首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The rhizobacterium Paenibacillus macerans was grown in tryptic soy broth and after separating the cells by centrifugation the activity of fractions of the supernatant was tested against Meloidogyne exigua juveniles. From HPLC analyses and spectral data, the most active fractions were found to contain alanine, glutamic acid, glycine, histidine, threonine and valine, which were probably produced by bacterial hydrolysis of proteic nutrients. Amino acids from commercial sources were then assayed to confirm these results and to evaluate their potential for the control of nematodes. LC50 of 26 and 283 μg ml−1 were shown for the nematicide aldicarb and L-cysteine respectively when tested on M. exigua juveniles. At a concentration 38.4 times>LC50, the amino acid diminished the nematode population on coffee plants to values statistically equal to those obtained with aldicarb at a concentration 19.2 times>LC50.  相似文献   

2.
A granulosis virus strain infecting Pieris brassicae (PbGV) was isolated from the dry temperate region of northwestern Himalayas as a potential microbial agent for its management. The effect of different botanicals (having insecticidal action against P. brassicae) on the bioefficacy of PbGV was evaluated under laboratory conditions using leaf disc bioassays on cabbage for improving the insecticidal performance of the PbGV. The synergistic action of different botanical extracts was evident in terms of reduction in LC50 values against different botanical extracts. Among different extracts, petroleum-ether extract of neem seed kernel (NSK) when combined with PbGV resulted in maximum reduction of LC50 value (4.39 × 102 occlusion bodies [OBs] ml−1) followed by methanolic extract (7.38 × 102 OBs ml−1) and aqueous extract (9.36 × 103 OBs ml−1) as compared with PbGV alone (1.85 × 104 OBs ml−1) for 2nd instar larvae of the test insect. These trends were found analogous in cases of 3rd and 4th instars of P. brassicae with different solvent extracts of NSK. The other botanicals evaluated, viz., Eupatorium and Artemesia, also resulted in reduction of LC50 values for 2nd, 3rd and 4th instars as compared with PbGV alone when different extracts were combined with virus for bioassays. The studies suggest that the PbGV in combination with botanical pesticides could be more useful as a bio-pesticide against cabbage butterfly (P. brassicae) in IPM programs.  相似文献   

3.
The efficacy of the essential oil and methanolic extracts of Erigeron ramosus (Walt.) B.S.P. was evaluated for controlling the growth of some important phytopathogenic fungi. The hydrodistilled essential oil was analysed by GC-MS. Thirty one compounds representing 95.3% of the total oil were identified, of which β-caryophyllene (24.0%), α-humulene (14.5%), 1,8-cineole (9.0%), eugenol (7.2%), globulol (7.1%), caryophyllene oxide (5.2%), δ-cadinene (5.0%), α-copaene (4.9%) and widdrol (2.0%) were the major compounds. Thus, the monoterpenes and sesquiterpenes were the predominant portions of the oil. Essential oil and methanol extract of E. ramosus and the derived fractions of hexane, chloroform and ethyl acetate were tested for anti-fungal activity, which was determined by disc diffusion and minimum inhibitory concentration (MIC) determination methods. The oil (1,000 ppm) and methanolic extracts (1,500 ppm) displayed great potential of anti-fungal activity as a mycelial growth inhibition against the tested phytopathogenic fungi such as Fusarium oxysporum (KACC 41083), Phytophthora capsici (KACC 40157), Colletotricum capsici (KACC 410978), Fusarium solani (KACC 41092), Rhizoctonia solani (KACC 40111), Sclerotinia sclerotiorum (KACC 41065) and Botrytis cinerea (KACC 40573), in the range of 49.3–70.3% and minimum inhibitory concentration ranging from 125–500 μg ml-1. The results obtained from this study may contribute to the development of new anti-fungal agents to protect the crops from fungal diseases.  相似文献   

