suggest that the tomato-pathotype-specific DNA sequences might coexist on one chromosome.  相似文献   

19.
A leaf spot disease of scarlet sage (Salvia splendens Sellow ex J.A. Shultes) found in Kanagawa and Tokyo prefectures was demonstrated to be caused by Corynespora cassiicola (Berk. and Curt.) Wei based on inoculation experiments, and morphological identification of the pathogenic fungus. Isolates of C. cassiicola from cucumber, green pepper, and hydrangea were also pathogenic to scarlet sage leaves. Although the isolates from cucumber, green pepper, and hydrangea were pathogenic to scarlet sage leaves, the scarlet sage isolate was not pathogenic to cucumber, green pepper, hydrangea, eggplant, tomato or soybean.  相似文献   

20.
Several compounds were tested for their ability to reduce development of grey mould on rose, tomato, pepper, eggplant, French bean andSenecio sp. Removal of ethylene from the atmosphere surrounding rose flowers, or leaves of tomato and pepper, by potassium permanganate, resulted in slower grey mould development. Inhibition of ethylene activity by 2,5-norbornadiene controlled disease on all crops but tomato. Carbon dioxide controlled grey mould on roses, but the potential for use of these agents is in doubt. Inhibitors of ethylene biosynthesis such as aminooxyacetic acid (AOA), cobalt ion, the uncoupler 2,4-dinitrophenol and the radical scavenger salicylic acid were differentially effective in controlling the disease in the various hosts. Fifty mM AOA reduced grey mould on rose flowers by up to 97% when flowers were partially aerated. AOA was not phytotoxic on the tested rose cvs Golden Times and Jaguar. Combinations of ethylene absorption, inhibition of ethylene activity and ethylene biosynthesis did not result in better control as compared with the disease reduction ability of the compounds alone, tested on the various hosts. Application of benzyladenine, which reduces the host responsiveness to ethylene, resulted in 39–99% grey mould reduction in rose flowers and in leaves of tomato andSenecio sp. but was not effective on pepper or eggplant. Manipulation of ethylene presence and of host plant susceptibility to grey mould is discussed.Contribution from The Agricultural Research Organization, Bet Dagan, Israel, No. 3270-E, 1991 series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号