4.
The nematicidal activity of saponins from Medicago arborea (tops), M. arabica (tops and roots) and M. sativa (tops and roots) against the plant-parasitic nematode Xiphinema index was investigated. Nematicidal activity of related prosapogenins and sapogenins on X. index is also described. Saponins from Medicago spp. at different concentrations were all nematicidal, those from M. arborea tops being the less effective. In general, saponins induced 100% mortality at 500 μg ml−1 between 8 and 48 h, while prosapogenins resulted in toxicity starting at 125 μg ml−1. Differences in the effects on X. index induced by prosapogenins and sapogenins were less pronounced, although prosapogenins displayed a larger range of activity. Assays with purified sapogenins demonstrated the relationship of the observed nematicidal activity of M. sativa and M. arborea to the content of the main aglycones (medicagenic acid and hederagenin, respectively) in the saponin extracts. Hederagenin displayed the highest bioactivity, giving 38% mortality after 1 h at 125 μg ml−1.  相似文献   

5.
Antibiosis is assumed to be an essential mechanism exerted by potential biocontrol agents (BCAs) of Trichoderma spp. Therefore, in the present study, we report for the first time on the elucidation and production of viridiofungin A (VFA) from T. harzianum isolate T23 cultures and investigate the antifungal potential of VFA and some other secondary metabolites purified from T. harzianum cultures against Fusarium moniliforme. The bioautography assay revealed that T. harzianum isolates T16 and T23 excreted several secondary metabolites with antifungal activity. Following isolation and purification of the antifungal zones, three fractions (F223, F323 and F423) from extracts of isolate T23 and two fractions (F416 and F516) from extracts of isolate T16 exhibited pronounced fungitoxic activity in the bioautography and antibiotic disk assays against Cladosporium spp. and F. moniliforme, respectively. The structure of the antifungal metabolite in fraction F323 was identified as viridiofungin A (VFA), the first report of production of VFA by isolate T23 of T. harzianum. Following cultivation of isolate T23 in PDB medium for 9 days, 94.6 mg l−1 of VFA were determined. VFA and fraction F516 retarded the mycelial growth of F. moniliforme in the non-volatile phase assay by >90% for each 250 μg ml−1 7 days post-inoculation (dpi). While VFA and fraction F416 showed both volatile and non-volatile effects, fraction F516 seemed to exhibit mainly non-volatile activity. Microscopic examination revealed that hyphae of F. moniliforme grown on VFA-amended medium were less branched and appeared thicker than untreated hyphae. Furthermore, in the presence of VFA, formation of chlamydospores by F. moniliforme was increased. Finally, the antifungal spectrum of VFA towards various important plant pathogens was evaluated. Germination of propagules of a variety of fungal pathogens in vitro was differentially inhibited by VFA. While in the presence of 100 μg ml−1 VFA conidial germination of V. dahliae was completely inhibited, a slightly higher concentration (150 μg ml−1) of the inhibitor was required to suppress germination of Phytophthora infestans sporangia or sclerotia of Sclerotinia sclerotiorum. Contrary to several reports in the literature, VFA proved to be fungistatic rather than fungicidal. However, neither VFA nor the other Trichoderma metabolites, such as 6PAP, F416 and F516, exhibited any antibacterial activity against Gram-positive and Gram-negative bacteria.  相似文献   

6.
The effect of indole-acetic acid (IAA) on the development of symptoms caused by Pythium ultimum on tomato plants was investigated using different bioassays. Application of IAA (5 μg ml−1) on tomato seedlings inoculated with P. ultimum did not affect their emergence suggesting that IAA did not affect the severity of Pythium damping-off. However, IAA was shown to influence the development of P. ultimum symptoms on tomato plantlets. Low concentrations of IAA (0–0.1 μg ml−1) within the rhizosphere of plantlets increased the severity of the symptoms caused by P. ultimum, while higher concentrations (10 μg ml−1), applied either by drenching to the growing medium or by spraying on the shoot, reduced the symptoms caused by this pathogen. In addition, the study demonstrated that P. ultimum produces IAA in liquid culture amended with L-tryptophan, tryptamine or tryptophol (200 μg ml−1) and in unamended culture.  相似文献   

7.
The baseline sensitivity of Botrytis cinerea to propamidine and assessment of the risk of propamidine resistance in vitro are presented in this article. The baseline sensitivities of 41 wild-type strains were distributed as a unimodal curve with EC50 values of mycelial growth ranging from 0.182 to 1.460 μg ml−1, with a mean of 0.79 ± 0.27 μg ml−1. A total of 10 resistant mutants, obtained from one parental strain, were induced by UV irradiation and selected for resistance to propamidine with an average frequency of 1.98 × 10−9 and 0.025 respectively. These mutants were divided into three classes of resistant phenotypes with low (LR), moderate (MR) and high (HR) levels of resistance, determined by the EC50 values of 5.0–15.0 μg ml−1, 15.1–75.0 μg ml−1 and more than 75.0 μg ml−1 respectively. Neither positive cross-resistance nor negative cross-resistance was detected between propamidine and the fungicides, benzimidazole carbendazim, anilino-pyrimidine pyrimethanil, dicarboximide iprodione or procymidone. All 10 propamidine-resistant mutants showed reduced mycelial growth in vitro, sporulation, spore germination and pathogenicity when compared with the parental strain. These studies demonstrated that propamidine possesses a low risk of resistance developing. However, as B. cinerea is a high-risk pathogen, appropriate precautions against resistance development should be taken.  相似文献   

8.
The sterol biosynthesis inhibitors bromuconazole and difenoconazole and tank mixes of each fungicide with captan were applied to apples and evaluated as controls for moldy-core and fruit decay caused by Alternaria alternata. Effectiveness of a mixture of bromuconazole and captan in controlling colonization by the fungus was also evaluated. Decay formation by A. alternata on mature detached fruits was partially inhibited by bromuconazole at 0.5 μg ml−1 and was completely inhibited at 50 μg ml−1; it was significantly affected by either bromoconazole at 5 μg ml−1 or captan at 1,250 μg ml−1, and was completely inhibited by their mixture. In general, three foliar applications of bromuconazole or difenoconazole in the field, during the bloom period, reduced the numbers of infected fruits by 40–60% compared with untreated control trees. However, tank mixes of either fungicide with captan improved control of moldy-core in fruits at harvest. Tank mixtures of bromuconazole and captan also significantly reduced the percentage of fruits colonized by A. alternata when sampled at various days after full bloom. Artificial inoculations in the orchard at full bloom did not change the inhibitory effects of the tank mixtures. Large-scale demonstration trials in commercial orchards supported these findings. The inhibitory effects of tank mixes on decay development in detached fruits, and on moldy-core in the field indicate that a control programme based on mixtures of either bromuconazole or difenoconazole with captan during the bloom period can effectively reduce moldy-core on Red Delicious apples.  相似文献   

9.
Resistance to the fungicide boscalid in laboratory mutants of Botryotinia fuckeliana (Botrytis cinerea) was investigated. The baseline sensitivity to boscalid was evaluated in terms of colony growth (EC50 = 0.3–3 μg ml−1; MIC = 10–30 μg ml−1) and conidial germination (EC50 = 0.03–0.1 μg ml−1; MIC = 1–3 μg ml−1) tests. Mutants were selected in vitro from wild-type strains of the fungus on a fungicide-amended medium containing acetate as a carbon source. Mutants showed two different levels of resistance to boscalid, distinguishable through the conidial germination tests: low (EC50 ∼ 0.3 μg ml−1, ranging from 0.03 to 1 μg ml−1; MIC > 100 μg ml−1) and high (EC50 > 100 μg ml−1) resistance. Analysis of meiotic progeny from crosses between resistant mutants and sensitive reference strains showed that resistant phenotypes were due to mutations in single major gene(s) inherited in a Mendelian fashion, and linked with both the Daf1 and Mbc1 genes, responsible for resistance to dicarboximide and benzimidazole fungicides, respectively. Gene sequence analysis of the four sub-units of the boscalid-target protein, the succinate dehydrogenase enzyme, revealed that single or double point mutations in the highly conserved regions of the iron-sulphur protein (Ip) gene were associated with resistance. Mutations resulted in proline to leucine or phenylalanine replacements at position 225 (P225L or P225F) in high resistant mutants, and in a histidine to tyrosine replacement at position 272 (H272Y) in low resistant mutants. Sequences of the flavoprotein and the two transmembrane sub-units of succinate dehydrogenase were never affected.  相似文献   

10.
The volatile antimicrobial substance allicin (diallylthiosulphinate) is produced in garlic when the tissues are damaged and the substrate allicin (S-allyl-l-cysteine sulphoxide) mixes with the enzyme alliin-lyase (E.C.4.4.1.4). Allicin undergoes thiol-disulphide exchange reactions with free thiol groups in proteins and it is thought that this is the basis of its antimicrobial action. At 50 μg ml-1, allicin in garlic juice inhibited the germination of sporangia and cysts and subsequent germ tube growth by Phytophthora infestans both in vitro and in vivo on the leaf surface. Disease severity in P. infestans-infected tomato seedlings was also reduced by spraying leaves with garlic juice containing allicin over the range tested (55–110 μg ml−1) with an effectiveness ranging from approximately 45–100%. Similarly, in growth room experiments at concentrations from 50–1,000 μg ml−1, allicin in garlic juice reduced the severity of cucumber downy mildew caused by Pseudoperonospora cubensis by approximately 50–100%. These results suggest a potential for developing preparations from garlic for use in specialised aspects of organic farming, e.g. for reducing pathogen inoculum potential and perhaps for use under glass in horticulture.  相似文献   

11.
Stem rot caused by Lasiodiplodia theobromae is an important postharvest disease of papaya in Brazil, responsible for reducing the quality and quantity of fruits. Fungicide use is one of the main disease management measures. However, there are no estimates available of pathogen sensitivity to commonly employed fungicides. Therefore, the EC50 from 120 isolates of L. theobromae from northeastern Brazil, representative of six populations of the pathogen, was estimated in vitro for fungicides of the methyl benzimidazole carbamates—MBC (benomyl and thiabendazole) and demethylation-inhibiting—DMI (imazalil, prochloraz, tebuconazole) groups. Mycelial growth on fungicide-free media and virulence on papaya fruits of the MBC-sensitive and non-sensitive isolates were compared. For MBCs, 8.4% of isolates were non-sensitive to fungicides. For the remaining 91.6%, the mean EC50 ranged from 0.002 to 0.13 μg ml−1 and 0.36 to 1.27 μg ml−1 for benomyl and thiabendazole, respectively. For DMIs, the mean EC50 range for imazalil was 0.001 to 2.27 μg ml−1, 0.04 to 1.75 μg ml−1 for prochloraz, and 0.14 to 4.05 μg ml−1 for tebuconazole. The EC50 values of non-sensitive isolates were significantly (P≤0.05) higher those for the sensitive isolates for each of the DMI fungicides. Differences (P≤0.05) were found in the levels of sensitivity to DMI fungicides among the isolate populations associated with orchards. The populations from two orchards were less sensitive to DMIs. No solid evidence was found for fitness costs relating to MBC non-sensitive isolates because mycelial growth in fungicide-free media and virulence on papaya fruits were similar to those of sensitive isolates.  相似文献   

12.
Sclerotinia sclerotiorum is a worldwide ascomycete fungal plant pathogen, which causes enormous yield losses on major economic crops such as crucifers, grain legumes and several other plant families. The objective of this research was to isolate and characterise some bioactive products from cultures of fungi associated with the marine sponge Axinella sp. In total, nine fungal isolates were obtained from the marine sponge Axinella sp. collected from the South China Sea. A group of test strains, including two G+ strains (Bacillus subtilis and Staphylococcus aureus), two G strains (Escherichia coli and Pseudomonas aeruginosa) and three fungi including two plant pathogenic fungi Sclerotinia sclerotiorum and Magnaporthe grisea and Saccharomyces cerevisiae, were employed as the indicator organisms for bioactivity screening. Using antagonistic tests and bioactive screening of the ethyl acetate (EtOAc) extracts of the corresponding cultures, fungal isolate JS9 showed the stronger efficacy against the test indicator strains, especially the indicator fungal pathogens. Isolate JS9 was further identified as Myrothecium sp. by a combination of morphological features and 18S rDNA BLAST on GenBank. Two macrocyclic trichothecenes, roridin A (compound 1) and roridin D (compound 2) were purified by tracking the activity of the EtOAc extract fractions and characterised with spectral analyses including MS, 1H-NMR, 13C-NMR and disortionless enhancement by polarization transfer (DEPT). In vitro antifungal tests showed that the two macrocyclic trichothecenes were bioactive against S. cerevisiae, M. grisea and S. sclerotiorum with minimal inhibitory concentrations of 31.25, 125 and 31.25 μg ml−1 for roridin A, and 62.5, 250 and 31.25 μg ml−1 for roridin D, respectively. The present investigation demonstrated that two antifungal trichothecenes including roridin A and roridin D produced by the fungus Myrothecium sp. isolated from the marine sponge Axinella sp. could be potential inhibitors against the plant pathogen S. sclerotiorum. Lian Wu Xie and Shu Mei Jiang contributed equally to this work.  相似文献   

13.
Cucurbit powdery mildew caused by Podosphaera fusca limits crop production in Spain. Since its management is strongly dependent on chemicals, the rational design of control programmes requires a good understanding of the fungicide resistance phenomenon in field populations. Fifty single-spore isolates of P. fusca were tested for sensitivity to three quinone-outside inhibiting (QoI) fungicides: azoxystrobin, kresoxim-methyl and trifloxystrobin. Minimum inhibitory concentration (MIC) values for QoI-sensitive isolates were found to range from 0.25 to 10 μg ml−1 for azoxystrobin to 5–25 μg ml−1 for kresoxim-methyl, using a leaf disc-based bioassay. High levels of cross-resistance to QoI fungicides were found. Eleven isolates showed resistance to the three QoI fungicides tested with MIC and EC50 values >500 μg ml−1 resulting in RF values as high as >715 and >1000 for trifloxystrobin and azoxystrobin, respectively. A survey of P. fusca QoI resistance was carried out in different provinces located in the south central area of Spain during the cucurbit growing seasons in 2002, 2003 and 2004. Examination of a collection of 250 isolates for QoI resistance revealed that 32% were resistant to the three fungicides tested; the provinces of Ciudad Real, Córdoba and Murcia being the locations with the highest frequencies of resistance (44–74%). By contrast, no resistance was found in Badajoz, and relatively low frequencies were observed in Almería and Valencia (10–13%). Nearly 50% of resistant isolates were collected from melon plants. Based on these data, recommendations about the use of QoI fungicides for cucurbit powdery mildew management in the sampled areas are made.  相似文献   

14.
Indoor and field experiments were conducted to evaluate the efficacy of applying the mycoparasite Coniothyrium minitans to the aerial parts of rapeseed plants at the flowering stage to control sclerotinia diseases caused by Sclerotinia sclerotiorum. Under controlled conditions, a petal inoculation technique was used to determine the effect of conidial suspensions of C. minitans on suppression of sclerotinia leaf blight. Results showed that C. minitans was effective in inhibiting infection initiated by ascospores of S. sclerotiorum on flower petals by restricting mycelial growth of the pathogen. Suppression of lesion development was related to the conidial concentration of C. minitans, with larger lesions at low concentration (5×103conidia ml−1), but smaller lesions at high concentration (5×104 conidia ml−1 or higher). When C. minitans-treated rapeseed leaves were inoculated with mycelia of S. sclerotiorum, C. minitans failed to prevent infection of leaves, but caused a significant reduction in number of sclerotia produced on the diseased leaves. No significant difference in efficacy was detected between the two isolates of C. minitans, LRC 2137 and Chy-1, on the two rapeseed cultivars, Westar (spring type) and Zhongyou 821 (winter type). Results of field trials showed a significant reduction of stem rot of rapeseed in four (1997, 1999, 2003 and 2004) out of five years by aerial application of C. minitans, compared with controls. No significant difference in suppressive efficacy was observed between the treatments of C. minitans (106 conidia ml−1), C. minitans (106 conidia ml−1) + benomyl (50 μg ml−1) and benomyl (100 μg ml−1) in 2003, and between the treatments of C. minitans (106 conidia ml−1), C. minitans (106 conidia ml−1) + vinclozolin (100 μg ml−1) and vinclozolin (500 μg ml−1) in 2004. Sclerotia of S. sclerotiorum collected from diseased plants in plots treated with C. minitans in 1999, 2000 and 2003, or with C. minitans + benomyl in 2003 were infected by C. minitans at frequencies ranging from 21.3 to 54.5%. This study concludes that aerial spraying of C. minitans is an effective method for controlling sclerotinia diseases of rapeseed.  相似文献   

15.
The effects of some fungicides used against citrus diseases, on mycelial growth and conidial germination of Isaria farinosa (Holmsk.) Fries [Sordariomycetes: Hypocreales] and also on the pathogenicity of the fungus on citrus mealybug, Planococcus citri (Risso), were determined. Systemic fungicides such as tebuconazole, penconazole and nuarimol were the most effective as regards both conidial germination and mycelial growth. Protective fungicides such as captan, chlorothalonil, mancozeb and propineb inhibited conidial germination at between 1 and 5 μg ml−1 concentration, but captan, chlorothalonil and propineb did not inhibit the mycelial growth at 5,000 μg ml−1. Mancozeb inhibited mycelial growth between 2,500 and 5,000 μg ml−1. Sulphur and copper oxychloride did not inhibit the fungus even at very high concentrations. Sulphur, copper oxychloride, fosetyl-al, chlorothalonil and carbendazim did not decrease the mortality percentage caused by I. farinosa. Tebuconazole, penconazole and mancozeb were the most effective and respectively reduced the mortality from 83% to 33%, 28% and 30% in the ovisacs, from 81% to 29%, 27% and 29% in the 1st instar larvae, and from 84% to 34% in the adult females.  相似文献   

16.
The yeast Pichia anomala strain K was selected in Belgium from the apple surface for its antagonistic activity against post-harvest diseases of apples. The efficacy of this strain against P. expansum was evaluated in the laboratory in three scenarios designed to mimic practical conditions, with different periods of incubation between biological treatment, wounding of fruit surface, and pathogen inoculation. Higher protection levels and higher final yeast densities were obtained when the applied initial concentration was 1 × 108 cfu ml−1 than when it was only 1 × 105 cfu ml−1. The protection level correlated positively with the yeast density determined in wounds and was influenced by apple surface wetness. In orchard trials spanning two successive years, biological treatment against P. expansum, based on a powder of P. anomala strain K (1 × 107 cfu ml−1), β-1,3-glucans (YGT 2 g l−1), and CaCl2.2H20 (20 g l−1), was applied to apples pre- or post-harvest under practical conditions and its effect compared with standard chemical treatments. The first year, the highest reduction (95.2%) against blue decay was obtained by means of four successive fungicide treatments and the next-highest level (87.6%) with pre-harvest high-volume spraying of the three-component mixture 12 days before harvest. The second year, the best results were obtained with post-harvest Sumico (carbendazim 25% and diethofencarb 25%) treatment and post-harvest biological treatment, both by dipping the apples, 88.3 and 56.3% respectively. A density threshold of 1 × 104 cfu cm−2 of strain K on the apple surface seemed to be required just after harvest for high protective activity, whatever the method and time of application. In the case of pre-harvest biological treatments, variations in meteorological conditions between the 2 years may have considerably affected strain K population density and its efficacies.  相似文献   

17.
The baseline sensitivity ofFusarium graminearum Schwade [teleomorph =Gibberella zeae (Schweinitz) Petch] to the fungicide JS399-19 (development code no.) [2-cyano-3-amino-3-phenylacrylic acetate] and the assessment of risk to JS399-19 resistancein vitro are presented. The mean EC50 values for JS399-19 inhibiting mycelial growth of three populations of wild-typeF. graminearum isolates were 0.102±0.048, 0.113±0.035 and 0.110±0.036 μg ml−1, respectively. Through UV irradiation and selection for resistance to the fungicide, we obtained a total of 76 resistant mutants derived from five wild-type isolates ofF. graminearum with an average frequency of 1.71 × 10−7% and 3.5%, respectively. These mutants could be divided into three categories of resistant phenotypes with low (LR), moderate (MR) and high (HR) level of resistance, determined by the EC50 values of 1.5–15.0 μg ml−1, 15.1–75.0 μg ml−1 and more than 75.0 μg ml−1, respectively. There was no positive cross-resistance between JS399-19 and fungicides belonging to other chemical classes, such as benzimidazoles, ergosterol biosynthesis inhibitors and strobilurins, suggesting that JS399-19 presumably has a new biochemical mode of action. Although the resistant mutants appeared to have comparable pathogenicity to their wild-type parental isolates, they showed decreased mycelial growth on potato-sucrose-agar plates and decreased sporulation capacity in mung bean broth. Nevertheless, most of the resistant mutants possessed fitness levels comparable to their parents and had MR or HR levels of resistance. As these studies yielded a high frequency of laboratory resistance inF. graminearum, appropriate precautions against resistance development in natural populations should be taken into account. http://www.phytoparasitica.org posting August 7, 2008.  相似文献   

18.
Lectin fromGlycine max L. was extracted and purified by affinity chromatography using asialofetuin-linked porous amino-activated silica beads. The concentration-dependent effect of lectin was studied on freshly laid eggs (0–8 h old) of the melon flyBactrocera cucurbitae (Coquillett); lectin failed to influence egg hatching. However, treating second instar larvae (64–72 h old) with increasing concentrations of lectin significantly reduced the development period, number of pupae and number of emergingB. cucurbitae, and was negatively correlated with the increase in the lectin concentration. The LC50 value, 54μg ml−1, was calculated on the basis of adult emergence. Treatment of the larvae (64–72 h old) with the LC50 concentration resulted in a decrease in pupal weight. The activity of three hydrolase enzymes (esterases, acid and alkaline phosphatases), one oxidoreductase (catalase) and one group transfer enzyme (glutathione S-transferase) was assayed in second instar larvae at the LC50 concentration of lectin after exposure for 24, 48 and 72 h. The activity of esterases increased significantly (P<0.01) at the three exposure intervals, whereas the activities of the three other hydrolyses and the transferases were significantly suppressed (P<0.01). http://www.phytoparasitica.org posting Sept. 13, 2006.  相似文献   

19.
The greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) is occasionally found in beehives and is a major pest of stored wax. Entomopathogenic fungi have recently received attention as possible biocontrol elements for certain insect pests. In this study, 90 isolates of Beauveria bassiana and 15 isolates of Metarhizium anisopliae were screened for proteases and lipases production. The results showed significant variations in the enzymatic action between the isolates. In the bioassay, the selected isolates evinced high virulence against the 4th instar of the G. mellonella larvae. The isolates BbaAUMC3076, BbaAUMC3263 and ManAUMC3085 realized 100% mortality at concentrations of 5.5 × 106 conidia ml−1, 5.86 × 105 conidia ml−1, and 4.8 × 106 conidia ml−1, respectively. Strong enzymatic activities in vitro did not necessarily indicate high virulence against the tested insect pest. The cuticle of the infected larvae became dark and black-spotted, indicating direct attack of fungus on the defense system of the insects. The LC50 values were 1.43 × 103, 1.04 × 105 and 5.06 × 104 for Bba3263AUMC, Bba3076AUMC and Man3085AUMC, respectively, and their slopes were determined by computerized probit analysis program as 0.738 ± 0.008, 0.635 ± 0.007 and 1.120 ± 0.024, respectively.  相似文献   

20.
Significant antibacterial activity was observed in the essential oil (E.O.) ofRosa damascena Mill. and the Minimum Bactericidal Concentration (MBC) of the E.O. was determined as 1386.5 μg ml−1 forErwinia amylovora, the causal agent of fire blight disease. Ooze formation on immature pears and lesion formation in artificially inoculated shoots were completely (100%) prevented by the essential oil ofR. damascena (1500 μg ml−1), essential oil ofThymbra spicata var.spicata (500 μg ml−1) and streptomycin (100 μg ml−1). Copper oxychloride plus maneb significantly reduced ooze formation and lesion formation, but the control was less than that obtained with the essential oils or streptomycin. The essential oil ofR. damascena may be a useful natural bactericide for the control of the fire blight pathogen,E. amylovora. http://www.phytoparasitica.org posting July 14, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号